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ABSTRACT 

 

Despite the abundance of large-scale molecular and drug-response data, the insights gained about 

the mechanisms underlying treatment efficacy in cancer has been in general limited. Machine 

learning algorithms applied to those datasets most often are used to provide predictions without 

interpretation, or reveal single drug-gene association and fail to derive robust insights. We propose to 

use Macau, a bayesian multitask multi-relational algorithm to generalize from individual drugs and 

genes and explore the interactions between the drug targets and signaling pathways’ activation. A 

typical insight would be: “Activation of pathway Y will confer sensitivity to any drug targeting protein 

X”. We applied our methodology to the Genomics of Drug Sensitivity in Cancer (GDSC) screening, 

using gene expression of 990 cancer cell lines, activity scores of 11 signaling pathways derived from 

the tool PROGENy as cell line input and 228 nominal targets for 265 drugs as drug input. These 

interactions can guide a tissue-specific combination treatment strategy, for example suggesting to 

modulate a certain pathway to maximize the drug response for a given tissue. We confirmed in 

literature drug combination strategies derived from our result for brain, skin and stomach tissues. 

Such an analysis of interactions across tissues might help target discovery, drug repurposing and 

patient stratification strategies. 
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Introduction 

 Translating preclinical models into actionable insight is essential for more personalized treatments. 

Despite the wealth of omics data since a few decades, our ability to decipher the mechanisms underlying 

drug response has been much less effective1. This is particularly apparent in cancer. Large scale drug 

screenings have been a major  resource for  drug discovery. In particular, public drug screening projects 

such as the Genomics of Drug Sensitivity in Cancer (GDSC)2, the Cancer Therapeutics Response Portal 

(CTRPv2)3 and the Cancer Cell Line Encyclopedia (CCLE)4 have generated drug response data for 

hundreds of drugs and around one thousand cell lines. The main objective of these datasets is to shed 

light on the molecular mechanisms regulating drug response.  

 

 From this data, machine learning is widely used to predict drug response on the treated cell lines. Most 

of the analyses consist of building a model for one drug at a time, which has limited power given the 

relative low number of samples. If we can bring together all drugs in a single model, we can learn 

common patterns reflecting the underlying mechanisms. Towards this end, multitask type algorithms 

which use information gained in one task for another task are a promising approach, that  have been 

recently applied to drug sensitivity prediction from large scale drug screenings5,6,7. Methods ranging from 

standard random forest6 to Kernelized bayesian matrix factorization8 and trace norm multitask learning5 

have been used to predict drug response by integrating genomic features for cell lines, as well as target 

and chemical information for drugs. While many multitask algorithms perform better than standard 

methods, interpretability is often challenging.  

 

 The motivation of our work was to leverage the power of multitask learning to provide novel insights into 

the molecular underpinnings of drug response. Towards this end, we applied a multitask learning strategy 

for drug response prediction and feature interaction, using the tool Macau9. Our algorithm tries to learn 

multiple tasks (predicting multiple drugs) simultaneously and uncovers the common (latent) features that 

can benefit each individual learning task10. We focused on gene expression as molecular input data, 

using it to estimate activities of signaling pathways, along genetic aberrations. For the drugs, we chose 

their nominal target as the key feature. We applied our methodology to the Genomics of Drug Sensitivity 

in Cancer11 (GDSC) cell line panel with drug response (IC50) of 265 drugs on 990 cell lines. The 

interactions between protein targets and signalling pathways’ activities support a personalized treatment 

strategy to, for example, determine how to modulate a certain pathway to maximize the drug response. 

To portray tissue specificity in cancer treatments, we explored the differences of interactions across 

tissues with different compounds. Analyzing those interactions across many tissues can enable patient 

stratification, drug repositioning, and drug combination selection. 
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Results 

Drug response prediction in different settings 

 

 While our aim was to use Macau to obtain interpretable results rather than improve predictability, we first 

compared the performance of Macau to standard linear regression (ridge/lasso) and tree based non linear 

regression such as Random Forest and XGBOOST (Supplementary Table S2). When building models to 

predict drug response taking into account multiple drugs and cell lines, one can define four differents 

settings which mirror different use cases (Supplementary Fig. S1). As cell line descriptor, we used gene 

expression, as well as PROGENy12 pathway scores. PROGENy is a data driven pathway method aiming 

at summarizing high dimensional transcriptomics data into a small set of pathway activities (Methods). 

The 11 PROGENy pathways currently available are EGFR, NFkB, TGFb, MAPK, p53, TNFa, PI3K, 

VEGF, Hypoxia, Trail and JAK STAT. For setting 1, 2 and 4, we used 10 fold cross validation, repeated 

10 times. We define the prediction performance as the Pearson’s Correlation (r) of observed versus 

predicted drug response (IC50). We also provide the comparison results for gene expression, SNP/CNV 

and ECFP4 fingerprint as input in the Supplementary analysis 1. 

 

Setting 1: Prediction of new cell lines for existing drugs  

 

 The meaning of this framework is to start with a subset of drugs and assign them to the right patient, e.g. 

new patients based on their genomic information (Supplementary Fig. S1a, Supplementary Table S1). 

There is no significant difference between Macau (r=0.30), Ridge (r=0.30), Random Forest (r=0.31) and 

XGBOOST (r=0.31), see Supplementary Table S2. 

