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Abstract 

The default mode network (DMN) consists of several regions that selectively interact to 

support distinct domains of cognition. Of the various sites that partake in DMN function, the 

posterior cingulate cortex (PCC), temporal parietal junction (TPJ), and medial prefrontal 

cortex (MPFC) are frequently identified as key contributors. Yet, despite the accumulating 

knowledge surrounding the DMN’s involvement across numerous cognitive measures, it 

remains unclear whether these subcomponents of the DMN make unique contributions to 

specific cognitive processes and health conditions. Here, we address this gap at two 

different levels of analysis. First, using the Neurosynth database and a Gaussian Naïve 

Bayes classifier, we quantified the association between PCC, TPJ, and MPFC activation 

and specific topics related to cognition and health (e.g., decision making and smoking). 

This analysis replicated prior observations that the PCC, TPJ, and mPFC collectively 

support multiple cognitive functions such as social, decision making, memory, and 

awareness. Second, to gain insight into the functional organization of each site, we 

parceled each region based on their coactivation patterns with the rest of the brain. This 

analysis indicated that each region could be further subdivided into discrete subregions, 

with some exhibiting functionally distinct involvement in certain topics. For example, the 

ventral part of left-TPJ was associated with emotion, whereas the posterior part was 

associated with priming. Taken together, our results help further break down regional DMN 

activity and how each subcomponent contributes to a wide range of cognitive processes 

and health conditions. 
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Introduction 

The default mode network (DMN) has garnered increasing interest as recent brain 

imaging studies implicate it in a wide range of cognitive functions and disease processes 

(Shulman et al., 1997; Raichle et al., 2001; Garrity et al., 2007). The DMN consists of the 

medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right 

temporal-parietal junction (left- and right-TPJ) (Leech et al., 2011; Braga et al., 2013). 

These regions have been shown to preferentially activate when the brain is at rest, and 

decrease in activity when engaged in a goal-directed task (Raichle, 2015). Yet, it remains 

unclear how individual regions of DMN may differentially contribute to the various cognitive 

processes associated with DMN function.  

DMN responses is primarily implicated in spontaneous thought processes that occur 

when humans are not actively engaged in a directed task, and is thus thought to be 

responsible for self-referential processing (Davey, Pujol, & Harrison, 2016) and mind-

wandering (Brewer et al., 2011). However, task-based patterns of activation are also seen 

across DMN regions during autobiographical memory retrieval (Spreng & Grady, 2010), 

self-judgements (Buckner, Andrews-Hanna, & Schacter, 2008; Gusnard, Akbudak, 

Shulman, & Raichle, 2001), prospective thinking (Spreng & Grady, 2010), decision-making 

(Greene, Sommerville, Nystrom, Darley, & Cohen, 2001; Harrison et al., 2008), and social 

cognition (Mars et al., 2012a), indicating a possible indirect role of the same networked 

areas in these psychological processes (Harrison et al., 2008). In particular, MPFC has 

been implicated in self-referential processing with functional specialization observed within 

MPFC: ventral MPFC deactivates more when making self-referential judgments while 

dorsal MPFC activity increases (Gusnard et al., 2001). Moreover, there seems to be 
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ventral-dorsal subspecialization in MPFC, with ventral MPFC responsible for emotional 

processing and dorsal for cognitive function (Gusnard et al., 2001). Recent meta-analysis 

attempted to further delineate regional differences in MPFC’s function, identifying anterior, 

middle, and posterior zones, responsible for episodic memory and social processing, 

cognitive control, and motor function, respectively (de la Vega, Chang, Banich, Wager, & 

Yarkoni, 2016). Importantly, these works also suggest there may be overlap in function 

and sub-specialization within MPFC regions (de la Vega et al., 2016), leaving room for 

further research into the more fine-grained aspects of MPFC’s function.  

Although these previous lines of investigation into DMN functional specialization 

have largely focused on MPFC, two other DMN regions – posterior cingulate cortex (PCC) 

and bilateral temporo-parietal junction (TPJ) – may also serve a wide range of functions. 

For example, the PCC is thought to play a key role in focused attention during task-based 

activities (Small et al., 2003; Castellanos et al., 2008) and continuous monitoring of internal 

and external stimuli at rest (Raichle et al., 2001). It has also been implicated in retrieval of 

episodic memory (Cabeza, Dolcos, Graham, & Nyberg, 2002; Greicius, Krasnow, Reiss, & 

Menon, 2003), emotional processing (Maddock, 1999), and self-referential processing 

(Northoff et al., 2006). Similarly, TPJ has been shown to play a role in self-referential 

processing (Davey et al., 2016); and is important for social cognition in conjunction with 

other DMN regions (PCC and MPFC; Laird et al., 2011; Mars et al., 2012a). Although less 

is known about potential functional subspecialization within the PCC and TPJ, these DMN 

regions may also show regional differences in cognitive processing similar to MPFC 

(Bzdok et al., 2013, 2015).  
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In addition to studies linking DMN to various cognitive processes, recent efforts 

have explored the role of DMN in studies of a range of health problems, including 

psychopathology and neurological diseases. A growing body of literature suggests that 

DMN dysfunction may underlie disease states including Alzheimer’s disease, 

schizophrenia, ADHD, Parkinson’s disease, depression and anxiety (Broyd et al., 2009). 

Decreased activity of DMN at rest and decreased task-induced deactivation of DMN has 

been observed in individuals with autism (Assaf et al., 2010; Padmanabhan et al., 2017), 

particularly in the MPFC (Kennedy & Courchesne, 2008; Kennedy, Redcay, & 

Courchesne, 2006). Patients with anxiety disorders show reduced deactivation of MPFC 

and increased deactivation of PCC (Broyd et al., 2009), while the component regions of 

DMN appear to change during major depressive episodes, with activity of thalamus and 

subgenual cingulate increasingly seen at rest (Greicius et al., 2007). Alzheimer’s patients 

not only show altered DMN responses at rest, but different task-induced deactivation 

patterns during a working memory task (Rombouts, Barkhof, Goekoop, Stam, & Scheltens, 

2005) and regional activation differences within PCC (He et al., 2007). In schizophrenia, 

both resting state and task-based DMN response changes have been associated with 

positive disease symptoms (Bluhm et al., 2007; Broyd et al., 2009; Garrity et al., 2007). Of 

note, while the aforementioned disease states share the commonality of generally altered 

DMN function, specific findings from these studies also suggest that altered activity in 

different DMN nodes may be specific to different health conditions; for instance, with PCC 

specifically implicated in Alzheimer’s and ADHD, and MPFC in schizophrenia and anxiety 

(Broyd et al., 2009). As specific nodes of the DMN appear to be responsible for specific 
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cognitive processes, it is plausible that specific nodes may also be associated with 

different disease states, although few studies have addressed this question. 

