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ABSTRACT 

 

Despite the abundance of large-scale molecular and drug-response data, our ability to 

extract  the underlying mechanisms of diseases and treatment efficacy has been in general 

limited. Machine learning algorithms applied to those data sets most often are used to 

provide predictions without interpretation, or reveal single drug-gene association and fail to 

derive robust insights. We propose to use Macau, a bayesian multitask multi-relational 

algorithm to generalize from individual drugs and genes and explore the association 

between the drug targets and signaling pathways’ activation. A typical insight would be: 

“Activation of pathway Y will confer sensitivity to any drug targeting protein X”. We applied 

our methodology to the Genomics of Drug Sensitivity in Cancer (GDSC) screening, using 

signaling pathways' activities as cell line input and nominal targets as drug input. The 

interactions between the drug target and the pathway activity can guide a tissue specific 

treatment strategy by for example suggesting how to modulate a certain protein to maximize 

the drug response for a given tissue. We confirmed in literature drug combination strategies 

derived from our result for brain, skin and stomach tissues. Such an analysis of interactions 

across tissues might help drug repurposing and patient stratification strategies. 

 

Availability and Implementation: The source code of the method is available at 

https://github.com/saezlab/Macau_project_1 
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1. INTRODUCTION 

 

 Translating preclinical models into actionable insight is essential for more personalized 

treatments. Despite the wealth of omics data since a few decades, our ability to decipher the 

underlying mechanisms of diseases has been much less effective (Alyass, Turcotte, and Meyre 

2015). This is particularly apparent in cancer. Large scale drug screenings involving dozens to 

hundreds of drugs applied to cell lines have been the main driver of in silico drug discovery. 

Public drug screening projects such as the Genomics of Drug Sensitivity in Cancer (GDSC) 

(Iorio et al. 2016a), the Cancer Therapeutics Response Portal (CTRPv2) (Seashore-Ludlow et 

al. 2015) and the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. 2012) generated drug 

response data for hundreds of drugs and around one thousand cell lines. The main objective of 

these datasets is to shed light on the molecular mechanisms regulating drug response.  

 

 Machine learning is widely used to predict drug response on the treated cell lines. Most of the 

analyses consist of building a model for one drug at a time, which is of limited power given the 

relative low number of samples. If we can bring together all drugs in a single model, we can 

learn common patterns reflecting the underlying mechanisms. Towards this end, multitask type 

algorithms which use information gained in one task for another task are a promising approach. 

 

 Multitask frameworks have been recently used to demonstrate the preclinical feasibility of drug 

sensitivity prediction from large scale drug screening experiments (Yuan et al. 2016; Menden et 

al. 2013); (Cortés-Ciriano, Mervin, and Bender 2016). Methods ranging from standard random 

forest  (Menden et al. 2013) to Kernelized bayesian matrix factorization (Ammad-ud-din et al. 

2014) and trace norm multitask learning (Yuan et al. 2016) have been used to predict drug 

response by integrating genomic features for cell lines, as well as target and chemical 

information for drugs. While many algorithms perform better than standard methods, 

interpretability is often challenging, especially for kernel based learning algorithms (Ammad-ud-

din et al. 2014); (Wang, Fang, and Chen 2016); (Gönen and Margolin 2014), although they can 

be used to identify biologically relevant genes (Nikolova et al. 2017) and derive meaningful 

predictive features (Ammad-ud-din et al. 2017).  

 

 The motivation of our work was to leverage the power of multitask learning to provide novel 

insights into the molecular underpinnings of drug response. Towards this end, we applied a 

multitask learning strategy for drug response prediction and feature interaction, using the tool 

Macau (Simm et al. 2017). Our algorithm tries to learn multiple tasks (predicting multiple drugs) 

simultaneously and uncovers the common (latent) features that can benefit each individual 

learning task (Pan and Yang 2010). We focused on gene expression as molecular input data, 

using it to estimate activities of signaling pathways, along genetic aberrations. For the drugs, we 

chose their nominal target as the key feature. We applied our methodology to the Genomics of 

Drug Sensitivity in Cancer (Iorio et al. 2016b) (GDSC) cell line panel with drug response (IC50) 

of 265 drugs on 990 cell lines. The interactions between protein targets and signalling pathways’ 

activities supports a personalized treatment strategy, as it, for example, can determine how to 

modulate a certain pathway to maximize the drug response. To portray tissue specificity in 
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cancer treatments, we explored the differences of interactions across tissues with different 

compounds. Analyzing those interactions across many tissues can enable patient stratification, 

drug repositioning, and drug combination selection. 

2. RESULTS 

2.1 Multitask learning with Macau 

 

 Macau is a Scalable Bayesian multi-task learning algorithm which can incorporate millions of 

features and hundred millions of observations (Simm et al. 2017). In traditional machine learning 

analysis, we predict the response variable based on descriptive features of the samples. For 

instance, in drug screening experiments where cell lines are treated by drugs, the effect of a 

certain drug X is predicted from the mRNA expression of a gene Y via regression. With Macau, 

we unveil the interaction matrix of the drugs’ feature (for example, protein target) with the cell 

lines’ feature (e.g. transcriptomics, pathway activity). A typical insight would be: “Upregulation of 

gene Y will confer sensitivity to any drug targeting protein X” (see Figure 1A and Methods). 

We refer to this from now on as feature interaction analysis. Such analysis gives hints about the 

drug’s mode of action, by uncovering how acting on one protein affect the drug response and in 

which conditions (gene/pathway status). 