 

Setting 2: Prediction of new drugs on existing cell lines  

 

 A second important scenario is to predict the effect of a new drug on a set of patients based on the side 

information of the drug. If the new drug is predicted to be better than the existing ones, then a 

therapeutical switch can be considered. The concept of “new drug” is relative to the patient, it can 

concern existing drugs which have never been used for a patient group (Supplementary Fig. S1b, 

Supplementary Table S1). By using drug target as input, Macau outperforms Ridge, Random Forest and 

XGBOOST with a performance of 0.42 against 0.12, 0.38 and 0.19, respectively, all p values < 2.2e-16 

(Supplementary Table S2). Of note, Random Forest performed significantly better than Ridge and 

XGBOOST with r=0.38 against r=0.12 and r=0.19, respectively, all p values < 2.2e-16. 
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Setting 3: Prediction of existing drugs and existing cell lines (Supplementary Fig. S1c, Supplementary 

Table S1) 

 

 In this setting we solve an imputation problem, where the test set is randomly chosen from the drug 

response matrix.  We can use side information from both sides to improve the result. We tested setting 3 

on GDSC (Supplementary Table S3) datasets. In overall, we were able to get an excellent prediction: 

mean r=0.932 with 90% of the data as training set and 10% and even r=0.834 with 99% as test set. 

 

Setting 4: Prediction of new drugs on new cell lines (Supplementary Fig. S1d, Supplementary Table 

S1) 

 

 This setting aims at predicting a new drug’s effect on a new cell line solely based on drug target 

information and whole transcriptomics, hence a very challenging task. In this analysis, all algorithms were 

used in multitask mode. Macau performed at r=0.44 (sd=0.15), not significantly different from Elastic net 

(r=0.41, sd=0.12, p value=0.24) and Random Forest (r=0.42, sd=0.17, p value=0.34 )(Supplementary 

Table S2). Macau outperforms XGBOOST (r=0.39, sd=0.17), with respective p values of 0.0067. 

 

 We also performed a benchmark in a tissue-specific setup. We compared for 16 tissues, the prediction 

using GEX, PROGENy and SNP/CNV (Supplementary Table S4). For most of the tissues, the pearson 

correlation of observed versus predicted IC50 is close to 0.4. Gene expression does not perform 

significantly better than PROGENy in most tissues, except for colon (p-value = 0.02), liver (p-value = 

0.01), soft tissue (p-value = 0.03) and stomach (p-value = 0.002). Compared to SNP and CNV, gene 

expression performs significantly better for 14 out of the 16 tissues.  

 

 In summary, our multitask learning achieves a similar or better predictability performance than standard 

methods (single task and multitask) across all settings. We can now focus on the insights generated by 

the Macau model. 

Exploring underlying interactions with Macau 

 

Macau is a Scalable Bayesian multi-task learning algorithm which can incorporate millions of features and 

hundred millions of observations9. In traditional machine learning analysis, we predict the response 

variable based on descriptive features of the samples. For instance, in drug screening experiments where 

cell lines are treated by drugs, the effect of a certain drug X is predicted from the mRNA expression of a 

gene Y via regression. With Macau, we unveil the interaction matrix of the drugs’ feature (for example, 

protein target) with the cell lines’ feature (e.g. transcriptomics, pathway activity). A typical insight would 

be: “Upregulation of gene Y correlates with drug sensitivity when targeting protein X” (Figure 1a, 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/225573doi: bioRxiv preprint 

https://paperpile.com/c/QJgnm3/NQiZ
https://doi.org/10.1101/225573
http://creativecommons.org/licenses/by-nc/4.0/


6 

Methods). If this were a causal relationship, it could mean that upregulation of gene Y confers sensitivity 

to any drug targeting protein X. We refer to this from now on as feature interaction analysis. Such 

analysis gives hints about the drug’s mode of action, by uncovering how acting on one protein affect the 

drug response and in which conditions (gene/pathway status). 

 

 In our feature interaction analysis, we used manually curated protein targets for the drug side obtained 

from the GDSC website (https://www.cancerrxgene.org/downloads). For the cell line side, we used 

PROGENy scores. We computed with Macau the interaction matrix with features of the drugs on the rows 

and features of cell lines on the column (Methods). 

Feature interactions: Tissue specific analysis 

 

 Using features on both sides of the drug response matrix, we can measure the interaction between 

features of drugs and features of cell lines, by taking into account all drugs and all cell lines in a 

generalized model. Based on the results of Macau’s performance in drug response prediction in different 

settings (Supplementary Fig. S1, Supplementary Fig. S2), we chose to use PROGENy pathway activity 

for cell lines due to performance and interpretability reasons, and protein targets for drug side. We 

confirmed our choice for PROGENy by demonstrating it’s superior predictive performance compared to 

other pathway methods (Methods, Supplementary Fig. S9), in agreement with its superior ability to find 

statistical associations with drug response12. 

 

 We performed a feature interaction analysis of drug target - PROGENy pathways for all 16 tissues 

(Supplementary Fig. S3) and assessed the significance of the interaction matrices (Methods). We then 

examined the interactions to derive biological insights in terms of biomarkers, potential drug combination, 

and drug repositioning. We will highlight in the following examples with  the support from literature for four 

tissues (bone, brain, skin and stomach; Figure 2), and for four additional tissues (aerodigestive tract, 

breast, SCLC lung and pancreas) we provide the results in the Supplementary analysis 2. 

 

Bone (Figure 2a): From the heatmap results, we observe that cells are sensitive to MEK1/MEK2 

inhibition when MAPK pathway is activated. This is an expected result based on the general paradigm of 

oncogenic addition, and indeed it has been reported that  MEK inhibition induces apoptosis in 

osteosarcoma cells with constitutive ERK1/2 phosphorylation13. 

