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A fundamental question in microbiology is whether there is a
continuum of genetic diversity among genomes or clear species
boundaries prevail instead. Answering this question requires ro-
bust measurement of whole-genome relatedness among thousands
of genomes and from diverge phylogenetic lineages. Whole-genome
similarity metrics such as Average Nucleotide Identity (ANI) can pro-
vide the resolution needed for this task, overcoming several limi-
tations of traditional techniques used for the same purposes. Al-
though the number of genomes currently available may be adequate,
the associated bioinformatics tools for analysis are lagging behind
these developments and cannot scale to large datasets. Here, we
present a new method, FastANI, to compute ANI using alignment-
free approximate sequence mapping. Our analyses demonstrate that
FastANI produces an accurate ANI estimate and is up to three orders
of magnitude faster when compared to an alignment (e.g., BLAST)-
based approach. We leverage FastANI to compute pairwise ANI val-
ues among all prokaryotic genomes available in the NCBI database.
Our results reveal a clear genetic discontinuity among the database
genomes, with 99.8% of the total 8 billion genome pairs analyzed
showing either >95% intra-species ANI or <83% inter-species ANI
values. We further show that this discontinuity is recovered with
or without the most frequently represented species in the database
and is robust to historic additions in the public genome databases.
Therefore, 95% ANI represents an accurate threshold for demarcat-
ing almost all currently named prokaryotic species, and wide species
boundaries may exist for prokaryotes.
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Large collections of prokaryotic genomes with varied eco-
logic and evolutionary histories are now publicly available.

This deluge of genomic data provides the opportunity to more
robustly evaluate important questions in microbial ecology
and evolution, as well as underscores the need to advance
existing bioinformatics approaches for the analysis of such big
genomic data. One such question is whether bacteria (and
other microbes) form discrete clusters (species), or, due to high
frequency of horizontal gene transfer (HGT) and slow decay
kinetics, a continuum of genetic diversity is observed instead.
Studies based on a small number of closely related genomes
have shown that genetic continuum may prevail [e.g., (1)]. On
the other hand, other studies have argued that HGT may
not be frequent enough to distort species boundaries, or that
organisms within species exchange DNA more frequently com-
pared to organisms across species, thus maintaining distinct
clusters [e.g., (2)]. An important criticism of all these studies is
that they have typically been performed with isolated genomes
in the laboratory that may not adequately represent natural
diversity due to cultivation biases, or were based on a small
number of available genomes from a few phylogenetic lineages,

which does not allow for robust conclusions to emerge. There-
fore, it is still unclear if well-defined clusters of genomes are
evident among prokaryotes and how to recognize them. Defin-
ing species is not only an important academic exercise but also
has major practical consequences. For instance, the diagnosis
of disease agents, the regulation of which organisms can be
transported across countries and which organisms should be
under quarantine, or the communication about which organ-
isms or mixtures of organisms are beneficial to human, animals
or plants, are all deeply-rooted on how species are defined.

One fundamental task in assessing species boundaries is
the estimation of the genetic relatedness between two genomes.
In recent years, the whole-genome average nucleotide identity
(ANI) has emerged as a robust method for this task, with
organisms belonging to the same species typically showing
Ø95% ANI among themselves (3, 4). ANI represents the
average nucleotide identity of all orthologous genes shared
between any two genomes and o�ers robust resolution between
strains of the same or closely related species (i.e., showing
80-100% ANI). The ANI measure does not strictly represent
core genome evolutionary relatedness, as orthologous genes can
vary widely between pairs of genomes compared. Nevertheless,
it closely reflects the traditional microbiological concept of
DNA-DNA hybridization relatedness for defining species (3),
as it takes into account the fluid nature of the bacterial gene
pool and hence implicitly considers shared function. Compared
to sequencing of 16S rRNA genes, another highly popular, al-
ternative traditional method for defining species and assessing
their evolutionary uniqueness, ANI o�ers several important
advantages such as higher resolution among closely related
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genomes. Finally, ANI can be estimated among draft (incom-
plete) genome sequences recovered from the environment using
metagenomic or singe-cell techniques that do not encode a
universally conserved gene such as the 16S rRNA gene (e.g.,
due to mis-assembly) but encode at least a few hundred shared
genes, greatly expanding the number of sequences that can
be studied and classified compared to a universal gene-based
approach. Accordingly, ANI has been recognized internation-
ally for its potential for replacing DNA-DNA hybridization
as the standard measure of relatedness, as it is easier to es-
timate and represents portable and reproducible data (5, 6).
Despite its strengths, traditional ANI calculation is based on
alignment-based searches [e.g., BLAST (7)] and thus, remains
computationally expensive due to the quadratic time complex-
ity of alignment algorithms, and does not scale well with an
increasing number of genomes.