To investigate how cognitive processes and health conditions are linked to 

activation within distinct subunits of the DMN, we utilized the Neurosynth database and 

identified core DMN regions based on prior work and anatomical landmarks. We also used 

tools and methods developed in prior work (Eickhoff et al., 2011; Ray et al., 2015), that 

have successfully characterized the functional substructure of the medial prefrontal cortex 

(de la Vega et al., 2016) and the lateral prefrontal cortex (de la Vega et al., 2017). Our 

application of these analytical methods to the DMN is important because it allows us to 

quantify how those DMN regions are functionally associated with cognitive processes and 

disease states—thus extending and complementing prior efforts to fractionate the DMN 

(Laird et al., 2009; Andrews-Hanna et al., 2010; Bzdok et al., 2013, 2015, 2016; Eickhoff, 

Laird, Fox, Bzdok, & Hensel, 2016; Margulies et al., 2009; Ray et al., 2015). Our primary 

analyses focus on two key questions. First, are different psychological functions and 

disease states preferentially associated with distinct nodes of the DMN? Second, are there 

functionally distinct subregions within individual DMN nodes? 

Methods 

Our analysis was based on version 0.6 of the Neurosynth dataset (i.e., articles up to 

July 2015), which contains activation data from more than 12,000 fMRI studies (Yarkoni et 

al., 2011).  
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DMN mask  

First, to find regions that are functionally related but restricted to anatomical regions 

within the DMN, we created a DMN mask defined by the intersections of functional 

activation and anatomical masks (Fig. 1A; Poldrack et al., 2017). Specifically, we 

performed reverse-inference meta-analysis by searching the topic “DMN" in Neurosynth 

with false discovery rate at 0.01 to create a functional mask that specifically mapped term 

“DMN” to brain regions. We chose reverse inference because it can help estimate the 

relative specificity between brain activity and the DMN (Poldrack, 2006; Yarkoni, Poldrack, 

Nichols, Van Essen, & Wager, 2011). The resulting mask included 9,650 activations from 

366 studies. Thus, the resulting functional mask identified voxels in studies where the 

term “DMN” was mentioned in their abstract given brain activation (seeded with a 6mm 

sphere). We next constrained the mask to anatomical regions that belong to DMN by using 

the Harvard-Oxford probabilistic atlas at P > 0.25 (Desikan et al., 2006), including medial 

prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right temporal 

parietal junction (left- and right-TPJ). 
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Fig 1. Overview of methods. (A) We searched for the topic “DMN” in Neurosynth to create a 

functional mask, and then constrained the mask to 4 anatomical regions that belong to the DMN 

by using Harvard-Oxford probabilistic atlas. (B) We applied k-means clustering to determine 

functionally different subregions within each of the 4 regions. (C) We generated whole-brain 

coactivation profiles to reveal functional networks for different regions. (D) Functional profiles 

were generated to identify which cognitive processes or health conditions best predicted each 

region’s (or subregion’s) activity. 

 

Coactivation-based clustering  

To determine more fine-grained functional differences within the four primary DMN 

regions, we applied a clustering method used by previous work (de la Vega et al., 2016) to 

cluster individual voxels inside each of the four regions based on their meta-analytic 

coactivation with voxels in the rest of the brain (Fig. 1B; Eickhoff et al., 2011). For each 
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region, we correlated the activation pattern of each voxel with the rest of the brain across 

studies. The resulting coactivation matrix was then passed through principal component 

analysis (PCA), where the dimensionality of the matrix was reduced to 100 components. 

Subsequently, we calculated Pearson correlation distance between every voxel with each 

whole-brain PCA component in each of the four DMN regions. We note that inclusion of a  

PCA preprocessing step helps to reduce the computational cost that would have been 

induced with whole-brain correlation matrix (de la Vega et al., 2016; de la Vega, Yarkoni, 

Wager, & Banich, 2017). Based on correlation coefficients, k-means clustering algorithm 

was used to group voxels into 2-9 clusters for each region separately (Thirion et al., 2014). 

To select the number of clusters, we computed silhouette coefficients to select the number 

of clusters for each region (Rousseeuw, 1987). Previous reports caution that issues may 

arise when identifying the appropriate number of clusters due to variations in goals and 

levels of analysis used across investigations (Poldrack & Yarkoni, 2016; Varoquaux & 

Thirion, 2014). Nevertheless, recent work has confirmed that the silhouette score can 

successfully assess cluster solutions (Pauli et al., 2016; de la Vega et al., 2016, 2017; 

Eickhoff, Thirion, Varoquaux, & Bzdok, 2015). 

Coactivation profiles  

We next analyzed the differences in whole-brain coactivation patterns between 

regions to reveal their functional networks (Fig. 1C, de la Vega et al., 2016). We contrasted 

the coactivation pattern of each region (e.g., MPFC) with the other three (e.g., PCC, left 

and right TPJ) to show differences between regions. Specifically, we performed a meta-

analytic contrast to the studies that activated the region of interest (ROI) and studies that 

activated control regions (e.g., other regions within DMN), to identify the voxels in the rest 
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of the brain with a greater probability coactivating with ROI than other regions within DMN. 

For instance, purple voxels in Figure 2B indicate voxels that are active more frequently in 

studies in which MPFC is active than in studies in which other DMN regions are active. We 

then conducted a two-way chi-square test between two sets of studies and calculated p 

values to threshold the coactivation images using False Discovery Rate (q<0.01). The 

resulting images were binarized and visualized using the NiLearn Library in Python 

(Abraham et al., 2014).  

Meta-analytic functional preference profiles  

To map between functional states (e.g., cognitive processes, health conditions) and 

regions of the DMN, we used a set of 60 topics. These topics were generated from words 

that co-occur among fMRI study abstracts in the database (Poldrack et al., 2012a; de la 

Vega et al., 2016). Topics were derived from from Dirichlet allocation topic modeling (e.g., 

Blei, Ng & Jordan, 2003), which helped reduce the level of redundancy and ambiguity in 

term-based meta-analysis maps in Neurosynth (de la Vega et al., 2016). Topics that were 

irrelevant to either cognitive processes or health conditions were excluded from the 

generated topics (N=23), leaving 29 cognitive topics and 8 disorder-related topics.  

We generated functional preference profiles by identifying which cognitive 

processes or health conditions best predicted each region’s (or cluster’s) activity across 

studies (Fig. 1D). We adopted the same procedure used in a previous study to select 

studies in Neurosynth that activated a given region (or cluster) and studies that did not (de 

la Vega et al., 2016). A study was defined as activating a given region if at least 5% of 

voxels in the region was activated in that study. Following the lead of Yarkoni et al (2011), 

we then trained a naive Bayesian classifier (de la Vega et al., 2016) to discriminate 
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between two sets of studies based on cognitive and disease-related topics for each region. 