 

Brain (Figure 2b):  

(i) In our results, EGFR pathway activation correlates with drug sensitivity when MTORC2 is targeted. 

This agrees with the fact that EGFR activates mTORC2-NF-κB pathway in glioblastoma cells promoting 

growth, making these cells likely addicted to MTORC214.  
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(ii) Cells with active EGFR signaling are resistant to PLK1 inhibitors. Therefore, one could hypothesize 

that blocking EGFR pathway while targeting PLK1 could lead to synergistic effect. In agreement with that, 

PLK1 and EGFR inhibitor have been described as orthogonal therapeutic agents in glioblastoma, with 

enhanced tumoricidal activity when combined14,15. 

 

Skin (Figure 2c):  

(i) Activation of TNFa pathway correlates with drug sensitivity when TOP1 is targeted. The mechanism 

underlying this relationship is less clear, but repression of TOP1 activity inhibited IFN-β- and TNFα-

induced gene expression, suggesting a link between these processes16. 

 

(ii) We observe in skin that MAPK activation correlates with drug sensitivity when targeting BRAF. This is 

expected as BRAF activates the MAPK pathway, and the association is only found in skin, where BRAF 

inhibitors have proven successful in the clinic, specifically by blocking the mutant form BRAFV600E 17. 

Conversely, activation of VEGF pathway confers resistance when targeting BRAF. This suggests  that 

blocking VEGF can have a synergistic effect with targeting BRAF, and in fact Dual BRAFV600E and VEGF 

targeting has been shown to provide a combinatorial benefit against BRAFV600E mutants tumor growth in 

vivo 18. This case illustrates the use of our approach to identify  drug combinations by targeting a different 

pathway. 

 

Stomach (Figure 2d): One striking example is increased sensitivity by targeting MET when the EGFR 

pathway is activated. In agreement with our result, combination of anti MET/EGFR has been proven 

efficient in MET-amplified gastroesophageal xenopatient cohort19.  

 

 We then seek literature support for the interaction matrix in an automatic and unbiased way. For each 

tissue, we searched for the number of publications containing the keywords: “target” AND “pathway” AND 

“tissue of interest”. For an interaction matrix of 102 drug target and 11 PROGENy pathways, we obtained 

a Pubmed matrix of the same dimension. We then took the absolute value of the interaction weight. We 

removed triplets with no publication found, triplets with q-value of the interaction weight of 1 and triplets 

with similar name for protein and pathway. We then correlate the number of publications against the 

interaction weight (Supplementary Table S8). For 15 of the 16 tissues, the correlation is positive. For 10 

tissues, the false discovery adjusted p value < 25%. Hence, the number of publication tend to  increase 

with the absolute value of the interaction weight. 

 

 In summary, we could find literature support for the results of the tissue specific analysis, suggesting that 

insights generated from feature interaction analysis could have clinical impact. We also confirmed several 

drug combination strategies (targeting the same pathway or different pathways) and we argue that the 
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target - pathway interaction heatmap can be powerful tool for deriving combination strategies simply by 

it’s visualization power. We will now focus on cross tissue exploration of the result.  

 

Therapeutic applications of the interactions 

 

Deriving biomarker and drug combination strategy 

 

 If the interaction between a pathway activity and the drug efficacy is causal and not just a correlation, 

modulating the pathway would affect the drugs’ effect. For each tissue, we selected two target-pathway 

pairs, one sensitive association and one resistant association. We plotted the IC50 against the 

corresponding pathway for a drug targeting the corresponding protein target (Supplementary Fig. S4). In 

50% of the cases, the correlation between the IC50 and the PROGENy score were significant (p<0.05). 

The pathway activity could potentially be used as biomarker of drug response for a given tissue.  

 

 Another use case would be drug combination: if a pathway activity correlates with resistance to a given 

drug, targeting the pathway might increase the efficacy of the drug, as some of the examples shown in 

the previous section. As an additional example, in lymphoma, activity of the NFkB pathway, which is 

constitutively deregulated in lymphoma development20, correlates with resistance when using 

antimetabolites, a common type of chemotherapy (Figure 3, Supplementary Fig. S3k). Thus, blocking 

NFkB may restore sensitivity to antimetabolite drugs. Interestingly, in Non Hodgkin lymphoma, 

antimetabolites are used together with corticosteroids (protocol CVAD + Methotrexate and Cytarabine). 

As corticosteroids inhibit NFkB21, this could explain the combination. 

 

Harnessing tissue variability of interactions 

 

 In order to explore dissimilarities across tissues, for each pathway-target pair, we selected the tissue 

where it has the highest interaction weight and the tissue with the lowest weight. Then, we kept the pairs 

with smallest difference in absolute value between maximal and minimal weight. The objective is to find 

target-pathway pairs which have the greatest and most antagonistic effect for two different tissues 

(Supplementary Table S6). For instance, NFkB confers high sensitivity in breast but resistance in 

stomach to drugs targeting ERBB2 (Supplementary Fig. S5). In most cases we could discern an 

antagonistic behavior from one tissue to the other, except for EGFR-DNA damage pairs. 

 

 We next explored the similarities between tissues. We started with a matrix of dimension 16 tissues x 

1122 pathway-target pairs, and then subset the interactions by taking only into account the pathway-

target pairs for which at least one tissue appears in the top 5% absolute value. Finally, we rank the 
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remaining pairs by the variance of their interactions across the 16 tissues and keep the lowest 30. In this 

highest interaction heatmap (Figure 4a), we highlight the pathway-target pairs which confer drug 

sensitivity for many tissues. This allows the use of the same drug in the same condition, but on a different 

tissue. To find the dissimilarities between tissues, we followed the previous steps, but instead keeping the 

top 30 pairs with the highest variance of interactions across tissue. This divergent interaction heatmap 

(Figure 4b) displays the pathway-target pairs which have a huge variance across tissues. 