Several variations of the original ANI calculation algorithm
have been proposed (8–10), but these mainly modify the spe-
cific approach to identify shared genes and do not speed up the
calculation substantially since they are all alignment-based.
Accordingly, it is nearly impossible to calculate ANI values
among the available microbial genomes to date, in the order
of a hundred thousand, based on these approaches and com-
monly available computational resources. Importantly, the
available genomic data is estimated to be a small fraction of
the extant prokaryotic diversity (11), and the number of new
genomes determined continues to grow exponentially. There-
fore, new computational solutions are needed to scale-up with
the available and forthcoming data.

A couple of such solutions have been proposed recently,
borrowing concepts from ‘big data’ analysis in other scien-
tific domains. MinHash is a technique for quick estimation
of similarity of two sets, initially developed for the detection
of near-duplicate web documents in search engines at the
scale of the World Wide Web (12). Recently, this technique
was successfully adapted for designing new fast algorithms
in bioinformatics such as for genome assembly (13, 14) and
long read mapping problems (15). Ondov et. al. (16) provided
the first proof-of-concept implementation called Mash for fast
estimation of ANI using this technique. Even though Mash
has been reported to be multiple orders of magnitude faster
than alignment-based ANI computation, a straight-forward
adoption of the MinHash technique to the problem of comput-
ing ANI has been found to be inaccurate for incomplete draft
genomes (17). Further, there is a limit on how well Mash can
approximate ANI especially for moderately divergent genomes
(e.g., showing 80-90% ANI), as Mash similarity measurement
is not restricted to the shared genomic regions, whereas ANI
considers only the shared genome.

In this study, we alleviate the computational bottleneck in
ANI computation by developing FastANI, a novel algorithm
utilizing Mashmap (15) as its MinHash based alignment-free
sequence mapping engine. FastANI provides ANI values that
are essentially identical to the alignment-based ANI values
for both complete and draft quality genomes that are related
in the 80% to 100% nucleotide identity range. Therefore,
FastANI should enable the accurate estimation of pairwise
ANI values for large cohorts of genomes or evaluation of the
novelty of a query draft genome by comparing it against the
full collection of available prokaryotic genomes.

Results

We developed FastANI, an algorithm for e�ciently computing
pairwise average nucleotide identities among a large set of
genomes, and applied it to determine whether genomic data
supports the existence of genetic discontinuity and clear special
boundaries among prokaryotic species. We first demonstrate
FastANI yields accuracy on par with the widely accepted
BLASTn based approaches, and then leverage its computa-
tional e�ciency to analyze genomic relatedness within and
across species.

Datasets. To test accuracy and speed, we evaluated FastANI
on both high-quality closed genomes from NCBI RefSeq
database as well as draft genome assemblies downloaded from
the prokaryote section of the NCBI Genome database. We first
removed poor quality genome assemblies with low N50 length
(< 10 Kbp). In total, four datasets were used (D1 through
D4). Dataset D1 is the set of closed prokaryotic genomes
downloaded from RefSeq database. Datasets D2, D3, and D4
are collections of draft genome assemblies of Bacillus cereus,
Escherichia coli and Bacillus anthracis, respectively. These
sizable datasets represent genomes showing di�erent levels of
identity among themselves and varying values of completeness
and assembly quality. For each dataset, one genome was se-
lected as the query genome and its ANI was computed with
every genome in the complete dataset (see Table 1).

Accuracy. We evaluated FastANI against the BLASTn based
method of computing ANI (9), henceforth referred as ANIb,
and the ANI values predicted by the Mash tool (16). User
documentation for Mash recommends using larger sketch size
(i.e., k-mer sample) than the default to obtain higher accu-
racy (16). Accordingly, we ran Mash with both the default
sketch size of 1K as well as increase it up to 100K.