Due to the redundancy and ambiguity in term-based meta-analytic maps (e.g., “memory” 

could refer to working memory or episodic memory), we trained models to predict whether 

studies activated the region, given the semantic representation of the latent conceptual 

structure underlying descriptive terms (de la Vega et al., 2016, 2017). These predictions 

could then be used to characterize the extent to which a study activated a region, given 

that the topics were mentioned in that study.  

We next extracted the log-odds ratio (LOR) of a topic, defined as the log of the 

ratio between the probability of a given topic in active studies and the probability of the 

topic in inactive studies, for each region (or cluster) separately. A positive LOR value 

indicates that a topic is predictive of activation in a given region (or cluster). Based on LOR 

values, we identified 20 cognitive topics that loaded most strongly to whole DMN mask for 

further analysis. We applied a procedure used in previous study to determine the statistical 

significance of these associations (de la Vega et al., 2016). To do so, we performed a 

permutation test for each region-topic log odds ratio 1000 times. This resulted in a null 

distribution of LOR for each topic and each region. We calculated p values for 

each pairwise relationship between topics and regions and then adjusted the p-values 

using a False Discovery Rate at 0.01 to account for multiple comparisons within 20 

selected cognitive topics and 8 disease-related topics, separately. We reported 

associations significant at the corrected p < 0.05 threshold. Finally, to determine whether 

certain topics showed greater preference for one region versus another, we conducted 

exploratory, post hoc comparisons by determining whether the 99.9% confidence intervals 

(CI) of the LOR of a specific topic for one region overlapped with the 99.9% CI of the same 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 12 of 39 

topic for another region. We applied a similar procedure reported in previous studies (de la 

Vega et al., 2016), generated CIs using bootstrapping, sampling with replacement, 

and recalculating log-odds ratios for each cluster 1000 times.  

Results 

Coactivation and functional preference profiles for the DMN regions 

We defined the DMN mask on the basis of functional mapping that mapped topic 

“DMN” to brain regions and constrained it to anatomical regions that belong to the DMN 

(Fig. 2A). The resulting anatomical mask contains 4 spatially dissociable regions: medial 

prefrontal cortex (MPFC), posterior cingulate cortex (PCC), left and right temporal parietal 

junction (left-TPJ and right-TPJ). Note that our TPJ region corresponded to what was 

labeled as “posterior-TPJ” in a previous study (Mars, et al., 2012a). 
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Fig 2. Meta-analytic coactivation and functional profiles for the DMN. (A) Functionally 

defined regions within DMN: medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), 

left and right temporal parietal junction (left- and right-TPJ). (B) Coactivation profiles for 4 

regions. Colored voxels indicate significantly greater coactivation with the region of same color 

(Fig. 2A) than control regions. Some regions were involved in overlapping functional networks 

whereas some were involved with distinct functional networks. Related subcortical structures 

are labeled as: Hipp, hippocampus; Amyg, amygdala; VS, ventral striatum. (C) Functional 

preference profiles of DMN. Functional profiles were generated by determining which cognitive 

topics best predicted each region’s activity within DMN. All regions within DMN were primarily 

involved with social, decision-making, awareness, and memory. Distinct functions were also 

observed across MPFC, PCC and left-TPJ. LOR is used to measure strength of association, 

and color-coded dots corresponding to each region are used to indicate significance (p < 0.05, 

corrected) based on permutation test. (D) DMN and health conditions. Functional profiles 

related to health conditions were generated to determine whether regions within DMN were 

differentially recruited by psychological diseases.  
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We next sought to characterize functional similarities and differences across regions 

of DMN. To do so, we adopted an approach used by previous work (de la Vega et al., 

2016, 2017). To determine how regions of DMN coactivate with voxels across the brain, 

we identified voxels with a greater probability of coactivating with each region of interest 

(ROI) than with other regions within DMN. We found that regions within DMN interactively 

coactivated with each other. Specifically, PCC and MPFC strongly coactivates with each 

other, and both regions showed greater coactivation with bilateral-TPJ (Fig. 2B). This 

pattern suggests that DMN as a whole operates to support multiple cognitive functions. 

Additionally, we found that different regions were involved with overlapping functional 

networks. For example, PCC and bilateral-TPJ showed stronger coactivation with 

hippocampus, an important region for memory, suggesting that there are functional 

similarities between regions of DMN. Finally, we also found that some regions are involved 

with distinct functional networks. For instance, MPFC was more strongly coactivated with 

amygdala and ventral striatum, regions known for emotion processing and decision-

making (Fig. 2B). Taken together, these coactivation patterns demonstrate that there are 

both functional similarities and differences within the DMN. 

To further explore functional properties among DMN regions, a meta-analysis was 

used to select studies that activated a given ROI, and a naive Bayesian classifier was 

trained to predict which studies activated the region (de la Vega et al., 2016). We first 

describe functional preference profiles based on cognitive processes, followed by those 

related to health conditions. Cognitive predictors were limited to 20 psychological topics 

previously shown to be relevant to DMN function. We found that all regions of DMN were 
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primarily predicted by the topics “social”, “decision making”, “awareness”, and “memory” 

(Fig. 2C), consistent with previous evidence suggesting DMN involvement across these 

domains. Functional distinctions were also observed among DMN regions: activity in 

MPFC was predicted by fear, emotion, and reward; activity in PCC was predicted by 

emotion; and activity in left TPJ was predicted by math, semantics, and reading. Next, we 

entered 8 disorder-related topics as predictors to examine whether regions within DMN 

were differentially recruited by health conditions. We found that distinct disorders were 

predicted by MPFC or PCC: activity in MPFC was associated with smoking, eating 

disorder and depression, whereas activity in PCC was associated with smoking and 

Alzheimer’s/Parkinson’s disease (Fig. 2D). These results are consistent with observed 

coactivation patterns among regions of DMN, supporting the notion that there are 

functional similarities as well as differences among these four regions of the DMN. Our 

post hoc analysis suggested that none of the topics showed greater preference for one 

region over another within DMN (or any of the subregions in the results that follow). Note 

that we caution interpretation of these results because these comparisons were post hoc 

and exploratory (de la Vega et al., 2016). 

Functional Distinctions Within DMN Subregions  

We clustered individual voxels inside MPFC, bilateral-TPJ and PCC based on their 

meta-analytic coactivation with voxels in the rest of the brain to distinguish more fine-

grained functional differences among subregions (Smith et al., 2009; Chang et al., 2013; 

de la Vega et al., 2016). We used the silhouette score to select optimal solutions for each 

region, and generated coactivation and functional preferences profiles for each subregion. 