 

 In our feature interaction analysis, we used manually curated protein targets for the drug side. 

For the cell line side, we transformed the transcriptomics data into pathway activity using 

PROGENy (Schubert et al. 2016). PROGENy is a data driven pathway method aiming at 

summarizing high dimensional transcriptomics data into a small set of pathway activities (see 

Methods). The 11 PROGENy pathways currently available are EGFR, NFkB, TGFb, MAPK, 

p53, TNFa, PI3K, VEGF, Hypoxia, Trail and JAK STAT. We obtained the interaction matrix with 

features of the drugs on the rows and features of cell lines on the column (see Methods). 

2.2 Feature interactions: Tissue specific analysis 

 

 Using features on both sides of the drug response matrix, we can measure the association 

between features of drugs and features of cell lines, by taking into account all drugs and all cell 

lines in a generalized model.  From the available options (Supp Table S3), and based on the 

results of drug response prediction in different settings (Supp analysis 1), we chose to use 

PROGENy pathway activity for cell lines due to performance and interpretability reasons, and 

protein targets for drug side.  

 

 We performed a feature interaction analysis drug target - PROGENy pathways for all 16 tissues 

(Supp Figure S3) and assessed the significance of the interaction matrices (see Methods). We 

will highlight in the following for 4 tissues, the evidences from literature of the top hits (Figure 2). 
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Bone (Figure 2A): From the heatmap result, we observe that MEK1/MEK2 inhibition confers 

sensitivity when MAPK pathway is activated. Indeed, MEK inhibition induces apoptosis in 

osteosarcoma cells with constitutive ERK1/2 phosphorylation (Baranski et al. 2015). 

 

Brain (Figure 2B): EGFR activates mTORC2-NF-κB pathway which renders glioblastoma cells 

and tumors resistant to chemotherapy in a manner independent of Akt (Tanaka et al. 2011). As 

expected, EGFR pathway activation confers sensitivity if associated with MTORC2 inhibitors in 

our results (Supp Figure S4.3). But at the same time, targeting PLK1 confers resistance. We 

can assume that blocking EGFR pathway while targeting PLK1 could lead to synergistic effect. 

PLK1 and EGFR inhibitor were described as orthogonal therapeutic agents in glioblastoma, with 

enhanced tumoricidal activity when combined (Tanaka et al. 2011; Shen et al. 2015). 

 

Skin (Figure 2C): Activation of TNFa pathway confers sensitivity when associated with anti 

TOP1. TNF-alpha increases human melanoma cell invasion and migration in vitro (Katerinaki et 

al. 2003) and Topoisomerase I amplification in melanoma is associated with more advanced 

tumours and poor prognosis (Ryan et al. 2010). Repression of TOP1 activity inhibited IFN-β- 

and TNFα-induced gene expression and protects against lethal inflammation in vivo (Rialdi et al. 

2016). 

 

We observe that MAPK activation confers sensitivity when targeting BRAF (Supp Figure 

S4.14). Indeed, BRAF activates MAPK pathway and a key target in this signaling cascade. 

Therapies targeting BRAFV600E have significant potential to halt the progression of malignant 

tumors (Inamdar, Madhunapantula, and Robertson 2010). activation of VEGF pathway confers 

resistance with targeting BRAF. We can reasonably think that blocking VEGF can have a 

synergistic effect with targeting BRAF. Dual BRAFV600E and VEGF targeting has been shown to 

provide a combinatorial benefit against BRAFV600E mutants tumor growth in vivo (Comunanza et 

al. 2017). 

 

Stomach (Figure 2D): One striking example is increased sensitivity by targeting MET, EGFR 

and ERBB2 when activation of EGFR pathway (Supp Figure S4.16). MET protein 

overexpression was associated with tumor progression and survival in gastric cancer (Inokuchi 

2015). It has been shown that combination of ERBB2-inhibitor (lapatinib) and MET-inhibitor 

offered a more profound inhibition in the ERK/AKT pathway and cell proliferation than lapatinib 

alone (Ha et al. 2015). 

 

 In summary, we could find literature support for the results of the tissue specific analysis, 

suggesting that insights generated from feature interaction analysis could have clinical impact. 

We will now focus on the clinically relevant applications.  
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2.3 Therapeutic applications of the interactions 

 

Deriving pathway biomarkers from target/pathway associations 

 

 All PROGENy pathways are defined by perturbation experiments. Therefore, we can activate or 

inhibit a pathway by the compounds used to produce the perturbations. In both cases, activating 

or inhibiting a pathway could improve drug sensitivity and decrease resistance. We illustrate this 

point with MDM2-p53 pair in ovarian cancer (Figure 3A, Supp Figure S3.12). We found that 

higher expression of p53 pathway leads to attenuation of resistance to anti MDM2 drugs. MDM2 

binds to and inhibits p53 (Shi and Gu 2012). Coexpression of p53 and MDM2 in ovarian tumor 

biopsy specimens from 82 patients was also related to poor outcome (Dogan et al. 2005), which 

supports the rationale of targeting MDM2. 

 

Deriving drug combination strategy 

 

 If the association between a pathway activity and the drug efficacy is causal and not just a 

correlation, modulating the pathway would affect the drugs’ effect.  