FastANI achieves near perfect linear correlation with ANIb
on all datasets D1-D4 (Figure 1). Mash results improve with
increasing sketch size, particularly for D1. However, even when
executed with the largest sketch size of 100K, Mash results
diverge from ANIb values on datasets D1, D3 and D4. For
D1, this primarily appears to be caused by divergent genomes
(e.g., showing < 90% ANI). For D3, Mash diverges on closely
related genomes due to fragmented and incomplete genome
assemblies of the draft genomes. Dataset D4 is challenging
because its constituent genomes are closely related strains of
Bacillus anthracis, with ANIb > 99.9 for all the pairs. FastANI
provides much better precision than Mash in D4 dataset, and
therefore, can be used to discriminate between very closely
related microbial strains such as those of di�erent epidemic
outbreaks. However, for two genomes out of the 464, FastANI
estimates are diverging from ANIb. To investigate further, we
visualized gene synteny pattern using Mauve (18) and found

Table 1. Datasets used for testing accuracy and speed of FastANI.

Id Reference clade No. of
Genomes

Median
N50 (Mbp)

Query Genome

D1 NCBI RefSeq 1,675 3.14 E. coli K-12 MG1655
D2 Bacillus cereus 570 1.16 B. anthracis 52-G
D3 Escherichia coli 4,271 0.15 E. coli strain
D4 Bacillus anthracis 464 0.59 B. anthracis strain
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that these two genome sequences have many re-arrangements
with respect to the query genome (Supplementary Fig. S1).
Given that B. anthracis strains typically show high genome
synteny (19), these results indicate that the two genomes were
incorrectly assembled. Incorrect data will yield unpredictable
results not only with FastANI but using any method that
assesses genetic relatedness, including phylogeny-based meth-
ods. If the two incorrect B. anthracis assemblies are removed,
FastANI’s correlation with ANIb improves to 0.944 in D4.

These correlation results demonstrate FastANI provides
significant quality improvement over Mash (see Table 2), and
can be a reasonable substitute for ANIb. Aggregate results
over all the datasets D1-D4 (Figure 2) led us to conclude that
FastANI can tolerate variable assembly quality and complete-
ness. Most importantly, it correlates well with ANIb in the
desired identity range 80% ≠ 100%.

Computational Speedup. FastANI is designed to e�ciently
process large assembly datasets with ordinary compute re-
sources. For FastANI’s sequential and parallel runtime eval-
uation, we used a single compute node with two Intel Xeon
E5-2698 v4 20-core processors. First we show runtime compari-
son of FastANI and ANIb using serial execution (single thread,
single process) using all datasets in Table 3. FastANI opera-
tion consists of indexing phase followed by compute phase, for
which we measured the runtime separately. For any database,
indexing all the reference genomes needs to be done only once,
and thereafter, FastANI can compute ANI estimates for any
number of input query genomes against the reference genomes.
Therefore, speedup in Table 3 is measured with respect to
FastANI compute time. We observe that the runtime improve-
ment due to FastANI varied from 50x for D3 to 782x for D1.
FastANI speed-up was the highest on D1 because NCBI Refseq
database contains a diverse set of prokaryotic genomes. This is
attributable to the fact that the algorithm underlying FastANI
is able to prune distant genomes (ANI π 80%) e�ciently. On
the contrary, ANI values for all genomes in datasets D2-D4
were high > 80%.

To accelerate ANI computation even further, FastANI can
be trivially parallelized using multi-core parallel execution.
One way to achieve this is to split the reference genomes in
several equal-size parts. This way, each instance of FastANI
process can search query genome(s) against each part of the
reference database independently. We utilized this scheme
and evaluated scalability using up to 80 FastANI parallel
processes. Compared to the sequential execution time listed
in Table 3, runtime of the compute phase reduced to 2, 8,

Table 2. Comparison of FastANI and Mash-based ANI accuracy by
measuring their Pearson correlation coefficients with ANIb values.
Mash is executed with sketch sizes (-s): 1,000 (default), 10,000 and
100,000. FastANI achieves > 0.99 correlation with ANIb on D1-D3.
Its correlation value on D4 improves from 0.681 to 0.944 if the two
incorrect assemblies present in D4 are not taken into account.