We describe the results for four regions separately.  
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Within the MPFC, we identified two clusters based on silhouette score (Fig. 3A, left 

panel): a dorsal cluster (Fig. 3A right panel, orange) and a ventral cluster (Fig. 3A right 

panel, green). Our analysis did not reveal any cluster that coactivated more strongly with 

the rest of the brain. Both clusters in MPFC were associated with social, emotion, reward, 

decision-making, awareness, and memory; whereas only the ventral cluster was 

associated with fear (Fig. 3B). Additionally, both clusters in MPFC were associated with 

depression and smoking, but only the ventral cluster was associated with eating-disorders 

(Fig. 3C).  
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Fig 3. Coactivation-based clustering and functional preference profiles of MPFC. (A) We 

identified two clusters within MPFC based on silhouette scoring: a dorsal cluster (orange) and a 

ventral cluster (green). (B) Functional preference profiles of MPFC. Both clusters in MPFC were 

predicted by social, emotion, reward, decision-making, awareness and memory, whereas the 

ventral cluster was predicted by fear. (C) MPFC and health conditions. Both clusters in MPFC 

were recruited by depression and smoking, but only the ventral cluster was associated with 

eating disorders. 

 

Our silhouette score analysis revealed that a three-cluster solution was optimal for 

the right-TPJ (Fig. 4A, left panel): a dorsal cluster (Fig. 4A, green), a ventral one (Fig. 4A, 

yellow) and a posterior cluster (Fig. 4A, purple). All three clusters were strongly 

coactivated with left-TPJ. The ventral cluster showed more coactivation with PCC. All 

clusters were predicted by social, memory, and awareness, while only the dorsal cluster 

was predicted by decision making (Fig. 4B). No subregions were more significantly 

associated with disorder-related topics (Fig. 4C). 
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Fig 4. Coactivation-based clustering and functional preference profiles of right-TPJ. (A) 

We identified three clusters within right-TPJ using silhouette scoring: a dorsal cluster (green), a 

ventral cluster (yellow) and a posterior cluster (purple). (B) Coactivation contrasts for right-TPJ. 

All clusters strongly coactivated with left-TPJ. The ventral cluster showed more coactivation with 

PCC. (C) Functional preference profiles of right-TPJ. All clusters in right-TPJ were predicted by 

social, memory, and awareness, while only the dorsal cluster was predicted by decision making. 

(D) Right-TPJ and health conditions. No subregions were significantly associated with disease-

related topics. 

 

We identified three clusters within left-TPJ with silhouette scoring (Fig. 5A, left 

panel): an anterior cluster (Fig. 5A right panel, red), a posterior cluster (Fig 5A right panel, 

yellow) and a ventral cluster (Fig. 5A right panel, green). We directly contrasted the 
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coactivation patterns of each subregion. We found all three regions strongly coactivate 

with right-TPJ. In addition, the posterior and ventral clusters showed stronger coactivation 

with PCC (Fig. 5B). While both clusters also strongly coactivated with MPFC, the posterior 

cluster showed strong coactivation with ventral MPFC, whereas the ventral cluster 

coactivated with dorsal MPFC more (Fig 5B). Consistent with functional patterns in DMN, 

all clusters in left-TPJ were primarily predicted by social, decision-making, memory, and 

awareness (Fig 5C). However, the ventral cluster was more strongly associated with 

reading, semantics and emotion whereas the anterior cluster showed stronger association 

with reading and working memory (Fig. 5C). In contrast, the posterior cluster was more 

strongly predicted by priming. No subregions were more significantly associated with 

disorder-related topics (Fig. 5D). Note that the parcellations within left- and right- TPJ 

partially mirror each other (Table 1), which increases confidence in the clustering of 

coactivation patterns (de la Vega et al., 2016, 2017). 

 

Table 1. Percent overlapping voxels within subregions of left- and right- TPJ.  

% overlap Left-TPJ 
Right-TPJ anterior ventral posterior 

dorsal 0.50 0.28 0.01 
ventral 0.01 0.63 0.00 

posterior 0.04 0.33 0.51 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 20 of 39 

 

Fig 5. Coactivation-based clustering, meta-analytic coactivation contrasts and functional 
preference profiles of left-TPJ. (A) We identified three clusters within the left-TPJ based on 

silhouette scoring: an anterior cluster (red), a posterior cluster (yellow) and a ventral cluster 

(green). (B) Coactivation contrasts of left-TPJ. All three regions strongly coactivate with right-

TPJ. The osterior and ventral clusters showed stronger coactivation with the right-TPJ. The 

posterior cluster showed more coactivation with the ventral MPFC whereas the ventral cluster 

more strongly coactivated with dorsal MPFC.  (C) Functional preference profiles of left-TPJ. All 

clusters in the left-TPJ were primarily predicted by social, decision-making, memory, and 

awareness. The ventral cluster was more strongly associated with reading, semantics and 

emotion whereas the anterior cluster showed stronger association with reading and working 

memory. The posterior cluster was more strongly predicted by priming. (D) Left-TPJ and health 

conditions. No subregions were significantly associated with disease-related topics. 

 

We identified three clusters within PCC with silhouette scoring (Fig. 6A, left panel): 

a dorsal cluster (Fig. 6A right panel, blue), a medial cluster (Fig. 6A right panel, yellow) and 
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a ventral cluster (Fi.g 6A right panel, red). The medial cluster showed stronger coactivation 

with bilateral-TPJ and MPFC, whereas the ventral cluster more strongly coactivated with 

hippocampus (Fig. 6B). Similar to this coactivation pattern, all clusters in PCC were 

predicted by memory, awareness, and decision-making, while only the medial region was 

associated with social and emotion (Fig. 6C). Additionally, all PCC clusters were 

associated with Alzheimer’s/Parkinson’s disease. However, the dorsal cluster was more 

strongly associated with smoking whereas the ventral cluster was more associated with 

PTSD (Fig. 6D).  

 

 

Fig 6. Coactivation-based clustering, meta-analytic coactivation contrasts and functional 
preference profiles of PCC. (A) We identified three clusters within the PCC on the basis of 
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silhouette scoring: a dorsal cluster (blue), a medial cluster (yellow) and a ventral cluster (red). 

(B) Coactivation contrasts of PCC. The medial cluster showed stronger coactivation with the 

bilateral-TPJ and MPFC whereas the ventral cluster more strongly coactivated with 

hippocampus. (C) Functional preference profiles of PCC. All clusters in the PCC were predicted 

by memory, awareness and decision-making, while only the medial region was associated with 

social and emotion. (D) PCC and health conditions. All PCC clusters were associated with 

Alzheimer’s/Parkinson’s disease. The dorsal cluster was more strongly associated with smoking 

whereas the ventral cluster was more associated with PTSD. 

 

Discussion 

The default mode network has been linked to a wide range of cognitive functions 

and disease states. Numerous studies have elucidated the functional architecture of the 

network through coactivation- or connectivity-based analysis (Amft et al., 2015; Bzdok et 

al., 2013, 2015, Eickhoff et al., 2011, 2016; A. R. Laird et al., 2009, 2011; Ray et al., 2015).  