Validation on external datasets 

 

 In order to test the robustness of our findings, we applied our method to CTRPv23 dataset (481 

compounds x 860 cell lines) as its size (number of drugs and cell lines) is comparable to GDSC. For each 

tissue, we compared for GDSC and CTRPv2 the interaction matrices between drug target and PROGENy 

pathways. We considered 39 protein targets which are in common and targeted by at least two drugs in 

both datasets. For aerodigestive tract tissue,  the 71  points in the interaction matrix (out of 401) which 

have a q-value < 1 (Benjamini-Hochberg Yekutieli; see Methods) in both GDSC and CTRP datasets have 

a pearson correlation of 0.55 (p=6.9e-07) between studies. If we set the threshold of q-value at 0.40, the 

correlation would be 0.68 (p=0.01004) but with 13 data points, and only 4 with q-val < 0.25. Similarly, we 

obtained for the other tissues in common between both datasets (q-val<0.40): 0.82 (p=3.8e-07, breast), 

0.34 (p=0.41, colon), 0.81 (p=0.19, ovary), 0.61 (p=0.06, pancreas), 0.63 (p=0.022, skin) and 0.33 

(p=0.31, stomach). In overall, the two datasets are in agreement for the common target-pathway 

interactions. 
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Interaction models from predicted drug targets 

 

 Drugs are known for binding to multiple proteins, but our interaction models are based on a literature 

curated target list, where each drug binding to a handful of proteins. In order to assess the full spectrum 

of potential protein targets, we used deep learning to predict drug protein binding from the ChEMBL 

database22 (Supplementary Method). We applied this method to the drugs used in the GDSC dataset 

and predicted drug protein binding for 696 proteins targets. We then ran the target - pathway interaction 

analysis (Supplementary Fig. S8). For bone cancer, we found that targeting protein NTSR1 is 

associated with drug sensitivity when the Hypoxia pathway is activated (Supplementary Fig. S8c). 

Protein Neurotensin Receptor 1 has been proposed as a potential therapeutic target23. The fact that a 

protein which does not belong to the manually curated list can be a hit, suggests that those analysis could 

be used as resources for drug target discovery.  
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Discussion 

 

 In this paper, we provide a powerful machine learning framework for large scale drug screenings to find 

interactions between the drugs’ and the cell lines’ characteristics. We focused on exploring how pathway 

activities modulate response to drugs targeting specific proteins. 

 

 In traditional analyses, findings are typically about the association between a drug and a gene. Such 

approach has the limitations that a gene alone may not capture the entire complexity of the signaling 

landscape, and the drug may not be very relevant and not used after the publication, therefore the insight 

is lost and more generalizable insights are desirable.   

 

 To overcome these issues, we introduced the feature interaction analysis in cancer specific settings. We 

rely on a data driven pathway method (using perturbation experiments) that has proven to be efficient at 

estimating pathway status12 from gene expression.  We explored the tissue specificity of target - pathway 

pairs,  and we found literature support for many of our findings in term of the effect of targeting a specific 

protein in presence of a pathway’s activation for a certain cancer type.  This would not have been 

possible without an efficient way to reduce high dimensional omics data into a small and interpretable 

subset of pathways. Our results show how multitask learning can handle large scale experiments and 

derive interpretable insights that may ultimately improve clinical decision and therapeutical choices.  

 

 There are several limitations to this study: First, the quality of the insights depends on the quality of the 

target pathway interaction. The performance (in setting 4) is ∼0.4 for breast and colon cell lines, and up to 

0.45 for skin and aerodigestive tract (Supplementary Table S4), which is still far from perfect. A 

significant part of mechanism are not explained by those pathways. We could address this issue by, for 

example, expanding the PROGENy pathways. Second, one limitation of the GDSC panel for our analysis 

is that it adjusts the drug concentration range for each compound individually, to have a few cell lines 

responding, while the large bulk of cell lines does not respond, which makes the drug sensitivity in cell 

lines a relative concept. Therefore, we have good resolution to identify sensitive interactions, but not 

necessarily resistance. Third, unknown off-target effects can be difficult to estimate. We partly addressed 

this issue with deep learning predicted drug target which could be used for drug target discovery. Finally, 

in our analysis we had less than 50 samples for some tissues and used only 102 protein targets for the 

interaction matrix. Having more cell lines and more drugs should lead to improved predictability and more 

findings. 

 

 Multitask learning framework can handle very diverse prediction settings (Supplementary Fig. S1), and 

can be a useful tool for the advance of precision medicine. Depending on the availability of the data and 

objectives, it allows us to find genomically defined patients for existing drugs and ideal drugs for existing 
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patients, as well as giving existing drugs to existing patients and test new drugs on new patients. 

Although our results are based on cell lines and hence unlikely to be directly suited for predicting clinical 

outcome, they can still be used for exploring mechanism of action of drugs and their contribution to the 

overall outcome. 