Dataset FastANI
Mash

-s 10

3 -s 10

4 -s 10

5

D1 0.995 0.594 0.932 0.935
D2 0.999 0.996 0.997 0.997
D3 0.995 0.944 0.944 0.944
D4 0.681 -0.040 0.003 0.010
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Fig. 1. Plots showing how FastANI and Mash-based ANI (sketch size = 10

5)
output correlate with ANIb values for datasets D1-D4. Because FastANI assumes a
probabilistic identity cutoff that is set to 80% by default, it reports 76, 570, 4,271 and
464 genome matches for the individual queries in datasets D1-D4 respectively. To
enable a direct quality comparison against FastANI, Mash is executed for only those
pairs that are reported by FastANI. Notice that each dataset encompass a different
nucleotide identity range (x-axes). Gray line represents a straight line y = x plot for
reference. Pearson correlation coefficients corresponding to these plots are listed
separately in Table 2.
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Fig. 2. FastANI’s aggregate accuracy and error characteristics based on datasets
D1-D4. Upper left plot shows the FastANI and ANIb correlation. The remaining three
plots show differences between FastANI and ANIb value versus reference genome
assembly quality (N50 and length) and the number of reciprocal fragments that
matched between query and reference genome for each comparison. These results
show no biases associated with these factors.
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Table 3. Comparison of execution time of FastANI versus ANIb.
Speedup in the last column is measured as the ratio of ANIb’s run-
time and FastANI’s compute time.

Dataset
FastANI

ANIb (sec) Speedup
Indexing (sec) Compute (sec)

D1 468.2 16.76 13,113 782x
D2 195.7 264.76 18,155 69x
D3 1538 1980.8 99,317 50x
D4 128.8 214.53 11,051 52x
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Fig. 3. Scaling results of FastANI’s execution time using datasets D1-D4 on a compute
node with 40 physical cores. We executed parallel FastANI processes where each
process was assigned an equal sized random part of the reference database for
computing ANI. Left and right plots evaluate FastANI’s compute and indexing phase,
respectively. FastANI achieves reasonable speedups on all datasets except the
compute phase in D1, as its runtime of 17s on a single core is too small to begin with
(Table 3). FdastANI reduces this to 2 seconds using 80 parallel processes.

46 and 6 seconds for datasets D1-D4 respectively (Figure 3).
These results confirm FastANI can be used to query against
databases containing thousands of genomes in a few seconds.

For the above experiments, FastANI required a maximum
48 GB memory for D3, our largest dataset for this experiment.
For databases much larger than D3, peak memory usage can
be reduced by either distributing the compute across multi-
ple nodes in a cluster or processing chunks of the reference
database one by one, as necessary.

Large-scale Pairwise Comparison Indicates Genetic Disconti-
nuity. We examined the distribution of pairwise ANI values
between all 91,761 prokaryotic assemblies that existed in the
NCBI Genome database as of March 15, 2017. Prior to analy-
sis, we removed 2,262 genomes due to short N50 length (< 10
Kbp). In our analysis, the ANI between each pair of genomes
A and B is computed twice, once with A as query genome
and again with B as query genome. This choice did not
meaningfully alter the ANI value reported by FastANI unless
the draft genomes are incorrectly assembled or contaminated
(Supplementary Fig. S2). Computing pairwise ANI values for
the entire database took 77K CPU hours for all 8.01 billion
comparisons. To our knowledge, this is the largest cohort of
genomes for which ANI has been computed. The largest previ-
ously published ANI analysis included 86 million comparisons
and took 190K CPU hours (20).

Among the total of 8.01 billion pairwise comparisons,
679,765,100 yielded ANI values in the 76-100% range. The
distribution of these ANI values reveals a clear and wide
discontinuity in the identity range of 83-95% (Figure 4a). Fas-
tANI reported only 17,132,536 ANI values (i.e., 2.5% of the

679,765,100 pairs) within the range of 83% to 95%. The ge-
netic discontinuity was apparent even when all named species
were randomly drawn with species-dependent probabilities
that ensured the same expected representation of highly sam-
pled and sparsely sampled species in the final set (data not
shown).