Yet, we lack a comprehensive understanding of the mappings between psychological 

functions and different nodes within the default mode network. To address this question, 

the present study builds upon previous work that draws on high-powered meta-analysis of 

functional neuroimaging data to parcellate the MPFC and LFC by topic modeling of 

psychological functions (de la Vega et al., 2016, 2017). Our findings also help characterize 

the functional specialization and subspecialization in two other key DMN regions, PCC and 

TPJ. Here, we report coactivation among DMN regions and between DMN and 

hippocampus, amygdala, and striatum. Overlap in function among DMN regions was 

observed with all ROIs sharing social, decision-making, awareness, and memory; DMN 

regions were also differentiated by function, with MPFC associated with emotion, reward, 
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and fear; PCC associated with emotion; and left-TPJ associated with math, semantics, 

working memory, and reading. Moreover, DMN regions were uniquely associated with 

psychopathology and neurological diseases: PCC was associated with Alzheimer’s & 

Parkinson’s diseases and smoking while MPFC was associated with smoking, eating 

disorder and depression. Further examination of these DMN ROIs revealed that they could 

be divided into subregions based on cognitive and disease-related functional 

subspecialization. 

Regional Account of the Default Mode Network. 

Across all DMN nodes, we observe consistent patterns of involvement with social, 

memory, decision making and awareness. Our analysis also show strong coactivations 

patterns between PCC and TPJ, suggesting their interactive roles in support of functions, 

such as social cognition and memory processes (Bzdok et al., 2013, 2015; R. B. Mars et 

al., 2011). These findings recapitulate the notion that nodes within DMN jointly contribute 

to multiple psychological processes (Buckner et al., 2008; A. R. Laird et al., 2009; Marcus 

E. Raichle, 2015). In addition, our result also reveal that MPFC, as compared to other 

nodes, has more heterogeneous functional characteristics. We show that MPFC 

coactivates with many subcortical regions, such as amygdala and ventral striatum. 

Consistent with this pattern, our analysis further shows that MPFC is strongly associated 

with fear, emotion and reward, consolidating the vast literature on MPFC’s interactions with 

regions related to affect and reward learning (Etkin et al., 2011; Mars, et al., 2012).  

Unifying Observations Across DMN Regions 
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Within MPFC, our finding of strong association between a ventral cluster and fear is 

consistent with prior work implicating vmPFC in extinction of conditioned fear (Milad et al., 

2007; Morgan & LeDoux, 1995). Our analyses further delineate psychological disorders 

associated with MPFC. In particular, depression, which has been previously associated 

with altered DMN patterns (Belzung, Willner, & Philippot, 2015), loaded most strongly onto 

MPFC. In patients with major depressive disorder, increased functional connectivity of 

MPFC has been observed (Zhu et al., 2012), as well as increased MPFC activation during 

self-referential processing (Lemogne et al., 2010). The fact that both dorsal and ventral 

MPFC clusters were associated with depression lends further support to previous work 

suggesting involvement of both MPFC subregions in major depressive disorder, with 

dorsal MPFC activation during depressive self-comparisons and ventral MPFC activation 

during the attentional component of depressive self-focus (Lemogne, Delaveau, Freton, 

Guionnet, & Fossati, 2012).  

Consistent with previous literature on PCC, the present study shows associations 

between PCC and social cognition. It has been shown that PCC is a central node of DMN 

for social cognition – specifically ascribing mental states to others (Leech, Braga, & Sharp, 

2012; Leech, Kamourieh, Beckmann, & Sharp, 2011; Mars et al., 2012a) – and to have 

functional interactions at rest with inferior parietal and superior temporal regions (Mars, et 

al., 2012a). While previously the role of PCC in social cognition has not been well-

delineated, our results suggest that a medial cluster of PCC may be most strongly 

associated with social cognition (Alcalá-López et al., 2017). The same medial PCC cluster 

was shown to be specific to emotion; while there is relatively less evidence for the role of 

PCC in emotion, previous work has shown that PCC activates in response to emotional 
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words and may mediate interactions between emotional and memory processes 

(Maddock, 1999), consistent with our parallel finding of an association between PCC and 

memory (Vatansever, Manktelow, Sahakian, Menon, & Stamatakis, 2017). In addition to a 

primary association with memory, all PCC clusters loaded on Alzheimer’s/Parkinson’s 

disease, consistent with previous reports of PCC-DMN functional connectivity in patients 

with Alzheimer’s disease and mild cognitive impairment (Hafkemeijer, van der Grond, & 

Rombouts, 2012). This association may also be linked to our finding of coactivation 

between PCC and hippocampus, as previous research has suggested disrupted resting 

state functional connectivity between PCC and hippocampus as a mechanism underling 

Alzheimer’s disease (Hafkemeijer et al., 2012).  

Our analyses also highlight the association of both dorsal and ventral PCC with 

smoking. Although most prior neuroimaging studies of smoking behavior focus on anterior 

cingulate and subcortical circuitry, nicotine has also been shown to consistently enhance 

functional connectivity between PCC and medial frontal/anterior cingulate cortex, as well 

as local connectivity between dorsal and ventral PCC (Hong et al., 2009). Additionally, 

PCC activity has been associated with craving (Garavan et al., 2000), viewing smoking 

cessation messages (Chua et al., 2011; Chua, Liberzon, Welsh, & Strecher, 2009), and 

suppressing cue-induced craving (Brody et al., 2007). Taken together, these functional 

distinctions indicate that subregions within PCC were differentially recruited by different 

cognitive processes, a pattern consistent with previous literature suggesting the 

multifaceted role of PCC in cognition (Acikalin, Gorgolewski, & Poldrack, 2017; Margulies 

et al., 2009; Utevsky, Smith, & Huettel, 2014). 
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We also report involvement with social throughout TPJ, with left TPJ specific to 

math, semantics, reading, emotion, and working memory. Within the domain of social 

cognition, previous research has established TPJ as most associated with mentalizing and 

theory of mind (Saxe, 2006). In addition, previous work has suggested functional 

heterogeneity within TPJ on the basis of its functional and structural connectivity (Bzdok et 

al., 2016; Mars, et al., 2012; Schilbach et al., 2012). One study in particular attempted to 

map social cognition in the human brain, including parcellating TPJ using diffusion-

weighted imaging with comparison to non-human primates (Mars et al., 2011). This work 

suggested that posterior TPJ was most strongly associated with social cognition. Our 

analysis similarly show strong loading of the ‘social’ term across all TPJ clusters; the 

previously reported social association with posterior and not anterior TPJ may be a result 

of TPJ mask definition, as Mars et al. (2011) include a broader anterior area of TPJ that 

overlaps further with the inferior parietal lobe.   