 

 For example, in lymphoma, decreased activity of the NFkB pathway, which is constitutively 

deregulated in lymphoma development (Jost and Ruland 2007), confers sensitivity to 

antimetabolites, a common type of chemotherapy (Figure 3B, Supp Figure S3.11). Thus, 

blocking NFkB may restore sensitivity to antimetabolite drugs. Interestingly, in Non Hodgkin 

lymphoma, antimetabolites are used together with corticosteroids (protocol CVAD + 

Methotrexate and Cytarabine). As corticosteroids inhibit NFkB (Auphan et al. 1995), this could 

explain the combination. 

 

Harnessing tissue variability of interactions 

 

 In order to explore dissimilarities across tissues is for each pathway-target pair, to analyse the 

tissue where it has the highest interaction weight and the tissue with the lowest weight. Then, 

we keep the pairs with smallest difference in absolute value between maximal and minimal 

weight. The objective is to find target-pathway pairs which have the greatest and most 

antagonistic effect for two different tissues (Supp Table S7). For instance, NFkB confers high 

sensitivity in breast but resistance in stomach to drugs targeting ERBB2 (Supp Figure S5). In 

most cases we could discern an antagonistic behavior from one tissue to the other, except for 

EGFR-DNA damage pairs. 

 

 Another way to explore similarities between tissues is to vectorize for each tissue all the 

pathway-target interaction values. We start with a matrix of dimension 16 tissues x 1122 

pathway-target pairs. We then subset the associations by taking only into account the pathway-

target pairs for which at least one tissue appears in the top 5% absolute value. Finally, we rank 

the remaining pairs by the variance of their associations across the 16 tissues and keep the 

lowest 30. In this highest interaction heatmap (Supp Figure S6A), we highlight the pathway-

target pairs which confer drug sensitivity for many tissues. This allows the use of the same drug 
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in the same condition, but on a different tissue. To find the dissimilarities between tissues, we 

followed the previous steps, but instead keeping the top 30 pairs with the highest variance of 

interactions across tissue. This divergent interaction heatmap (Supp Figure S6B) displays the 

pathway-target pairs which have a huge variance across tissues.  

 

 We also explored how mutations (SNP) and copy number variations (CNV) interact with drug 

targets (Supp Figure S7). It should be noted that the prediction performance (quality control) 

using SNP/CNV is generally lower than using PROGENy and that not all SNP/CNV are present 

in every tissue.  For instance BCR-ABL mutation appears only for leukemia tissue (Supp Figure 

S7), which makes this biomarker difficult to generalize to other cancer types. In this cross tissue 

analysis, we explored the triplet target-pathway/SNP/CNV-tissue, highlighting the similarities 

and dissimilarities of interactions. 

 

3. DISCUSSION 
 

 In this paper, we provide a powerful machine learning framework for large scale drug 

screenings to find associations between the drugs’ and the cell lines’ characteristics. We 

focused on exploring how pathway activities modulate response to drugs targeting specific 

proteins. 

 

 In traditional analyses, findings are typically about the association between a drug and a gene. 

Such approach has the limitations that a gene alone may not capture the entire complexity of 

the signaling landscape, and the drug may not be very relevant and not used after the 

publication, therefore the insight is lost and more generalizable insights are desirable.   

 

 To overcome these issues, we introduced the feature interaction analysis in cancer specific 

settings. We rely on a data driven pathway method (using perturbation experiments) that has 

proven to be efficient at estimating pathway status (Schubert et al. 2016) from gene expression.  

We explored the tissue specificity of target - pathway pairs, which may ultimately improves 

clinical decision and therapeutical switch. We were able to confirm literature supported gold 

standards regarding the effect of targeting a specific protein in presence of a pathway’s 

activation for a certain cancer type.  This would not have been possible without an efficient way 

to reduce high dimensional omics data into a small and interpretable subset of pathways. Our 

results show that multitask learning can handle large scale experiments and derive interpretable 

insights.  

 

 There are several limitations to this study: First, the quality of the insights depends on the 

quality of the target pathway interaction. The performance (in setting 4) is ∼0.4 for breast and 

colon cell lines, and up to 0.45 for skin and aerodigestive tract (Supp Table S4). Although this is 

an encouraging result, it is still far from perfect. A significant part of mechanism are not 

explained by those pathways. We could address this issue by, for example, expanding the 

PROGENy pathways and including tissue specific pathways for each cancer type. Second, one 
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limitation of the GDSC panel for our analysis is that it adjusts the drug concentration range for 

each compound individually, to have a few cell lines responding, while the large bulk of cell lines 

does not respond, which makes the drug sensitivity in cell lines a relative concept. Therefore, 

we have good resolution to identify sensitive associations, but not necessarily resistance. Third, 

unknown off-target effects cannot be taken into account. Nevertheless, we took precautions in 

considering only protein targets aimed by at least two drugs. Finally, our analysis we had less 

than 50 samples for some tissues and used only 102 protein targets for the interaction matrix. 

Having more cell lines and more drugs should lead to more findings.  

 

 Multitask learning framework can handle very diverse prediction settings (Supp Figure S1), 

and can be a useful tool for the advance of precision medicine. Depending on the availability of 

the data and objectives, it allows us to find genomically defined patients for existing drugs and 

ideal drugs for existing patients, as well as giving existing drugs to existing patients and test 

new drugs on new patients. Although our results are based on cell lines and hence unlikely to 

be directly suited for predicting clinical outcome, they can still be used for exploring mechanism 

of action of drugs and their contribution to the overall outcome.   