The frequency of intra- vs. inter-species genomes sequenced
in the NCBI database has changed over time, with earlier
sequencing e�orts targeting distantly related organisms in
order to cover phylogenetic diversity while e�orts in more
recent years targeted more closely related organisms for micro-
diversity or epidemiological studies (Supplementary Fig. S3).
We confirmed that discontinuity pattern has been maintained
at di�erent time points in the past (Figure 4b). In previous
taxonomic studies, 95% ANI cuto� is the most frequently used
standard for species demarcation. Density curves in the figure
show that the two peaks consistently lie on either side of the
95% ANI value.

Finally, we tested the correlation between standing nomen-
clature and the 95% ANI demarcation. As per this standard,
we should expect a pair of genomes to have ANI value Ø 95% if
and only if both genomes are members of same species. From
the complete set of 89,499 genomes, we identified the subset for
which we could determine the named species for each genome.
Whenever available (9% of the total genomes), we recovered
the links to NCBI taxonomy to determine the species. For
the remainder of the genomes, we inferred the species from
the organism name given in the GenBank file, excluding all
entries with ambiguous terms (sp, cf, a�, bacterium, archeon,
endosymbiont), resulting in the species-wise classification of
an additional 78% of the genomes. The remainder 13% of the
genomes were discarded.

We evaluated the distribution of ANI values in this subset
in comparison to the named species that the corresponding
genomes were assigned to (Figure 4c). The Ø 95% ANI cri-
terion reflects same named species with a recall frequency
of 98.5% and a precision of 93.1%. We further explored the
values a�ecting precision, i.e., 6.9% of ANI values above 95%
that were obtained for genomes assigned to di�erent named
species. Among those, 5.6% are due to comparisons between
Escherichia coli and Shigella spp., a case in which the in-
consistency between taxonomy and genomic relatedness is
well documented (1) (highlighted in green in Figure 4c). The
remaining 1.3% of the cases mostly exist within the Mycobac-

terium genus (0.5%), which includes a group of closely related
named species as part of the M. tuberculosis complex such as M.

tuberculosis (reference), M. canettii (ANI 97-99% against ref-
erence), M. bovis (ANI 99.6%), M. microti (ANI 99.8-99.9%),
and M. africanum (ANI 99.9%), among others. An additional
0.2% of the cases correspond to comparisons between Neisse-

ria gonorrhoeae and N. meningitidis, two species with large
representation in the database and ANI values close to 95%
(Inter-quartile range: 94.9-95.2%). Excluding the cases of E.

coli vs. Shigella alone, precision increases to 98.7%. With
both recall and precision values Ø 98.5%, these results cor-
roborate the utility of ANI for species demarcation, which
is consistent with previous studies based on a much smaller
dataset of genomes (4, 20).
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Fig. 4. a. Histogram plot showing the distribution of ANI values among the 90K genomes. Only ANI values in the 76-100% range are shown. Out of total 8.01 billion pairwise
genome comparisons, FastANI reported only 17M ANI values (0.21%) with ANI between 83% and 95% indicating a wide genetic discontinuum. Multiple colors are used to show
how genomes from different genera are contributing to this distribution. Few peaks in the histogram arise from genera that have been extensively sequenced and dominate the
database. b. Density curves of ANI values in the ANI range 76-100%. Each curve shows the density curve corresponding to the database at a particular time period. Wide
discontinuity in all four curves is observed consistently. c. Distribution of ANI values with each comparison labeled by the nomenclature of genomes being compared. All the
comparisons between Escherichia coli and Shigella spp. have been labeled separately. The 95% ANI threshold on x-axis serves as a valid classifier for comparisons belonging
to same and different species.

Discussion

Our results indicate that FastANI robustly estimates ANI val-
ues between both complete and draft genomes while reducing
the computing time by two to three orders of magnitude. We
leveraged the computational e�ciency o�ered by FastANI to
evaluate the distribution of ANI values in a set of over 90,000
genomes, and demonstrate that genetic relatedness discontinu-
ity can be consistently identified among these genomes around
95% ANI. This discontinuity is recovered with or without the
most frequently represented species in the database, is robust
to historic additions in the public databases, and it represents
an accurate threshold for demarcating almost all currently
named prokaryotic species.