Limitations 

Although our study provides a comprehensive characterization of the functional 

roles of the DMN, we note that our findings accompanied by three caveats. First, the 

classifier used in our analysis did not distinguish activations from deactivations. However, 

it is well known that the DMN might be activated for some processes (e.g., social cognition; 

Schilbach et al., 2008; Mars et al., 2012; Amft et al., 2015) and deactivated for others (e.g., 

executive control; Anticevic et al., 2010; Binder, 2012; Koshino et al., 2014). Thus, it is 

conceivable that a dataset capable of detecting deactivations would potentially extend our 

current findings and provide a full account of the functional architecture of the DMN. 

Second, the coactivation maps may not be directly related to connectivity between brain 
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regions because they are based on correlations. Indeed, correlations between brain 

regions can be driven by a number of factors that are not related to connectivity or 

coupling, including changes in signal-to-noise ratio in either region or a change in another 

brain region (Gerstein & Perkel, 1969; Friston 2011). A thorough examination of 

connectivity would necessitate integrating behavioral tasks with effective connectivity 

measures, such as psychophysiological interactions analysis (PPI; Friston et al., 1997, 

2011; O’Reilly et al., 2012; Smith et al., 2016; Smith & Delgado, 2017). This alternative 

approach would provide insight into how specific tasks and processes drive connectivity 

with the DMN. Finally, the nature of the topic modeling oversimplified the mapping 

between psychological ontology to complex, dynamic brain activity (Poldrack & Yarkoni, 

2016; de la Vega et al., 2017). For example, each topic used in our analysis represents a 

combination of many cognitive processes operating at different levels. As a result, 

mappings between specific psychological concepts and brain activity require identification 

of more fine-grained definition of cognitive processes.  

In addition to these limitations, we also note that our approach for defining and 

fractionating the DMN merits additional consideration. For example, we defined the DMN 

based on a combination of anatomy and function and then parceled individual nodes of 

DMN. Although an analogous approach has been used in prior studies (e.g., Leech et al., 

2011), we note that other studies have parceled networks using responses from all nodes 

(Alcalá-López et al., 2017). Both approaches assume a given network is composed of 

distinct nodes, which depends critically on the definition of those nodes (Cole, Smith & 

Beckman, 2010; Smith et al., 2011). To address this issue, some papers have defined 

networks using continuous maps (e.g., those derived from independent component 
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analysis) and have examined connectivity with those maps using dual-regression analysis 

(Filippini et al., 2009; Smith et al., 2014; Yu et al., 2017). We believe that integrating this 

approach with our current analytical framework (de la Vega, 2016, 2017) and 

unthresholded whole-brain maps (Gorgolewski et al., 2015) will help future studies refine 

functional parcellations of the DMN. 

Conclusions 

To conclude, we applied a meta-analytic approach in the present study to 

characterize functional mappings between cognitive processes, health conditions and the 

DMN. Although the DMN as a whole contributes to multiple cognitive processes, we found 

distinct functional properties for each region. We also identified functional parcellation for 

each subregion. These results help clarify the functional roles of the DMN across a large 

corpus of neuroimaging studies. We believe our results also help complement other 

studies focused on refining the theoretical and computational framework associated with 

the DMN (Dohmatob, Dumas & Bzdok, 2017).  

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 29 of 39 

References 

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Muller, A., Kossaifi, J., … 

Varoquaux, G. (2014). Machine Learning for Neuroimaging with Scikit-Learn, 

8(February), 1–10. https://doi.org/10.3389/fninf.2014.00014 

Acikalin, M. Y., Gorgolewski, K. J., & Poldrack, R. A. (2017). A coordinate-based meta-

analysis of overlaps in regional specialization and functional connectivity across 

subjective value and default mode networks. Frontiers in Neuroscience, 11(JAN), 1–

11. https://doi.org/10.3389/fnins.2017.00001 

Alcalá-López, D., Smallwood, J., Jefferies, E., Van Overwalle, F., Vogeley, K., Mars, R. B., 

… Bzdok, D. (2017). Computing the Social Brain Connectome Across Systems and 

States. Cerebral Cortex, (November), 1–26. https://doi.org/10.1093/cercor/bhx121 

Amft, M., Bzdok, D., Laird, A. R., Fox, P. T., Schilbach, L., & Eickhoff, S. B. (2015). 

Definition and characterization of an extended social-affective default network. Brain 

Structure and Function, 220(2), 1031–1049. https://doi.org/10.1007/s00429-013-0698-

0 

Belzung, C., Willner, P., & Philippot, P. (2015). Depression: From psychopathology to 

pathophysiology. Current Opinion in Neurobiology, 30, 24–30. 

https://doi.org/10.1016/j.conb.2014.08.013 

Bluhm, R. L., Miller, J., Lanius, R. A., Osuch, E. A., Boksman, K., Neufeld, R. W. J., … 

Williamson, P. (2007). Spontaneous low-frequency fluctuations in the BOLD signal in 

schizophrenic patients: Anomalies in the default network. Schizophrenia Bulletin, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 30 of 39 

33(4), 1004–1012. https://doi.org/10.1093/schbul/sbm052 

Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y.-Y., Weber, J., & Kober, H. (2011). 

Meditation experience is associated with differences in default mode network activity 

and connectivity. Proceedings of the National Academy of Sciences, 108(50), 20254–

20259. https://doi.org/10.1073/pnas.1112029108 

Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Jou, J., Tiongson, E., Allen, V., … 

Cohen, M. S. (2007). Neural Substrates of Resisting Craving during Cigarette Cue 

Exposure. Biological Psychiatry, 62(6), 642–651. 

https://doi.org/10.1016/j.biopsych.2006.10.026 

Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. 

J. S. (2009). Default-mode brain dysfunction in mental disorders: A systematic review. 

Neuroscience and Biobehavioral Reviews, 33(3), 279–296. 

https://doi.org/10.1016/j.neubiorev.2008.09.002 

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default 

network: Anatomy, function, and relevance to disease. Annals of the New York 

Academy of Sciences, 1124, 1–38. https://doi.org/10.1196/annals.1440.011 

Bzdok, D., Hartwigsen, G., Reid, A., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2016). Left 

inferior parietal lobe engagement in social cognition and language. Neuroscience and 

Biobehavioral Reviews, 68, 319–334. https://doi.org/10.1016/j.neubiorev.2016.02.024 

Bzdok, D., Heeger, A., Langner, R., Laird, A. R., Fox, P. T., Palomero-Gallagher, N., … 

Eickhoff, S. B. (2015). Subspecialization in the human posterior medial cortex. 

NeuroImage, 106, 55–71. https://doi.org/10.1016/j.neuroimage.2014.11.009 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 31 of 39 

Bzdok, D., Langner, R., Schilbach, L., Jakobs, O., Roski, C., Caspers, S., … Eickhoff, S. 

B. (2013). Characterization of the temporo-parietal junction by combining data-driven 

parcellation, complementary connectivity analyses, and functional decoding. 