 

 We used PROGENy pathway activities derived from gene expression, as they provide a rich 

characterization of the cellular status. We also explored how mutations (SNP) and copy number 

variations (CNV) interact with drug targets (Supplementary Fig. S6), but the prediction performance 

(quality control) using SNP/CNV is generally lower than using PROGENy and that not all SNP/CNV are 

present in every tissue (Supplementary Table S4, Methods).  For instance BCR-ABL mutation appears 

only for leukemia tissue (Supplementary Fig. S6), which makes this biomarker difficult to generalize to 

other cancer types. Prediction performance and availability of the features across tissues were the main 

reasons we did not focus on SNP/CNV in this paper. 

 

 Exploring the interactions between drug targets and signaling pathways can provide novel in-depth view 

of cellular mechanism and drug mode of action, which will ultimately rationalize tissue specific therapies. 

Feature interaction analysis based on deep learning predicted protein targets could potentially help target 

discovery. Previous studies showed the importance of network analysis to find new drug targets24. Zaman 

et al.25 reported subtype-specific drug targets, which supports our result regarding the diversity of target - 

pathway interactions across different tissues. In cross tissue analysis (Figure 4), the triplet 

pathway/target/tissue allow drug repositioning and patient stratification strategies. It highlights cases of 

interaction that can provide useful biomarkers on one cancer type but potentially provide the inverse 

stratification for another cancer type, thus leading to treating the wrong patients. Knowing the variation of 

those interactions across tissues may be informative for drug repurposing, drug combination design and 

patient stratification. 

 

Methods 

Macau: Algorithm 

 

 Macau trains a Bayesian model for collaborative filtering by also incorporating side information on rows 

and/or columns to improve the accuracy of the predictions (Figure 1a). Drug response matrix (IC50) can 

be predicted using side information from both drugs and cell lines. We use protein target as drug side 

information and transcriptomics/pathway as cell line side information. Each side information matrix is then 

transformed into a matrix of L latent dimension by a link matrix. Drug response is then computed by a 

matrix multiplication of the 2 latent matrices. Macau employs Gibbs sampling to sample both the latent 
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vectors and the link matrix, which connects the side information to the latent vectors. It supports high-

dimensional side information (e.g. millions of features) by using conjugate gradient based noise injection 

sampler. For more information, see Supp methods. 

 

Feature interaction 

Concept 

We would like to know the interactions between the features of the drugs and the features of the cell 

lines. In our analysis, we used protein target to describe the drugs and gene expression/PROGENy 

pathways to describe the cell lines. Let IC50 be the matrix of drug response, D be the latent matrix of the 

drugs and C be the latent matrix of the cell lines (Figure 1a):  

 

IC50 = DTC 

 

if side information (feature) are available on both sides:  

 

IC50 = (βD
Tx)TβC

Tz      

IC50 = xTβDβC
Tz                                                                                                                         (1) 

                                                                

The matrix βDβC
T is the interaction term or the interaction matrix through which the 2 feature sets interact 

in order to produce the response variable IC50 (Figure 1b). We generated the interaction matrix between 

features of the drugs and features of the cell lines by multiplying the 2 link matrices βD and βC and 

averaging across 600 MCMC samplings. We used setting 3 (Supplementary Fig. S1c, Supplementary 

Table S1) to compute the interaction matrix for the feature interaction analysis. This setting allows the 

use of the whole dataset, without cross validation. MCMC sampling is also less prone to overfitting than 

optimization methods.  

Each drug response observation can be written as a linear combination of all the possible interactions 

between the protein targets and the pathways’ activity, across all latent dimensions. 

𝐼𝐶50𝑖𝑗  =  ∑  𝐿
𝑘=1 ∑  

𝐹𝐶
𝑗=1 ∑  

𝐹𝐷
𝑖=1 (ß𝐷𝑖𝑘ß𝐶𝑗𝑘𝑥𝑖𝑧𝑗)                               (2) 
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L: number of latent dimensions 

FD: length of drug feature (number of protein targets) 

FC: length of cell line feature (number of PROGENy pathways)  

x: drug feature (protein target) 

z: cell line feature (PROGENy pathway activity) 

βD: link matrix which projects drug feature XD into latent matrix D 

βC: link matrix which projects cell line feature XC into latent matrix C 

Interpretation 

The interaction matrix βDβC
T has as dimension the number of protein targets multiplied by the number of 

pathways. We then multiply the matrix by -1 so that the interpretation would be:  

In case of a positive value in the matrix, the association of the corresponding protein target and the 

corresponding pathway confers sensitivity upon drug treatment. If the value is negative, it would be 

resistance.  

Another way to say it would be: If the value is positive, activation of this specific pathway confers 

sensitivity to any drug targeting this specific protein. 

 

Quality control of the interaction matrix 

 

Significance of the method by cross validation 

 In order to assess the quality of the interaction matrix between drug targets and cell lines features, we 

used setting 4 i.e Predicting new drugs’ responses on new cell lines (Supplementary Fig. S1d) for each 

tissue type (Supplementary Table S4), since setting 4 describes the generalization to new cases, which 

is what we want to obtain with the interaction analysis. This does not give us a p-value for each value of 

the interaction matrix, but rather gives an overall quality of the model (pearson correlation of observed 

versus predicted IC50) for a given tissue and a pair of feature type. The performance across tissues are 

ranging from 0.33 for liver to 0.45 for skin. We consider a performance of 0.3 as a valid model. Setting 4’s 

double cross validation is the gold standard method for significance evaluation of feature interaction 

analysis. It is essential to perform this analysis first before considering the generated insights or looking 

into the significance of each value.  