Given also the large number of genomes used in our analy-
sis that represented all major prokaryotic lineages, it is likely
that the discontinuity represents a real biological signature
and is not driven by cultivation or other biases. It is also im-
portant to note that these results are consistent with metage-
nomics analysis of natural microbial communities, which have
showed that the communities are composed of predominantly
sequence-discrete populations [reviewed in (21)]. The biologi-
cal mechanisms underlying this genetic discontinuity are not
clear but should be subject of future research for a more com-
plete understanding of prokaryotic species. The mechanisms
could involve a dramatic drop in recombination frequency
around 90-95% ANI, which could account for the discontinuity
if bacteria evolve sexually [reviewed in (22)], or ecological
sweeps that remove diversity due to competition [reviewed
in (23, 24)]. A genomic nucleotide diversity of 5-10% translates
to tens of thousands of years of evolution time, which provides
ample opportunities for ecological or genetic sweeps to occur.
Nonetheless, the existence of genetic discontinuity represents
a major finding that can help define species more accurately
and has important practical consequences for recognizing and
communicating about prokaryotic species.

As a general-purpose research tool, we expect FastANI
to be useful for analysis of both clinical and environmental
microbial genomes. It can be used for studying the inter-
and intra-species diversity within large collections of genomes.
It should also accelerate the study of the novelty of new
species or phenotypic similarity of a query genome sequence
in comparison to all available genomes.

Materials and Methods

Before describing FastANI (Figure 5), we briefly review
Mashmap that underlies the FastANI algorithm.

The Mashmap Sequence Mapping Algorithm. Given a query
sequence, Mashmap (15) finds all its mapping positions in
the reference sequence(s) above a user specified minimum
alignment identity cut-o� I0 with high probability. Mashmap
avoids direct alignments, but instead relates alignment iden-
tity (I) between sequences A and B to Jaccard similarity of
constituent k-mers (J) under the Poisson distribution model:

I(A, B)/100 = 1 + 1
k

◊ log
3

2 · J(A, B)
1 + J(A, B)

4
, [1]

where k is the k-mer size (16).
To estimate the Jaccard similarity itself, Mashmap uses a

winnowed-MinHash estimator (15). This estimator requires
only a small sample of k-mers from the query and refer-
ence sequences to be examined [see (15) for further details of
Mashmap].

FastANI Extends Mashmap to Compute ANI. Previously estab-
lished and widely used implementations of ANI begin by either
identifying the protein coding genomic fragments (8) or ex-
tracting approximately 1 Kbp long overlapping fragments from
the query genome (3). These fragments are then mapped to
the reference genome using BLASTn (7) or MUMmer (26),
and the best match for each fragment is saved. This is fol-
lowed by a reverse search, i.e., swapping the reference and
query genomes. Mean identity of the reciprocal best matches
computed through forward and reverse searches yields the
ANI value. Rationale for this bi-directional approach is to
bound the ANI computation to orthologous genes and discard
the paralogs. In designing FastANI, we followed a similar
approach while avoiding the alignment step.

FastANI first fragments the given query genome (A) into
non-overlapping fragments of size l. These l-sized fragments
are then mapped to the reference genome (B) using Mashmap.
Mashmap first indexes the reference genome and subsequently
computes mappings as well as alignment identity estimates for
each query fragment, one at a time. At the end of the Mashmap
run, all the query fragments f1, f2 . . . fÂ|A|/lÊ are mapped to B.
The results are saved in a set M containing triplets of the form
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Fig. 5. a. Graphical illustration of FastANI’s work-flow for computing ANI between a query genome and a reference genome. Five mappings are obtained from three query
fragments using Mashmap (15). M

forward

saves the maximum identity mapping for each query fragment. In this example, M

forward

= {m2, m4, m5}. From this set,
M

reciprocal

picks m4 and m5 as the maximum identity mapping for each reference bin. Mapping identities of orthologous mappings, thus found in M

reciprocal

, are finally
averaged to compute ANI. b. FastANI supports visualization of the orthologous mappings M

reciprocal

that are used to estimate the ANI value using genoPlotR (25). In this
figure, ANI is computed between Bartonella quintana strain (NC_018533.1) as query and Bartonella henselae strain (NC_005956.1) as reference. Red line segments denote
the orthologous mappings computed by FastANI for ANI estimation.