 

 Exploring the interactions between drug targets and signaling pathways can provide novel in-

depth view of cellular mechanism and drug mode of action, which will ultimately rationalize 

tissue specific therapies. In cross tissue analysis (Supp Figure S6), the triplet 

pathway/target/tissue allow drug repositioning and patient stratification strategies. It highlights 

cases of interaction that can provide useful biomarkers on one cancer type but potentially 

provide the inverse stratification for another cancer type, thus leading to treating the wrong 

patients. Knowing the variation of those interactions across tissues may be informative for drug 

repurposing, drug combination design and patient stratification. 

 

4. METHODS 

4.1 Macau: Algorithm 

 

 Macau trains a Bayesian model for collaborative filtering by also incorporating side information 

on rows and/or columns to improve the accuracy of the predictions (Figure 1A). Drug response 

matrix (IC50) can be predicted using side information from both drugs and cell lines. We use 

protein target as drug side information and transcriptomics/pathway as cell line side information. 

Each side information matrix is then transformed into a matrix of N latent dimension by a link 

matrix. Drug response is then computed by a matrix multiplication of the 2 latent matrices. 

Macau employs Gibbs sampling to sample both the latent vectors and the link matrix, which 

connects the side information to the latent vectors. It supports high-dimensional side information 

(e.g. millions of features) by using conjugate gradient based noise injection sampler. For more 

information, see Supp methods. 
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4.2 Feature interaction 

Concept 

We would like to know the interactions between the features of the drugs and the features of the 

cell lines. In our analysis, we used protein target to describe the drugs and gene 

expression/PROGENy pathways to describe the cell lines. Let IC50 be the matrix of drug 

response, D be the latent matrix of the drugs and C be the latent matrix of the cell lines (Figure 

1A):  

                                                 IC50 = DTC 

 

if side information (feature) are available on both sides:  

 

                                                 IC50 = (βD
Tx)TβC

Tz      

                                                 IC50 = xTβDβC
Tz 

 

The matrix βDβC
T is the interaction term or the interaction matrix through which the 2 feature 

sets interact in order to produce the response variable IC50 (Figure 1B). We generated the 

interaction matrix between features of the drugs and features of the cell lines by multiplying the 

2 link matrices βD and βC and averaging across 600 MCMC samplings. We used setting 3 

(Supp Figure S1C, Supp Table S1) to compute the interaction matrix for the feature interaction 

analysis. This setting allows the use of the whole data set, without cross validation. MCMC 

sampling is also less prone to overfitting than optimization methods.  

Each drug response observation can be written as a linear combination of all the possible 

interactions between the protein targets and the pathways’ activity, across all latent dimensions.  

𝐼𝐶50𝑖𝑗  =  ∑  

𝐿

𝑘=1

∑  

𝐹𝐶

𝑗=1

∑  

𝐹𝐷

𝑖=1

(ß𝐷𝑖𝑘ß𝐶𝑗𝑘𝑥𝑖𝑧𝑗) 

 

L: number of latent dimensions 

FD: length of drug feature (number of protein targets) 

FC: length of cell line feature (number of PROGENy pathways)  

x: drug feature (protein target) 

z: cell line feature (PROGENy pathway activity) 

βD: link matrix which projects drug feature XD into latent matrix D 

βC: link matrix which projects cell line feature XC into latent matrix C 
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Interpretation 

The interaction matrix βDβC
T has as dimension the number of protein targets multiplied by the 

number of pathways. We then multiply the matrix by -1 so that the interpretation would be:  

In case of a positive value in the matrix, the association of the corresponding protein target and 

the corresponding pathway confers sensitivity upon drug treatment. If the value is negative, it 

would be resistance.  

Another way to say it would be: If the value is positive, activation of this specific pathway 

confers sensitivity to any drug targeting this specific protein. 

 

4.3 Significance of the interaction matrix 

 

Significance of the method by cross validation 

 In order to assess the quality of the interaction matrix between drug targets and cell lines 

features, we used setting 4 i.e Predicting new drugs’ responses on new cell lines (Supp Figure 

S1D) for each tissue type (Supp Table S4), since setting 4 describes the generalization to new 

cases, which is what we want to obtain with the interaction analysis. This does not give us a p-

value for each value of the interaction matrix, but rather gives an overall quality of the model 

(pearson correlation of observed versus predicted IC50) for a given tissue and a pair of feature 

type. The performance across tissues are ranging from 0.33 for liver to 0.45 for skin. We 

consider a performance of 0.3 as a valid model. Setting 4’s double cross validation is the gold 

standard method for significance evaluation of feature interaction analysis. It is essential to fulfill 

this condition first before considering the generated insights or looking into the significance of 

each value.  

 

Significance of the result by a permutation based approach 

 First, we emphasize on the importance of assessing the method through cross validation before 

assessing the significance of each value. A “significant interaction value” has no meaning if the 

features (drug target and pathway activity) are not predictive of the drug response (IC50).  

 

 We generated random permutations of the pathway activity matrix 1000 times, where we 

shuffled the PROGENy scores for each cell line independently. We did not randomise the drug 

target as we can lose the information that two drugs are targeting the same protein, which could 

be crucial in setting 4 (predicting new drug on new cell line). We then derived an empirical null 

distribution for each value of the interaction matrix. If the value is positive, we define the p value 

as the number of cases in the null distribution greater than the value of interest divided by 1000. 

