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In daily life, in the operating room and in the laboratory, the operational way to

assess wakefulness and consciousness is through responsiveness. A number of studies

suggest that the awake, conscious state is not the default behavior of an assembly of

neurons, but rather a very special state of activity that has to be actively maintained

and curated to support its functional properties. Thus responsiveness is a feature that

requires active maintenance, such as a homeostatic mechanism to balance excitation

and inhibition. In this work we developed a method for monitoring such maintenance

processes, focusing on a specific signature of their behavior derived from the theory of

dynamical systems: stability analysis of dynamical modes. When such mechanisms

are at work, their modes of activity are at marginal stability, neither damped (stable)

nor exponentially growing (unstable) but rather hovering in between. We have previ-

ously shown that, conversely, under induction of anesthesia those modes become more

stable and thus less responsive, then reversed upon emergence to wakefulness. We

take advantage of this effect to build a single-trial classifier which detects whether

a subject is awake or unconscious achieving high performance. We show that our

approach can be developed into a mean for intra-operative monitoring of the depth

of anesthesia, an application of fundamental importance to modern clinical practice.

a)Current affiliation: Volen Center for Complex Systems, Department of Biology, Brandeis University,

Waltham, MA 02454, USA; Electronic mail: lalonso@brandeis.edu
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I. INTRODUCTION

General anesthesia is a common medical procedure by which a human patient becomes

unconscious to the point that invasive surgeries can be performed without inflicting pain or

awareness of the procedure. But how can we be sure that no pain is being experienced or

that the patient is not aware? In practice, this delicate task is ultimately left to the expertise

of the anesthesiologist. Despite vast accumulated experience on these practices, the anes-

thetic procedure is still imperfect and a small but significant fraction of patients experience

anesthetic awareness1. There is still to date an alarming incidence of anesthetic awareness,

whereby patients awaken during a major surgical procedure, often unable to communicate

their predicament. The reason this continues to occur is simple: we currently have no means

of differentiating the brain activity of conscious patients from that of anesthetized patients.

To put it another way, the central difficulty is the lack of any operational way of quantifying

pain or consciousness. A major complication is that the large number of anesthetic agents

in routine surgical use act on different pathways, involve different loci, and cause different

changes in electrical activity.

Changes in the level of arousal (wakefulness) have been historically quantified using spec-

tral analysis of neuronal activity. In this view, decrease in the level of wakefulness is reflected

in the increase and prevalence of low frequency oscillations and the concurrent decrease in

the high frequency oscillations2. While this is true for some states of decreased arousal such

as slow wave sleep, this association breaks down during other states in which arousal is sim-

ilarly depressed such as rapid eye movement (REM) sleep for instance. Furthermore, state

of general anesthesia can be characterized by different spectral signatures depending on the

specific choice of anesthetic agent3. This makes current modes of detecting the ”depth of

anesthesia” unreliable4.

It has been suggested that neural systems operate in a critical regime similar to phase

transitions in physics, given several computational desirable features of such states repre-

sented by the statistics of the thermodynamic variables5. Evidence for statistical criticality

is based on the observation that various aspects of neuronal activity such as avalanches ob-

served in local field potentials and action potentials in tissue preparations and in animal

models6,7, as well as magneto-encephalography (MEG) and electro-corticography (ECoG)
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in human subjects8,9, exhibit long tailed-distributions well approximated by power laws.

More recently, the dynamical aspect of criticality has been brought into focus, as a simi-

larly desirable feature not fully captured by steady-state statistics such as avalanche size

distributions10–12; a perturbation in an extended dynamical system that is close to a critical

point will neither decay nor explode, thus allowing for long range communication across the

entire system. In contrast, if the system is far from criticality (therefore stable), perturba-

tions damp out and no information integration takes place beyond the characteristic time

scale which characterize the damping. The critical regime provides important functional

benefits; quantities such as dynamic range and information transmission are optimized near

criticality13. If indeed dynamical criticality is a useful feature of brain activity, stability of

neuronal dynamics ought to be modulated by the behavioral state of the subject. When the

brain is awake and displaying complex statistical behavior its dynamical state ought to be

close to a bifurcation point; marginally stable modes contribute to long range interactions

across the system. Conversely when higher-order functions associated with wakefulness have

been diminished and eventually completely shut down by anesthesia, brain dynamics should

exhibit more stability. In other words, anesthesia induction should lead to stabilization of

brain dynamics.