Èf, i, pÍ, where f is the fragment id, i is the identity estimate,
and p is the starting position where f is mapped to B. The
subset of M (say M

forward

) corresponding to the maximum
identity mapping for each query fragment is then extracted.
To further identify the reciprocal matches, each triplet Èf, i, pÍ
in M

forward

is ‘binned’ based on its mapping position in the
reference, with its value updated to Èf, i, binÍ = Èf, i, Âp/lÊÍ.
Through this step, fragments which are mapped to the same
or nearby positions on the reference genome are likely to
get equal bin value. Next, M

reciprocal

filters the maximum
identity mapping for each bin. Finally, FastANI reports the
mean identity of all the triplets in M

reciprocal

(See Figure 5
for an example and visualization).

We define · as an input parameter to FastANI to indicate
a minimum count of reciprocal mappings for the resulting ANI
value to be trusted. It is important to appropriately choose
the parameters (l, · and I0).

FastANI Algorithm Parameter Settings. FastANI is targeted to
estimate ANI in the 80%-100% identity range. Therefore, it
calls Mashmap mapping routine with an identity cuto� I0 =
80%, which enables it to compute mappings with alignment
identity close to 80% or higher.

Choosing an appropriate value of query fragment l requires
an evaluation of the trade-o� between FastANI’s computation
e�ciency and ANI’s estimation accuracy. Higher value of l
implies less number of non-overlapping query fragments, thus
reducing the overall runtime. However, if l is much longer
than the average gene length, a fragment could span more
than one conserved segment, especially if the genome is highly
recombinant. We empirically evaluated di�erent values of l
and set it to 3 Kbp (Supplementary Table S1). Last, we set
· to 50 to avoid incorrect ANI estimation from just a few
matching fragments between genomes that are too divergent
(e.g., showing <80% ANI). With l = 3 Kbp, · = 50 implies
that we require at least 150 Kbp homologous genome sequence
between two genomes to make a reliable ANI estimate, which
is a reasonable assumption for both complete and incomplete
genome assemblies based on our previous study (27).

Software and Data Availability. FastANI can be downloaded at
https://github.com/ParBLiSS/FastANI. All the datasets used in
this study are available at http://enve-omics.ce.gatech.edu/data/
fastani.
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Supplementary	material	
	

	

Table	S1:	Evaluation	of	FastANI	accuracy	and	performance	while	varying	the	fragment	length	I	used	in	
the	algorithm.	We	measure	Pearson	correlation	coefficients	of	FastANI	estimate	with	BLAST-based	ANI	
computation	(ANIb)	as	well	as	runtime	and	memory	usage	for	each	value	of	fragment	size	(1	Kbp	–	10	
Kbp).	This	experiment	was	conducted	using	datasets	D3	and	D4.	From	the	table,	it	is	evident	that	
increasing	fragment	size	improves	runtime	and	memory	usage,	but	negatively	affects	accuracy.	Based	on	
these	tradeoffs,	we	set	the	fragment	size	to	3	Kbp	in	the	FastANI	implementation.		

	

Dataset	 Metric	 Fragment	size	
1	Kbp	 3	Kbp	 5	Kbp	 10	Kbp	

D3	 Correlation	
with	ANIb	

0.9980964	 0.9952683	 0.9919395	 0.9867375	

Runtime	
(index	phase)	
in	seconds	

2589.72		 1666.58		 1435.32	 1145.05	

Runtime	
(compute	
phase)	in	
seconds	

4737.62	 2099.08	 1286.37	 546.78	

Memory	(GB)	 113.75	 48.35	 28.95	 14.73	
	 	 	 	 	 	
D4		
(without	two	
outlier	
genome	
assemblies)	

Correlation	
with	ANIb	

0.9649292	 0.9439152	 0.9019418	 0.7865688	

Runtime	
(index	phase)	
in	seconds	

256.63	 175.20	 158.73	 124.71	

Runtime	
(compute	
phase)	in	
seconds	

746.63	 254.11	 172.82	 74.32	

Memory	(GB)	 12.59	 4.38	 3.16	 1.59	
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Mauve	alignment	of	first	outlier	B.	anthracis	strain	2002734165	against	the	query	strain	

	