 

Significance of the result by a permutation based approach 
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 We generated random permutations of the pathway activity matrix 1000 times, where we shuffled the 

PROGENy scores for each cell line independently. We did not randomise the drug target as we can lose 

the information that two drugs are targeting the same protein, which could be crucial in setting 4 

(predicting new drug on new cell line). We then derived an empirical null distribution for each value of the 

interaction matrix. If the value is positive, we define the p value as the number of cases in the null 

distribution greater than the value of interest divided by 1000. 

If the value is negative, we define the p value as the number of cases in the null distribution smaller than 

the value of interest divided by 1000. We then corrected for multiple non independent tests using the 

Benjamini-Hochberg Yekutieli procedure. We chose 20% as threshold of significant q value. 

 

Parameter setting 

 

 When predicting drug response on new cell lines (Supplementary Fig. S1a), we set the number of latent 

dimension L to 10 if we only use cell line feature. In case of adding drug feature, we set L to 30. Smaller L 

could lead to overcrowded latent space and decrease of performance. In MCMC sampling, we chose a 

burn in of 400 samples, then we collected 600 samples. At each of those collected samples, we made the 

prediction and averaged across all 600 samples.  In quality control of both sides of features, we used 

setting 4 (Supplementary Fig. S1d) and 2 simultaneous 10 fold cross validation and 30 latent dimensions. 

In feature interaction analysis, we used setting 3 (Supplementary Fig. S1c), predicting existing drug for 

existing cell line) with 30 latent dimensions.  

 

PROGENy 

 

 PROGENy 12 is a data driven dimension reduction method for gene expression data. It reduces high 

dimensional gene expression into a small number of pathway activity scores by a matrix multiplication 

with a weight matrix. PROGENy leverages hundreds of perturbation experiments. For each experiment, 

we assign a manually curated pathway activation status. The chosen experiments have been treated by a 

perturbation agent which activates or inhibits one of the PROGENy pathways.  

  

 We compute the gene expression z-scores of the Microarrayperturbed - Microarraycontrol. Then, we fit a 

multiple linear model of the z-scores in function of the pathway status (Supplementary Fig. S7a). The z-

scores representing the change in gene expression, we aim at determining the role of the pathway 

activation statuses in this change. 

 

Z gene = f(pathways) = 𝛽0+ 𝛽1EGFR + …… + 𝛽𝑛PI3K                                              (3) 
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 We obtain a pathway weight matrix from the fitted model. And for each pathway we select the 100 

smallest p-values and keep those genes while setting the other genes’ weights to zeros (Supplementary 

Fig. S7b).  

 

 For new gene expression data where we would like to know the pathway information, we compute the 

pathway scores by multiplying the gene expression matrix with the pathway weight matrix. If we take the 

example of EGFR, the pathway activity of EGFR on sample 1 (s1) is defined as: 

 

𝑃𝐴𝐸𝐺𝐹𝑅,𝑠1  =  ∑  100
𝑘=1 ( 𝑔𝑒𝑛𝑒𝑘,𝑠1 𝑥 𝛽𝐸𝐺𝐹𝑅,𝑘)                          (4) 

 

 The pathway activity is defined as the product of a gene’ expression by the contribution of a pathway’s 

activation to the change in expression of this gene. From this formula, the higher the gene expression, the 

higher the pathway activity. Similarly, the higher the contribution of EGFR’s activation to the change of 

gene expression, the higher the pathway activity.  

 

 The result is the pathway scores matrix with new experiments on the rows and pathways on the columns 

(Supplementary Fig. S7c). In practice, for any transcriptomics dataset, we can determine which pathway 

is up regulated or down regulated for a certain cell line relative to other cell lines. In this paper, we are 

using the pathway scores as features to predict drug response on cell lines. Therefore, PROGENy is 

used as a data driven dimension reduction method. 

 

 We compared PROGENy’s drug response prediction performance with pathway scores calculated from 

other approaches, such as Biocarta, Gatza et al, Gene Ontology, Reactome, PARADIGM, Pathifier, and 

SPIA. We obtained the signature score for those methods as described in Schubert et al. We used those 

features as input for drug response prediction on GDSC dataset. For the 11 essential cancer pathways 

we used in our analysis, PROGENy performed better than all other methods (Supplementary Fig. S9). 

It performed significantly better than the second best pathway score Biocarta (p=0.00038). 

 

Data 

 

GDSC data were downloaded from: http://www.cancerrxgene.org/ 

Drug IC50 version 17a 

Basal gene expression 12/06/2013 version 2 

Drug target version March 2017 

CTRPv2 data were downloaded in 2016 from: https://portals.broadinstitute.org/ctrp/ 

Seashore-Ludlow et al., 2015 
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Availability and Implementation 

 

The source code of the method is available at https://github.com/saezlab/Macau_project_1 

 

References 

1. Alyass, A., Turcotte, M. & Meyre, D. From big data analysis to personalized medicine for 

all: challenges and opportunities. BMC Med. Genomics 8, 33 (2015). 

2. Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 

(2016). 

3. Seashore-Ludlow, B. et al. Harnessing Connectivity in a Large-Scale Small-Molecule 

Sensitivity Dataset. Cancer Discov. 5, 1210–1223 (2015). 

4. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of 

anticancer drug sensitivity. Nature 483, 603–607 (2012). 

5. Yuan, H., Paskov, I., Paskov, H., González, A. J. & Leslie, C. S. Multitask learning 

improves prediction of cancer drug sensitivity. Sci. Rep. 6, 31619 (2016). 

6. Menden, M. P. et al. Machine learning prediction of cancer cell sensitivity to drugs based on 

genomic and chemical properties. PLoS One 8, e61318 (2013). 