If the value is negative, we define the p value as the number of cases in the null distribution 

smaller than the value of interest divided by 1000. We then corrected for multiple non 

independent tests using the Benjamini-Hochberg Yekutieli procedure. We chose 20% as 

threshold of significant q value. 
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4.4 Parameter setting 

 

 When predicting drug response on new cell lines (Supp Figure S1A), we set the number of 

latent dimension L to 10 if we only use cell line feature. In case of adding drug feature, we set L 

to 30. Smaller L could lead to overcrowded latent space and decrease of performance. In 

MCMC sampling, we chose a burn in of 400 samples, then we collected 600 samples. At each 

of those collected samples, we made the prediction and averaged across all 600 samples.  In 

quality control of both sides of features, we used setting 4 (Supp Figure S1D) and 2 

simultaneous 10 fold cross validation and 30 latent dimensions. In feature interaction analysis, 

we used setting 3 (Supp Figure S1C), predicting existing drug for existing cell line) with 30 

latent dimensions.  

 

4.5 PROGENy 

 

 PROGENy (Schubert et al. 2016) is a data driven dimension reduction method for gene 

expression data. It reduces high dimensional gene expression into a small number of pathway 

activity scores by a matrix multiplication with a weight matrix. PROGENy leverages hundreds of 

perturbation experiments. For each experiment, we assign a manually curated pathway 

activation status. The chosen experiments have been treated by a perturbation agent which 

activates or inhibits one of the PROGENy pathways.  

  

 We compute the gene expression z-scores of the Microarrayperturbed - Microarraycontrol. Then, we 

fit a multiple linear model of the z-scores in function of the pathway status (Supp Figure S8A). 

The z-scores representing the change in gene expression, we aim at determining the role of the 

pathway activation statuses in this change. 

Z gene = f(pathways) = 𝛽0+ 𝛽1EGFR + …… + 𝛽𝑛PI3K 

 

 We obtain a pathway weight matrix from the fitted model. And for each pathway we select the 

100 smallest p-values and keep those genes while setting the other genes’ weights to zeros 

(Supp Figure S8B).  

 

 For new gene expression data where we would like to know the pathway information, we 

compute the pathway scores by multiplying the gene expression matrix with the pathway weight 

matrix. If we take the example of EGFR, the pathway activity of EGFR on sample 1 (s1) is 

defined as: 

𝑃𝐴𝐸𝐺𝐹𝑅,𝑠1  =  ∑  

100

𝑘=1

( 𝑔𝑒𝑛𝑒𝑘,𝑠1 𝑥 𝛽𝐸𝐺𝐹𝑅,𝑘) 

 

 The pathway activity is defined as the product of a gene’ expression by the contribution of a 

pathway’s activation to the change in expression of this gene. From this formula, the higher the 
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gene expression, the higher the pathway activity. Similarly, the higher the contribution of 

EGFR’s activation to the change of gene expression, the higher the pathway activity.  

 

 The result is the pathway scores matrix with new experiments on the rows and pathways on the 

columns (Supp Figure S8C). In practice, for any transcriptomics dataset, we can determine 

which pathway is up regulated or down regulated for a certain cell line relative to other cell lines. 

In this paper, we are using the pathway scores as features to predict drug response on cell 

lines. Therefore, PROGENy is used as a data driven dimension reduction method. 

 

5. SUPPLEMENTARY ANALYSIS 

5.1 Drug response prediction in different settings 

 

When building models to predict drug response taking into account multiple drugs and cell lines, 

one can define four differents settings which mirror different use cases (Supp Figure S1). We 

will describe for each setting the interpretation and prediction performance of Macau compared 

to standard linear regression. 

 

Setting 1: Prediction of new cell lines for existing drugs (Figure  S1A, Supp Table S1) 

 

 The meaning of this framework is to start with a subset of drugs and assign them to the right 

patient, e.g. new patients based on their genomic information.  

 

 We tested three different input data sets for the cell lines: (i) complete gene expression, (ii) 

PROGENy scores, and (iii) a combination of Single Nucleotide Polymorphism (SNP) and Copy 

Number Variation (CNV) (Supp Figure S2A). Gene expression performed best (r=0.40), not 

surprisingly as it uses all 17419 genes. PROGENy also has good performance (r=0.30), 

specially considering its low dimension (only 11 pathways). SNP/CNV performs the worst 

(r=0.21) despite a dimension of 735. These results supports the use of gene expression 

derivative methods as predictive input features, in agreement with previous studies (Iorio et al. 

2016a); (Costello et al. 2014).  

 

 We then compared multitask Macau with standard single task linear regression. Using gene 

expression and drug target, there is no significant difference between Macau (r = 0.40) and 

LASSO (r = 0.41), p = 0.39.  For PROGENy scores, there is no significant difference between 

Macau and Ridge (p = 0.92). Finally for SNP/CNV, Macau performed significantly better than 

Ridge (p = 0.00051).  

 

 In single task, the binary sparse features (SNP/CNV) may not be present (value=1) in both 

training and test set. The multi-task effect of sparse features by latent dimension is getting more 

information than a single task algorithm could. In addition to that, with Macau, the response 
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does not depend on one side, but also on the other side: where even without features, there are 

still latent variables. 

 

 

Setting 2: Prediction of new drugs on existing cell lines (Supp Figure S1B, Supp Table S1) 

 

 A second important scenario is to predict the effect of a new drug on a set of patients based on 

the side information of the drug. If the new drug is predicted to be better than the existing ones, 

then a therapeutical switch can be considered. The concept of “new drug” is relative to the 

patient, it can concern existing drugs which have never been used for a patient group.  