NeuroImage, 81, 381–392. https://doi.org/10.1016/j.neuroimage.2013.05.046 

Cabeza, R., Dolcos, F., Graham, R., & Nyberg, L. (2002). Similarities and Differences in 

the Neural Correlates of Episodic Memory Retrieval and Working Memory. 

NeuroImage, 16(2), 317–330. https://doi.org/10.1006/nimg.2002.1063 

Chua, H. F., Ho, S. S., Jasinska, A. J., Polk, T. A., Welsh, R. C., Liberzon, I., & Strecher, 

V. J. (2011). Self-related neural response to tailored smoking-cessation messages 

predicts quitting. Nature Neuroscience, 14(4), 426–427. 

https://doi.org/10.1038/nn.2761 

Chua, H. F., Liberzon, I., Welsh, R. C., & Strecher, V. J. (2009). Neural Correlates of 

Message Tailoring and Self-Relatedness in Smoking Cessation Programming. 

Biological Psychiatry, 65(2), 165–168. https://doi.org/10.1016/j.biopsych.2008.08.030 

Davey, C. G., Pujol, J., & Harrison, B. J. (2016). Mapping the self in the brain’s default 

mode network. NeuroImage, 132, 390–397. 

https://doi.org/10.1016/j.neuroimage.2016.02.022 

de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D., & Yarkoni, T. (2016). Large-

Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional 

Organization. The Journal of Neuroscience, 36(24), 6553–6562. 

https://doi.org/10.1523/JNEUROSCI.4402-15.2016 

de la Vega, A., Yarkoni, T., Wager, T. D., & Banich, M. T. (2017). Large-scale Meta-

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 32 of 39 

analysis Suggests Low Regional Modularity in Lateral Frontal Cortex. Cerebral Cortex, 

(Petrides 2005), 1–15. https://doi.org/10.1093/cercor/bhx204 

Eickhoff, S. B., Bzdok, D., Laird, A. R., Roski, C., Caspers, S., Zilles, K., & Fox, P. T. 

(2011). Co-activation patterns distinguish cortical modules, their connectivity and 

functional differentiation. NeuroImage, 57(3), 938–949. 

https://doi.org/10.1016/j.neuroimage.2011.05.021 

Eickhoff, S. B., Laird, A. R., Fox, P. T., Bzdok, D., & Hensel, L. (2016). Functional 

Segregation of the Human Dorsomedial Prefrontal Cortex. Cerebral Cortex, 26(1), 

304–321. https://doi.org/10.1093/cercor/bhu250 

Eickhoff, S. B., Thirion, B., Varoquaux, G., & Bzdok, D. (2015). Connectivity-based 

parcellation: Critique and implications. Human Brain Mapping, 36(12), 4771–4792. 

https://doi.org/10.1002/hbm.22933 

Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and 

medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93. 

https://doi.org/10.1016/j.tics.2010.11.004 

Garavan, H., Pankiewicz, J., Bloom, A., Cho, J. K., Sperry, L., Ross, T. J., … Stein, E. A. 

(2000). Cue-induced cocaine craving: Neuroanatomical specificity for drug users and 

drug stimuli. American Journal of Psychiatry, 157(11), 1789–1798. 

https://doi.org/10.1176/appi.ajp.157.11.1789 

Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. 

(2007). Aberrant “Default Mode” Functional Connectivity in Schizophrenia. American 

Journal of Psychiatry, 164(3), 450–457. https://doi.org/10.1176/ajp.2007.164.3.450 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 33 of 39 

Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An 

fMRI investigation of emotional engagement in moral judgment. Science (New York, 

N.Y.), 293(5537), 2105–2108. https://doi.org/10.1126/science.1062872 

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., … 

Schatzberg, A. F. (2007). Resting-State Functional Connectivity in Major Depression: 

Abnormally Increased Contributions from Subgenual Cingulate Cortex and Thalamus. 

Biological Psychiatry, 62(5), 429–437. https://doi.org/10.1016/j.biopsych.2006.09.020 

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in 

the resting brain: a network analysis of the default mode hypothesis. Proceedings of 

the National Academy of Sciences of the United States of America, 100(1), 253–8. 

https://doi.org/10.1073/pnas.0135058100 

Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal 

cortex and self-referential mental activity: Relation to a default mode of brain function. 

Proceedings of the National Academy of Sciences, 98(7), 4259–4264. 

https://doi.org/10.1073/pnas.071043098 

Hafkemeijer, A., van der Grond, J., & Rombouts, S. A. R. B. (2012). Imaging the default 

mode network in aging and dementia. Biochimica et Biophysica Acta (BBA) - 

Molecular Basis of Disease, 1822(3), 431–441. 

https://doi.org/10.1016/j.bbadis.2011.07.008 

Harrison, B. J., Pujol, J., López-Solà, M., Hernández-Ribas, R., Deus, J., Ortiz, H., … 

Cardoner, N. (2008). Consistency and functional specialization in the default mode 

brain network. Proceedings of the National Academy of Sciences, 105(28), 9781–

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 34 of 39 

9786. https://doi.org/10.1073/pnas.0711791105 

He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Regional 

coherence changes in the early stages of Alzheimer’s disease: A combined structural 

and resting-state functional MRI study. NeuroImage, 35(2), 488–500. 

https://doi.org/10.1016/j.neuroimage.2006.11.042 

Hong, L. E., Gu, H., Yang, Y., Ross, T. J., Salmeron, B. J., Buchholz, B., … Stein, E. A. 

(2009). Association of Nicotine Addiction and Nicotine’s Actions With Separate 

Cingulate Cortex Functional Circuits. Archives of General Psychiatry, 66(4), 431–441. 

https://doi.org/10.1001/archgenpsychiatry.2009.2 

Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain 

is altered in autism. NeuroImage, 39(4), 1877–1885. 

https://doi.org/10.1016/j.neuroimage.2007.10.052 

Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: resting 

functional abnormalities in autism. Proceedings of the National Academy of Sciences 

of the United States of America, 103(21), 8275–8280. 

https://doi.org/10.1073/pnas.0600674103 

Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). 

Investigating the Functional Heterogeneity of the Default Mode Network Using 

Coordinate-Based Meta-Analytic Modeling. Journal of Neuroscience, 29(46), 14496–

14505. https://doi.org/10.1523/JNEUROSCI.4004-09.2009 

Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., … Fox, P. 