7. Cortés-Ciriano, I., Mervin, L. H. & Bender, A. Current trends in drug sensitivity prediction. 

Curr. Pharm. Des. (2016). 

8. Ammad-ud-din, M. et al. Integrative and personalized QSAR analysis in cancer by 

kernelized Bayesian matrix factorization. J. Chem. Inf. Model. 54, 2347–2359 (2014). 

9. Simm, J. et al. Macau: Scalable Bayesian factorization with high-dimensional side 

information using MCMC. in 2017 IEEE 27th International Workshop on Machine Learning 

for Signal Processing (MLSP) (2017). doi:10.1109/mlsp.2017.8168143 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/225573doi: bioRxiv preprint 

https://github.com/saezlab/Macau_project_1
http://paperpile.com/b/QJgnm3/oq2Uq
http://paperpile.com/b/QJgnm3/oq2Uq
http://paperpile.com/b/QJgnm3/oq2Uq
http://paperpile.com/b/QJgnm3/oq2Uq
http://paperpile.com/b/QJgnm3/oq2Uq
http://paperpile.com/b/QJgnm3/oq2Uq
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/2lj4
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/oqOZL
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/zi7aH
http://paperpile.com/b/QJgnm3/lky83
http://paperpile.com/b/QJgnm3/lky83
http://paperpile.com/b/QJgnm3/lky83
http://paperpile.com/b/QJgnm3/lky83
http://paperpile.com/b/QJgnm3/lky83
http://paperpile.com/b/QJgnm3/lky83
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/5ulK
http://paperpile.com/b/QJgnm3/jp1Ul
http://paperpile.com/b/QJgnm3/jp1Ul
http://paperpile.com/b/QJgnm3/jp1Ul
http://paperpile.com/b/QJgnm3/jp1Ul
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/S7xUD
http://paperpile.com/b/QJgnm3/NQiZ
http://paperpile.com/b/QJgnm3/NQiZ
http://paperpile.com/b/QJgnm3/NQiZ
http://paperpile.com/b/QJgnm3/NQiZ
http://paperpile.com/b/QJgnm3/NQiZ
http://paperpile.com/b/QJgnm3/NQiZ
http://paperpile.com/b/QJgnm3/NQiZ
http://dx.doi.org/10.1109/mlsp.2017.8168143
https://doi.org/10.1101/225573
http://creativecommons.org/licenses/by-nc/4.0/


18 

10. Pan, S. J. & Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 22, 

1345–1359 (2010). 

11. Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 

(2016). 

12. Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene 

expression. (2016). doi:10.1101/065672 

13. Baranski, Z. et al. MEK inhibition induces apoptosis in osteosarcoma cells with constitutive 

ERK1/2 phosphorylation. Genes Cancer 6, 503–512 (2015). 

14. Tanaka, K. et al. Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that 

promotes chemotherapy resistance. Cancer Discov. 1, 524–538 (2011). 

15. Shen, Y. et al. Orthogonal targeting of EGFRvIII expressing glioblastomas through 

simultaneous EGFR and PLK1 inhibition. Oncotarget 6, 11751–11767 (2015). 

16. Rialdi, A. et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects 

from death by inflammation. Science 352, aad7993 (2016). 

17. Inamdar, G. S., Madhunapantula, S. V. & Robertson, G. P. Targeting the MAPK pathway in 

melanoma: why some approaches succeed and other fail. Biochem. Pharmacol. 80, 624–

637 (2010). 

18. Comunanza, V. et al. VEGF blockade enhances the antitumor effect of BRAFV600E 

inhibition. EMBO Mol. Med. 9, 219–237 (2017). 

19. Apicella, M. et al. Dual MET/EGFR therapy leads to complete response and resistance 

prevention in a MET-amplified gastroesophageal xenopatient cohort. Oncogene 36, 1200–

1210 (2016). 

20. Jost, P. J. & Ruland, J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, 

consequences, and therapeutic implications. Blood 109, 2700–2707 (2007). 

21. Auphan, N., DiDonato, J. A., Rosette, C., Helmberg, A. & Karin, M. Immunosuppression by 

glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/225573doi: bioRxiv preprint 

http://paperpile.com/b/QJgnm3/fqXwD
http://paperpile.com/b/QJgnm3/fqXwD
http://paperpile.com/b/QJgnm3/fqXwD
http://paperpile.com/b/QJgnm3/fqXwD
http://paperpile.com/b/QJgnm3/fqXwD
http://paperpile.com/b/QJgnm3/fqXwD
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/fnlhg
http://paperpile.com/b/QJgnm3/ZVTSe
http://paperpile.com/b/QJgnm3/ZVTSe
http://paperpile.com/b/QJgnm3/ZVTSe
http://paperpile.com/b/QJgnm3/ZVTSe
http://paperpile.com/b/QJgnm3/ZVTSe
http://paperpile.com/b/QJgnm3/ZVTSe
http://dx.doi.org/10.1101/065672
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/oS5ud
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/2kgez
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/Eu7Z8
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/nHzKj
http://paperpile.com/b/QJgnm3/Lf8yd
http://paperpile.com/b/QJgnm3/Lf8yd
http://paperpile.com/b/QJgnm3/Lf8yd
http://paperpile.com/b/QJgnm3/Lf8yd
http://paperpile.com/b/QJgnm3/Lf8yd
http://paperpile.com/b/QJgnm3/Lf8yd
http://paperpile.com/b/QJgnm3/Lf8yd
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Gm9xI
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/Hvmf
http://paperpile.com/b/QJgnm3/W93wZ
http://paperpile.com/b/QJgnm3/W93wZ
http://paperpile.com/b/QJgnm3/W93wZ
http://paperpile.com/b/QJgnm3/W93wZ
http://paperpile.com/b/QJgnm3/W93wZ
http://paperpile.com/b/QJgnm3/W93wZ
http://paperpile.com/b/QJgnm3/piJ2x
http://paperpile.com/b/QJgnm3/piJ2x
https://doi.org/10.1101/225573
http://creativecommons.org/licenses/by-nc/4.0/


19 

Science 270, 286–290 (1995). 