 

As a benchmark, we compared Macau with standard Ridge regression (Supp Figure S2B). To 

be able to predict the effect of new drugs, we considered as additional side features ECFP4 

chemical fingerprints (Rogers and Hahn 2010). The average correlation with Macau for the cell 

lines is 0.42 with drug target and 0.28 with ECFP4, in both cases significantly better than Ridge 

regression (r=0.12; p < 2.2e−16, and r= 0.05; p < 2.2e−16, respectively). The performance gap can 

as in the previous setting be explained by the effect of sparse features, where multitask has the 

advantage.  

 

Setting 3: Prediction of existing drugs and existing cell lines (Supp Figure S1C, Supp Table 

S1) 

 

 In this setting we solve an imputation problem, where the test set is randomly chosen from the 

drug response matrix.  We can use side information from both sides to improve the result. We 

tested setting 3 on GDSC (Supp Table S2) datasets. In overall, we were able to get an 

excellent prediction: mean r=0.932 with 90% of the data as training set and 10% and even 

r=0.834 with 99% as test set. 

 

Setting 4: Prediction of new drugs on new cell lines (Supp Figure S1D, Supp Table S1) 

 

 This setting aims at predicting a new drug’s effect on a new cell line solely based on drug target 

information and whole transcriptomics, hence a very challenging task. We used 2 simultaneous 

10-fold cross validation of drugs and cell lines, obtaining a correlation of r=0.45, which is only 

marginally lower when replacing transcriptomics with PROGENy scores (r=0.42). We obtained 

similar result using Elastic net regression with PROGENy (r=0.41).  

 

 We also performed a benchmark in a tissue-specific setup. We compared for 16 tissues, the 

prediction using GEX, PROGENy and SNP/CNV. For most of the tissues, the pearson 

correlation of observed versus predicted IC50 is close to 0.4. Gene expression does not perform 

significantly better than PROGENy in most tissues, except for colon (p-value = 0.02), liver (p-

value = 0.01), soft tissue (p-value = 0.03) and stomach (p-value = 0.002). Compared to SNP 

and CNV, gene expression performs significantly better for 14 out of the 16 tissues.  

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/225573doi: bioRxiv preprint 

https://paperpile.com/c/QJgnm3/RYJI
https://doi.org/10.1101/225573
http://creativecommons.org/licenses/by-nc/4.0/


14 

 In summary, our multitask learning achieves a similar or better predictability performance than 

standard methods across all possible settings. Confirmed this, we moved on to the focus of our 

work, use the models to gain insight on the interactions between pathway activities and drug 

targets. 

 

5.2 Application on external data sets 

 

 We assessed the significance of our method on external data sets such as CTRPv2 and CCLE. 

For CTRPv2 data set (481 compounds x 860 cell lines), there are 14 tissues satisfying the 

condition of minimum 20 samples. However, only one tissue (aerodigestive tract) reached the 

threshold of 0.3 as assessment of the method performance (see Methods, Supp Table S5). 

We compared for GDSC and CTRPv2 the interaction matrices between drug target and 

PROGENy pathways for aerodigestive tract tissue. We considered only 39 protein targets which 

are in common and targeted by at least two drugs in both datasets. The pearson correlation 

between the two interaction matrices is 0.23 (p=2e-06). The result is satisfactory given the 

prediction performance of the target/PROGENy features for aerodigestive tract tissue in 

CTRPv2 data set (r=0.34, Supp Table S5).  

 

 We also tested the skin tissue where the prediction performance for target/PROGENy features 

is 0.075 on CTRPv2 and 0.45 on GDSC. The pearson correlation between the two interaction 

matrices is 0.12 (p=0.008). The decrease of performance is to be expected considering the poor 

predictive performance of the target/PROGENy features in CTRPv2 for the skin tissue.  

 

 For CCLE data set, none of the tissues reached the threshold of 0.3 as assessment of the 

method performance (see Methods, Supp Table S6). Therefore, insights generated for this 

dataset for target PROGENy interaction cannot be considered.  
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FIGURES 
 

 
 

Figure 1: A) Macau’s factorization model. The drug response (IC50) is computed by 2 latent 

matrices. Each of them is being sampled by a Gibbs sampler. In presence of additional 

information (side information), the latent matrix is predicted by a multiplication of a link matrix 

and the side information matrix. Arrows in this Figure indicate the matrix multiplication. B) By 

multiplying the 2 link matrices, we obtain the interaction matrix, which is the interaction between 

the features of the drugs with the features of the cell lines.  
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Figure 2: Tissue specific analysis of interaction matrix with target on drug side and pathway on 

cell line side. We analyzed all tissues in the GDSC panel with at least 20 samples, and display 

the targets which have an association for at least 1 pathway in the top 5% absolute value. We 

subset the targets a second time by keeping the top 25 targets with the highest variance across 

the pathways in term of associations. Here, we highlight 4 representative tissues: A) Bone. B) 

Brain. C) Skin. D) Stomach. 
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Figure 3: Increasing sensitivity and overcoming resistance. We chose 2 examples to illustrate 

the power of PROGENy pathway as a biomarker. A) From tissue specific interaction matrix of 

ovarian cancer, we chose the top hits MDM2 - p53 (as target - pathway pairs).  We plot the IC50 

(in log scale) of drug Nutlin-3a which targets MDM2 against p53 pathway’s activity. B) From 

tissue specific interaction matrix of lymphoma, we chose the top hits Antimetabolite - NFkB (as 

target - pathway pairs).  We plot the IC50 of drug Cytarabine against NFkB pathway’s activity.  
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Supp Figure S1: Different settings in drug response prediction. A) Predicting new cell lines for 

existing drugs. For each drug, we compute the pearson correlation of observed versus predicted 