To address these questions, we fitted vector autoregressive (VAR) models to electrocor-

ticography recordings (ECoG). These are routine measurements which are performed in

human subjects with chronic epilepsies. A regular grid of electrodes is placed on the surface

of the exposed brain and electrical activity is recorded. These measurements correspond

to the synchronized activities of thousands of neurons and offer a unique window to cortex

brain activity. Our previous results suggest that tracking changes in the dynamical stability

of (VAR) models fitted to these signals yields a marker which covaries with the level of

arousal of the subjects: the dynamical global modes of brain activity, which under normal

circumstances hover between stability and instability, become more stable17,18. We have

demonstrated that this specific hallmark is disrupted in anesthesia and restored after recov-

ery, in humans and macaques, for two different anesthetic agents17,18. A number of studies

suggest that monitoring the departure from critical dynamics may provide a useful neural

correlate of conscious behavior19,20. ECoG recordings provide the basis for several studies

of conscious function21. Here we study ECoG recordings collected directly from the the
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full cortex of non-human primates as they were gradually induced into the state of general

anesthesia.

Our previous studies have shown statistically significant differences in stability for each

specific individual by aggregating a fair amount of data. However this does not permit

looking at a few seconds of activity from one patient and state whether the patient is awake

or unconscious, because the baseline for each individual is unknown. In this work we develop

a single-trial classifier which aims to determine the state of the subjects using short temporal

snippets of the ECoG recordings. We build vectors based on the dynamical stability (DS) of

the ECoG signals and train support vector machines (SVM) to classify the subjects states.

We test our procedure in two situations of clinical relevance achieving high performances.

Our results suggest that one may be able to build a baseline-free classifier using measures

based on dynamical stability.

II. METHODS

Subjects and data acquisition. Data from four male monkeys were collected at the

Laboratory for Adaptive Intelligence, Brain Science Institute, RIKEN. Electrocorticographic

(ECoG) recordings were sampled at 1 kHz from an array consisting of N = 128 electrodes

covering both full hemispheres. A more detailed description of the experiments can be found

in [Nagasaka et al., 2011; Yanagawa et al., 2013]. ECoG recordings were obtained during

the induction of anesthesia starting from the awake state. The dataset consists also of video

footages of the experiments in which behavioral assessments are performed to determine loss

of consciousness. This dataset is not available to the public. In this study we analyze a

total of 16 experiments each consisting of reversible induction of anesthesia starting from

the awake state.

Description of the dataset.A total of 12 anesthetic inductions were performed us-

ing ketamine medetomidine (KM) doses. Four anesthetic inductions were performed with

propofol (P). Ketamine medetomidine inductions were performed by injecting the drugs

intramuscularly, whereas propofol was administered intravenously. Each monkey received

more than one anesthetic induction that were separated by at least 1 day. We labeled our

subjects as (M1,M2,M3,M4). Our dataset consists of 4 sessions of KM for M1, 2 sessions of
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P for M1, 3 sessions of KM for M2, 3 sessions of KM for M3, 2 sessions of KM for M4 and

2 sessions of P for M4.

Data processing. All channels were notch filtered to eliminate electrical line noise

at 50Hz, 100Hz and 150Hz. Then we applied a bandpass filter between 5Hz and 500Hz.

Both notch and bandpass filters were implemented using the idealfilter function in MATLAB

(MathWorks) to avoid phase shifts. These procedures were also performed using the python

scipy function filtfilt yielding identical results.

Stability analysis. The notion that the brain might be operating in a critical regime

has been explored by many authors. Dynamical systems theory indicates that systems which

are capable of performing computations should have a large number of modes with marginal

stability. In such a scenario an arbitrary perturbation wont decay nor explode, thus allowing

for information integration across the entire system. Therefore, it has been suggested that

the brain might operate in a dynamically critical regime. A simple model exhibiting complex

spatio-temporal dynamics was recently proposed by Magnasco et al. in which statistically

critical behavior emerges due to dynamical instabilities10. Overall, theoretical considerations

suggest that when the brain is awake its dynamical state is close to dynamical criticality, a

state in which many dynamical degrees of freedom are neither unstable (they do not explode)

nor stable (they do not decay) but straddling the interface between stability and instability.

These marginally stable modes contribute to long range interactions across the brain. This

leads us to associate wakefulness to dynamical marginality; conversely, the anesthetized brain

should exhibit more damping in those modes that are associated to conscious function or

cognition. If this view is correct, a measure of the dynamical stability of the system could

then be used as a marker for depth of anesthesia17.

ECoG is a multivariate time series whose dynamical properties can be inferred using

autoregressive models fitted independently to short time segments as described previously24.

In order to test the notion that consciousness can be associated to a dynamical homeostatic

mechanism, we assume locally linear dynamics in short temporal snipets of the recordings

and fit vector autoregressive (VAR) models. This allows us to address changes in the stability

properties of the fitted linear approximation as the concentration of anesthetics is increased.

For a given temporal interval of duration δ we fit an order 1 VAR model. This is the simplest

linear dynamical system that can be fit to a multivariate time series.
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yn+1 = Ayn + un (1)

Here, yn ∈ RN is a multivariate time series that corresponds to the recorded activity in

all N = 128 channels at time tn, A ∈ RN×N is the matrix to be estimated and un is assumed

to be white noise. A comprehensive treatment of this model and its estimation can be found

in Lütkephol29.