22. Lenselink, E. B. et al. Beyond the hype: deep neural networks outperform established 

methods using a ChEMBL bioactivity benchmark set. J. Cheminform. 9, 45 (2017). 

23. Wu, Z., Martinez-Fong, D., Trédaniel, J. & Forgez, P. Neurotensin and its high affinity 

receptor 1 as a potential pharmacological target in cancer therapy. Front. Endocrinol.  3, 

184 (2012). 

24. Lotfi Shahreza, M., Ghadiri, N., Mousavi, S. R., Varshosaz, J. & Green, J. R. A review of 

network-based approaches to drug repositioning. Brief. Bioinform. (2017). 

doi:10.1093/bib/bbx017 

25. Zaman, N. et al. Signaling network assessment of mutations and copy number variations 

predict breast cancer subtype-specific drug targets. Cell Rep. 5, 216–223 (2013). 

 

Acknowledgements 

 

The work received funding through the JRC for Computational Biomedicine which was partially funded by 

Bayer AG. We would like to thank Bence Szalai, Satya Swarup Samal, Vigneshwari Subramanian and  

Damien Arnol for their suggestions and ideas in improving the manuscript. 

 

AUTHORS CONTRIBUTIONS 

 

MY designed research, performed all analyses, and wrote the manuscript. JS developed Macau 

algorithm, CCL performed the target prediction, PZ wrote supplementary method, GJW wrote 

supplementary method, YM supervised the development of Macau algorithm, JSR supervised the project 

and contributed to writing the manuscript. 

 

COMPETING FINANCIAL INTEREST 

 

The authors declare no competing financial interests. 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/225573doi: bioRxiv preprint 

http://paperpile.com/b/QJgnm3/piJ2x
http://paperpile.com/b/QJgnm3/piJ2x
http://paperpile.com/b/QJgnm3/piJ2x
http://paperpile.com/b/QJgnm3/piJ2x
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Vw0t
http://paperpile.com/b/QJgnm3/Ylfi
http://paperpile.com/b/QJgnm3/Ylfi
http://paperpile.com/b/QJgnm3/Ylfi
http://paperpile.com/b/QJgnm3/Ylfi
http://paperpile.com/b/QJgnm3/Ylfi
http://paperpile.com/b/QJgnm3/Ylfi
http://paperpile.com/b/QJgnm3/Ylfi
http://paperpile.com/b/QJgnm3/NUj3
http://paperpile.com/b/QJgnm3/NUj3
http://paperpile.com/b/QJgnm3/NUj3
http://paperpile.com/b/QJgnm3/NUj3
http://paperpile.com/b/QJgnm3/NUj3
http://dx.doi.org/10.1093/bib/bbx017
http://paperpile.com/b/QJgnm3/WNJU
http://paperpile.com/b/QJgnm3/WNJU
http://paperpile.com/b/QJgnm3/WNJU
http://paperpile.com/b/QJgnm3/WNJU
http://paperpile.com/b/QJgnm3/WNJU
http://paperpile.com/b/QJgnm3/WNJU
http://paperpile.com/b/QJgnm3/WNJU
http://paperpile.com/b/QJgnm3/WNJU
https://doi.org/10.1101/225573
http://creativecommons.org/licenses/by-nc/4.0/


20 

Figures 

 

Figure 1. Macau factorization model: (a) The drug response (IC50) is computed by 2 latent matrices. 

Each of them is being sampled by a Gibbs sampler. In presence of additional information (side 

information), the latent matrix is predicted by a multiplication of a link matrix and the side information 

matrix. Arrows in this figure indicate the matrix multiplication. (b) By multiplying the 2 link matrices, we 

obtain the interaction matrix, which is the interaction between the features of the drugs with the features 

of the cell lines. 
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Figure 2. Tissue specific analysis of interaction matrix. We used target on drug side and pathway 

activity on cell line side and analyzed all tissues in the GDSC panel with at least 20 samples, and display 

the targets which have an interaction for at least 1 pathway in the top 5% absolute value. We subset the 

targets a second time by keeping the top 25 targets with the highest variance across the pathways in term 

of interactions. Here, we highlight 4 representative tissues: (a) Bone. (b) Brain. (c) Skin. (d) Stomach. 
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Figure 3. Increasing sensitivity and overcoming resistance. From tissue specific interaction matrix of 

lymphoma, we chose the top hits Antimetabolite - NFkB (as target - pathway pairs).  We plot the IC50 of 

drug Cytarabine against NFkB pathway’s activity. 
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Figure 4.  Feature interaction analysis across tissues. (a) Highest interactions. We vectorize all 

cancer specific interaction matrices between target and PROGENy pathways and obtain a matrix of 

dimension (number of tissues x number of pathway target pairs). We do a first subsetting by taking only 

into account the pairs for which at least one pathway appears in the top 5% absolute value. We then keep 

the 30 pathway-target pairs with the highest mean value across tissues in term of interaction. (b) 

Divergent interaction. Same as previously, except that we keep the top 30 pairs with highest variance 

across tissues. 
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