IC50 across all cell lines of the test set. B) Predicting new drugs for existing cell lines. For each 

cell line we compute the pearson correlation of observed versus predicted IC50 across all drugs 

of the test set. C) Predicting existing drugs for existing cell lines. This is a missing value 

imputation setting where side information of drug and cell lines are not required, but can be 

used to improve the result. The test data is defined by a percentage of the whole data set. We 

compute the pearson correlation of observed versus predicted IC50 for all randomly chosen 

drug - cell line pairs of the test set. D) Predicting new drugs for new cell lines. We do 2 

simultaneous cross validation on both drug and cell line sides. The test data is defined by 

association of the test set of the drug side with the test set of the cell lines side. We compute the 

pearson correlation of observed versus predicted IC50 for all drug - cell line pairs of the test set.  
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Supp Figure S2: Drug response prediction performance.  A) We compare prediction 

performance (correlation of observed versus predicted IC50) of existing drugs on new cell lines. 

We use Macau and standard ridge/lasso regression. The features are gene expression, 

pathway activity, mutation (SNP) and copy number variation (CNV). B) We compare prediction 

performance of existing cell lines on new drugs. The features are drug protein targets and 

ECFP4 fingerprint. 
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Supp Figure S3: Tissue specific analysis of interaction matrix. We chose 16 tissues in the 

GDSC panel with at least 20 samples. We kept the targets which have an association for at 

least 1 pathway in the top 5% absolute value.  We subset a second time by keeping the top 25 

targets with the highest variance across the pathways in term of interaction value. 
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Supp Figure S4: PROGENy as biomarker. For each tissue specific interaction matrix, we select 

a top positive association and a top negative association. For both target - pathway pairs, we 

then find a drug which targets this protein (as described in the manually curated list) and plot its 

IC50 (log scale) against the corresponding pathway’s activity in the specific tissue. 
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Supp Figure S5: Antagonistic tissues based on target pathway interaction. For all target - 

pathway pairs which have opposite effect from one tissue to another, we select a drug which 

specifically targets the protein and plot the drug’s IC50 as function of PROGENy activity for the 

corresponding tissues. 
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Supp Figure S6: Feature interaction analysis across tissues. A) Highest interactions. We 

vectorize all cancer specific interaction matrices between target and PROGENy pathways and 

obtain a matrix of dimension (number of tissues x number of pathway-target pairs). We do a first 

subsetting by taking only into account the pairs for which at least one pathway appears in the 

top 5% absolute value. We then keep the 30 pathway-target pairs with the highest mean value 

across tissues in term of association. B) Divergent interaction. Same as in A, except that we 

keep the top 30 pairs with highest variance across tissues. 
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Supp Figure S7: Feature interaction analysis across tissues for SNP/CNV. We vectorize all 

cancer specific interaction matrices between target and SNP/CNV and obtain a matrix of 

dimension (number of tissues x number of SNP/CNV-target pairs). We do a first subsetting by 

taking the pairs for which at least one pathway appears in the top 1% highest value, and chose 

15 SNP/CNV-target pairs with highest variance of interaction across tissues. We then subset by 

taking the pairs for which at least one pathway appears in the top 1% lowest value, and chose 

15 SNP/CNV-target pairs with highest variance of interaction across tissues. We combine the 

top hits and then keep the 30 pathway-target pairs. White color indicates when the mutation or 

CNV is not present. 
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Supp Figure S8: Workflow to produce PROGENy scores. A) We fit a linear model for each z-

score of the perturbation in function of the pathway status. B) We select for each pathway, the 

top 100 genes with smallest p-values. C) We compute pathway scores for new gene expression 

dataset by a matrix multiplication with the weight matrix.  
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TABLES 
 

  

Setting 1 

predicting new 

cell lines 

Setting 2 

predicting new 

drugs 

Setting 3 

predicting existing 

drugs 

on existing cell lines 

Setting 4 

predicting new drugs 

on new cell lines 

use case - Personalized 

medicine 

- Drug 

repositioning 

- prioritization for new 

experiments 

- Interaction matrix 

generation 

- Personalized 

medicine with 

previously untested 

drugs 

- Quality control of 

the interaction 

matrix 

drug 

features 

optional required optional required 

cell line 

features 

required optional optional required 

cross 

validation 

 

10 fold CV 10 fold CV NA 2 x 10 fold CV 

prediction 

metrics 

For each 

drug, pearson 

correlation of 

observed 

versus 

predicted 

IC50 across 

all cell lines. 

For each cell 

line, pearson 

correlation of 

observed 

versus 

predicted IC50 

across all 

drugs. 

Pearson correlation of 

observed versus 

predicted IC50 for all 

drug-cell line pairs. 

Pearson correlation of 

observed versus 

predicted IC50 for all 

drug-cell line pairs. 