T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 35 of 39 

Cognitive Neuroscience, 23(12), 4022–4037. https://doi.org/10.1162/jocn_a_00077 

Leech, R., Braga, R., & Sharp, D. J. (2012). Echoes of the brain within the posterior 

cingulate cortex. The Journal of Neuroscience: The Official Journal of the Society for 

Neuroscience, 32(1), 215–222. https://doi.org/10.1523/JNEUROSCI.3689-11.2012 

Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fractionating the 

default mode network: distinct contributions of the ventral and dorsal posterior 

cingulate cortex to cognitive control. The Journal of Neuroscience: The Official Journal 

of the Society for Neuroscience, 31(9), 3217–3224. 

https://doi.org/10.1523/JNEUROSCI.5626-10.2011 

Lemogne, C., Delaveau, P., Freton, M., Guionnet, S., & Fossati, P. (2012). Medial 

prefrontal cortex and the self in major depression. Journal of Affective Disorders, 

136(1–2), e1–e11. https://doi.org/10.1016/j.jad.2010.11.034 

Lemogne, C., Mayberg, H., Bergouignan, L., Volle, E., Delaveau, P., Lehéricy, S., … 

Fossati, P. (2010). Self-referential processing and the prefrontal cortex over the 

course of depression: A pilot study. Journal of Affective Disorders, 124(1–2), 196–201. 

https://doi.org/10.1016/j.jad.2009.11.003 

Maddock, R. J. (1999). The retrosplenial cortex and emotion: new insights from functional 

neuroimaging of the human brain. Trends in Neurosciences, 22(7), 310–316. 

https://doi.org/10.1016/S0166-2236(98)01374-5 

Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B., … 

Petrides, M. (2009). Precuneus shares intrinsic functional architecture in humans and 

monkeys. Proceedings of the National Academy of Sciences, 106(47), 20069–20074. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 36 of 39 

https://doi.org/10.1073/pnas.0905314106 

Mars, R. B., Jbabdi, S., Sallet, J., O’Reilly, J. X., Croxson, P. L., Olivier, E., … Rushworth, 

M. F. S. (2011). Diffusion-weighted imaging tractography-based parcellation of the 

human parietal cortex and comparison with human and macaque resting-state 

functional connectivity. The Journal of Neuroscience: The Official Journal of the 

Society for Neuroscience, 31(11), 4087–4100. 

https://doi.org/10.1523/JNEUROSCI.5102-10.2011 

Mars, R. B., Jbabdi, S., Sallet, J., O’Reilly, J. X., Croxson, P. L., Olivier, E., … Rushworth, 

M. F. S. (2011). Diffusion-Weighted Imaging Tractography-Based Parcellation of the 

Human Parietal Cortex and Comparison with Human and Macaque Resting-State 

Functional Connectivity. Journal of Neuroscience, 31(11), 4087–4100. 

https://doi.org/10.1523/JNEUROSCI.5102-10.2011 

Mars, R. B., Neubert, F.-X., Noonan, M. P., Sallet, J., Toni, I., & Rushworth, M. F. S. 

(2012). On the relationship between the “default mode network” and the “social brain.” 

Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00189 

Mars, R. B., Sallet, J., Schüffelgen, U., Jbabdi, S., Toni, I., & Rushworth, M. F. S. (2012). 

Connectivity-based subdivisions of the human right “temporoparietal junction area”: 

evidence for different areas participating in different cortical networks. Cerebral Cortex 

(New York, N.Y.: 1991), 22(8), 1894–1903. https://doi.org/10.1093/cercor/bhr268 

Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., & Rauch, S. L. (2007). 

Recall of Fear Extinction in Humans Activates the Ventromedial Prefrontal Cortex and 

Hippocampus in Concert. Biological Psychiatry, 62(5), 446–454. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 37 of 39 

https://doi.org/10.1016/j.biopsych.2006.10.011 

Morgan, M. A., & LeDoux, J. E. (1995). Differential contribution of dorsal and ventral 

medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. 

Behavioral Neuroscience, 109(4), 681–688. https://doi.org/10.1037/0735-

7044.109.4.681 

Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? 

Trends in Cognitive Sciences, 10(2), 59–63. https://doi.org/10.1016/j.tics.2005.12.004 

Poldrack, R. A., & Yarkoni, T. (2016). From Brain Maps to Cognitive Ontologies: 

Informatics and the Search for Mental Structure. Annual Review of Psychology, 67(1), 

587–612. https://doi.org/10.1146/annurev-psych-122414-033729 

Raichle, M. E. (2015). The Brain’s Default Mode Network. Annual Review of Neuroscience, 

38(1), 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030 

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, 

G. L. (2001). A default mode of brain function. Proceedings of the National Academy 

of Sciences of the United States of America, 98(2), 676–82. 

https://doi.org/10.1073/pnas.98.2.676 

Ray, K. L., Zald, D. H., Bludau, S., Riedel, M. C., Bzdok, D., Yanes, J., … Laird, A. R. 

(2015). Co-activation based parcellation of the human frontal pole. NeuroImage, 123, 

200–211. https://doi.org/10.1016/j.neuroimage.2015.07.072 

Rombouts, S. A. R. B., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). 

Altered resting state networks in mild cognitive impairment and mild Alzheimer’s 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 38 of 39 

disease: An fMRI study. Human Brain Mapping, 26(4), 231–239. 

https://doi.org/10.1002/hbm.20160 

Saxe, R. (2006). Uniquely human social cognition. Current Opinion in Neurobiology, 16(2), 

235–239. https://doi.org/10.1016/j.conb.2006.03.001 

Schilbach, L., Bzdok, D., Timmermans, B., Fox, P. T., Laird, A. R., Vogeley, K., & Eickhoff, 

S. B. (2012). Introspective Minds: Using ALE meta-analyses to study commonalities in 

the neural correlates of emotional processing, social & unconstrained cognition. PLoS 

ONE, 7(2). https://doi.org/10.1371/journal.pone.0030920 

Spreng, R. N., & Grady, C. L. (2010). Patterns of Brain Activity Supporting 

Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to 

the Default Mode Network. Journal of Cognitive Neuroscience, 22(6), 1112–1123. 

https://doi.org/10.1162/jocn.2009.21282 

Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus Is a Functional Core of the 

Default-Mode Network. The Journal of Neuroscience, 34(3), 932–940. 

https://doi.org/10.1523/JNEUROSCI.4227-13.2014 

Varoquaux, G., & Thirion, B. (2014). How machine learning is shaping cognitive 

neuroimaging. GigaScience, 3(1), 28. https://doi.org/10.1186/2047-217X-3-28 

Vatansever, D., Manktelow, A. E., Sahakian, B. J., Menon, D. K., & Stamatakis, E. A. 

(2017). Angular default mode network connectivity across working memory load. 

Human Brain Mapping, 38(1), 41–52. https://doi.org/10.1002/hbm.23341 

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 39 of 39 

Large-scale automated synthesis of human functional neuroimaging data. Nature 

Methods, 8(8), 665–670. https://doi.org/10.1038/nmeth.1635 

Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., & Yao, S. (2012). Evidence of a 

dissociation pattern in resting-state default mode network connectivity in first-episode, 

treatment-naive major depression patients. Biological Psychiatry, 71(7), 611–617. 

https://doi.org/10.1016/j.biopsych.2011.10.035 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/