Mauve	alignment	of	second	outlier	B.	anthracis	strain	Ba_A2012_AAAC01000001	against	the	query	strain	

	

	

	

Mauve	alignment	of	first	randomly	picked	B.	anthracis	strain	(2000031757)	against	the	query	strain	

	

Mauve	alignment	of	second	randomly	picked	B.	anthracis	strain	(2002734211)	against	the	query	strain	

	

	

Figure	S1:	Top	two	plots	show	the	mauve	alignments	of	the	two	outlier	B.	anthracis	strains	(2002734165	
and	Ba_A2012_AAAC01000001)	against	the	query	strain	(2000031001)	used	in	D4	dataset.	Bottom	two	
plots	show	the	mauve	alignments	of	two	randomly	picked	B.	anthracis	strains	against	the	query	strain.	
The	top	two	outlier	strains	show	unusually	high	degree	of	recombination	and	gaps	than	we	expect	
between	any	two	correctly	sequenced	and	assembled	B.	anthracis	strains.	Same	behavior	was	also	
observed	using	visualization	support	in	FastANI	software	(figures	not	shown	here).	
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Smooth	scatter	plot	reflecting	the	effect	of	changing	input	order	of	genome	pairs	to	FastANI.	Y-axis	shows	the	difference	caused	
due	to	changing	the	input	order	and	x-axis	shows	the	ANI	value	obtained	from	FastANI.	Ideally	values	on	y-axis	should	equal	
zero.	This	data	is	obtained	from	FastANI	run	on	the	set	of	89,499	genomes.	FastANI	reports	451	million	genome	pairs	in	the	
above	ANI	range.	

	
4,966	genome	pairs	out	of	451	million	(0.001%)	show	a	difference	greater	than	2	on	changing	their	input	order	to	FastANI.	
Above	plot	explicitly	shows	these	outlier	genome	pairs.	
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MyTaxaScan	[1]	analysis	of	Shigella	Flexneri	draft	genome	assembly	

	
MyTaxaScan	analysis	of	Escherichia	coli	draft	genome	assembly	 	
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MyTaxaScan	analysis	of	Salmonella	enterica	draft	genome	assembly	 	

	

	

Figure	S2:	FastANI	accepts	genome	pairs	<reference	genome,	query	genome>	as	input.	For	most	
genome	pairs,	input	order	causes	an	insignificant	change	in	the	FastANI	tool’s	ANI	estimate.	We	first	
demonstrate	this	by	showing	a	smooth-scatter	plot	of	451M	genome	pairs.	Among	them,	we	observe	
4,966	outlier	genome	pairs	(0.001%	of	451M)	that	show	difference	≥	2.	On	further	investigating	these	
outliers,	we	conclude	that	they	are	caused	by	contaminated	genome	assemblies.	We	analyze	top	three	
genomes	that	contribute	to	the	4,966	outliers:	a)	Shigella_flexneri	draft	assembly	(part	of	1,941	
outliers),	b)	Escherichia	coli	draft	assembly	(part	of	632	outliers),	and	c)	Salmonella	enterica	draft	
assembly	(part	of	505	outliers).	Multiple	colored	peaks	in	all	the	three	MyTaxaScan	[1]	plots	highlight	
significant	contamination	in	these	assemblies	from	other	species.	
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Composition	of	first	1000	prokaryotic	genomes	in	NCBI	database	by	their	genus	(11/1985	–	02/2008)	

	

	

	
Composition	of	first	5,000	prokaryotic	genomes	in	NCBI	database	by	their	genus	(11/1985	–	02/2012)	
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Composition	of	first	25,000	prokaryotic	genomes	in	NCBI	database	by	their	genus	(11/1985	–	05/2014)	

	

	
Composition	of	all	89,499	prokaryotic	genomes	in	NCBI	database	by	their	genus	(11/1985	–	03/2017)	

Figure	S3:	Composition	of	draft	prokaryotic	assemblies	in	the	NCBI	database	with	time	at	the	genus	level	
is	visualized	using	Krona	[2]	charts.	As	expected,	genus	of	high	known	biological	significance	started	to	
dominate	the	database	progressively.	For	each	of	these	cohorts,	ANI	distribution	density	curves	are	
shown	in	Fig.	5b.	
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