Supp Table S1: Different settings for drug response prediction 
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response repetition test 

set 

latent N 

samples 

Pearson 

correlation 

RMSE 

IC50 10 10% 10 600 0.932 

(sd=0.0011) 

0.966 

(sd=0.015) 

IC50 10 20% 10 600 0.931 

(sd=0.00053) 

0.982 

(sd=0.007) 

IC50 10 30% 10 600 0.929 

(sd=0.00062) 

0.996 

(sd=0.005) 

IC50 10 50% 10 600 0.927 

(sd=0.00036) 

1.038 

(sd=0.005) 

IC50 10 70% 10 600 0.919 

(sd=0.0002) 

1.135 

(sd=0.003) 

IC50 10 99% 10 600 0.834 

(sd=0.004) 

2.239 

(sd=0.044) 

Supp Table S2: Prediction performance for missing value imputation 
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Drug Cell line 

target  Transcriptomics 

pathway Proteomics (only for 

colorectal cancer) 

Fingerprint (ECFP4) TF activity 

  SNP, CNV 

  Pathway activity (PROGENy) 

  Phosphoproteomics (only for 

colorectal cancer) 

  Kinase activity (only for 

colorectal cancer) 

Supp Table S3: Available features for drug and cell line sides 
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  target_GEX target_PROGENy11 target_SNP_CNV 

aero_dig_tract 0.456 (sd=0.168) 0.441 (sd=0.189) 0.418 (sd=0.174) 

bone 0.412 (sd=0.18) 0.401 (sd=0.177) 0.376 (sd=0.168) 

brain 0.433 (sd=0.175) 0.426 (sd=0.166) 0.394 (sd=0.171) 

breast 0.426 (sd=0.171) 0.407 (sd=0.17) 0.372 (sd=0.176) 

colon 0.433 (sd=0.172) 0.395 (sd=0.164) 0.396 (sd=0.172) 

kidney 0.38 (sd=0.189) 0.392 (sd=0.191) 0.36 (sd=0.184) 

leukemia 0.393 (sd=0.148) 0.388 (sd=0.155) 0.35 (sd=0.156) 

liver 0.388 (sd=0.202) 0.334 (sd=0.223) 0.323 (sd=0.216) 

lung_NSCLC 0.421 (sd=0.171) 0.406 (sd=0.181) 0.351 (sd=0.163) 

lung_SCLC 0.419 (sd=0.15) 0.415 (sd=0.153) 0.381 (sd=0.176) 

lymphoma 0.417 (sd=0.164) 0.408 (sd=0.153) 0.332 (sd=0.168) 

ovary 0.441 (sd=0.175) 0.418 (sd=0.178) 0.385 (sd=0.189) 

pancreas 0.367 (sd=0.217) 0.337 (sd=0.213) 0.379 (sd=0.207) 

skin 0.448 (sd=0.177) 0.454 (sd=0.158) 0.409 (sd=0.169) 

soft_tissue 0.402 (sd=0.194) 0.359 (sd=0.207) 0.361 (sd=0.219) 

stomach 0.437 (sd=0.181) 0.376 (sd=0.199) 0.383 (sd=0.187) 

Supp Table S4: Tissue specific prediction performance for setting 4: prediction of new 

drugs on new cell lines on GDSC data set. 
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  target_GEX target_PROGENy11 

aero_dig_tract 0.371 (sd=0.132) 0.338 (sd=0.135) 

blood 0.284 (sd=0.107) 0.287 (sd=0.123) 

breast 0.239 (sd=0.144) 0.104 (sd=0.127) 

colon 0.268 (sd=0.132) 0.251 (sd=0.129) 

endometrium 0.281 (sd=0.14) 0.205 (sd=0.157) 

head 0.175 (sd=0.132) 0.098 (sd=0.129) 

liver 0.237 (sd=0.128) 0.159 (sd=0.143) 

lung 0.127 (sd=0.141) 0.125 (sd=0.146) 

oesophagus 0.334 (sd=0.143) 0.282 (sd=0.146) 

ovary 0.102 (sd=0.226) -0.014 (sd=0.262) 

pancreas 0.236 (sd=0.218) 0.027 (sd=0.212) 

skin 0.183 (sd=0.143) 0.075 (sd=0.153) 

stomach 0.096 (sd=0.23) 0.154 (sd=0.224) 

urinary_tract 0.3 (sd=0.135) 0.243 (sd=0.141) 

 

Supp Table S5: Tissue specific prediction performance for setting 4: prediction of new 

drugs on new cell lines on CTRPv2 data set. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/225573doi: bioRxiv preprint 

https://doi.org/10.1101/225573
http://creativecommons.org/licenses/by-nc/4.0/


33 

  target_GEX target_PROGENy11 

brain 0.325 (sd=0.2) 0.245 (sd=0.175) 

breast 0.216 (sd=0.194) 0.183 (sd=0.157) 

lung_NSCLC 0.243 (sd=0.178) 0.155 (sd=0.213) 

lymphoma 0.332 (sd=0.205) 0.176 (sd=0.181) 

 

Supp Table S6: Tissue specific prediction performance for setting 4: prediction of new 

drugs on new cell lines on CCLE data set. 

  

 

  

pathway target Max tissue Min 

tissue 

Max 

value 

Min 

value 

Max - 

Min 

absolute 

mean 

VEGF Microtubule 

stabiliser 

colon Soft 

tissue 

0.351 -0.474 0.825 0.123 

Hypoxia ALK lymphoma liver 0.519 -0.369 0.888 0.15 

TNFa HDAC1 bone pancreas 0.592 -0.427 1.02 0.165 

TNFa PI3Kbeta brain skin 0.414 -0.39 0.804 0.024 

NFkB ERBB2 breast stomach 0.632 -0.637 1.27 0.005 

EGFR dsDNA 

break 

colon breast 0.478 -0.667 1.15 0.189 

EGFR MEK2 pancreas bone 0.424 -0.426 0.85 0.002 

Supp Table S7: Top antagonistic pathway - target pairs across tissues 
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