In this work we used a statistical modeling module for python called Statsmodels36. The

idea behind the estimation procedure is that for a temporal segment containing n datapoints,

one ends up with a system of n linear equations of the form 1. Then finding A under

the assumption of uncorrelated noise can be cast a estimating the pseudoinverse of the

matrix containing the yn values. This is in turn performed by the standard python library

numpy lstsq module38. Finally, this module is a python interface for the popular package

LAPACK which contains several algorithms for performing singular value decompositions of

large matrices37. The performance of our procedure relies ultimately on this standard and

heavily tested library.

Each time a model is fit to data we obtain a matrix A which governs the stability properties

of the VAR model. In order to address changes in the dynamical stability of the fitted models

we consider the distribution of eigenvalues of A. Since our underlying hypothesis corresponds

to a continuum model we performed a transformation in order to obtain a correspondence

between the eigenvalues of A and the timescales of the dynamics. Let λj = ρje
iφ be the

eigenvalue corresponding to the j-th mode, the frequency of the mode is given by fj =
φj
2πdt

while the growth rate (timescale) of the mode is given by τj =
log(ρj)

dt
. Here dt = 1

Sf
= 0.001s,

where Sf = 1000Hz is the sampling frequency of the recordings.

Our previous results suggest that as the subjects become anesthetized the linear stability

of the ECoG recordings exhibits significant stabilization which is efficiently quantified by

non parametric statistical methods. Such stabilization effect was first reported in recordings

performed in human patients with temporal lobe epilepsy while being anesthetized with

propofol [Alonso et. al. 201417]. This finding was further supported by performing this

analysis on the current dataset in monkeys [Solovey & Alonso 201518]. This led us to associate

loss of consciousness with stabilization of cortical activity. In this work we explore the

possibility that such stabilization effect can be exploited to predict conscious activity.
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DS vectors. Dynamical stability (DS) is determined by the fitted distributions of eigen-

values. For a given temporal segment of duration ∆ ≥ 500msecs, we build (DS) vectors

based on this measure by coarse graining this distributions. We sample the distributions by

fitting 10 equally spaced VAR(1) models using δ = 500msecs windows independently. Note

that for choices of ∆ ≤ 5000msecs the models fit overlapping data. Vectors are obtained by

binning the distributions of eigenvalues in a 20× 20 grid in the range τ = −2501
s

to τ = 251
s

and f = 4Hz to f = 256Hz. The frequency axis is in logarithmic scale base 2. The range

and scales were chosen to highlight the differences between the awake distributions versus

the anesthetized ones. About half of the total eigenvalues fall within this range. The vectors

are obtained by flattening the distributions; this is horizontally stacking the row values of

the grids yielding a vector with dimension 400.

FFT vectors. In order to compare (DS) performance against a spectral method we

build FFT vectors based only in spectral features of the data. For each channel, we compute

the fast fourier transform of the data contained in an interval of duration ∆ and keep the

logarithm of the power p for frequencies smaller than 100Hz; v = log(pf<100Hz). A vector

is defined as the average of p across channels. The dimension of the resulting vector then

depends on the duration of the interval ∆. Performance is largely independent of this

dimension.

Data labeling. Each vector was labeled as awake or anesthetized by careful assessment

of the experiment videos. For each experiment two temporal intervals were determined.

The awake interval corresponds to resting with eyes closed condition, prior to any drug

injection. The anesthetized intervals occur always after drug injection and were determined

as the interval in between two behavioral assessments performed by the experimenters in

which the subjects did not respond. Responsiveness assessments were in most cases tactile

and in some cases the subjects were also perturbed with noise. Both intervals were further

shortened by removing the first and last 30 seconds to decrease the chance of mislabeling.

The interval durations are in general different across experiments ranging from 350secs to

1500secs for Ketamine Medetomidine. The anesthetized intervals are much shorter in the

case of propofol ranging 130secs to 450secs. In all experiments the awake and anesthetized

intervals are separated by at least 400secs.

Surrogate tests. We applied three surrogate procedures to the ECoG recordings. Phase
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surrogation is a standard procedure which consists of Fourier transforming the data, ran-

domizing the phases and transforming back. We applied this surrogation to each channel

and used the surrogated data to build vectors. Staggering surrogation corresponds to desyn-

chronizing the data locally. Each channel is shifted forward in time by a random value taken

from a flat distribution of width 100×
√

12msecs. This is performed every time an interval

is selected for building a vector. Global staggering surrogation corresponds to the same

procedure except that the shifts are determined only once and the same shifts are applied to

all vectors of the same experiment. Global staggering surrogation was performed by taking

the lags from a flat distribution of width 500msecs. All surrogate tests aim to disrupt global

information across recording sites.

Classification method. For each experiment we built a dataset by taking 500 equally

spaced vectors on the awake interval and 500 equally spaced vectors in the anesthetized

interval. For each dataset we also generated a surrogate dataset consisting of vectors built

with surrogated data. The same procedure was also applied to obtain datasets for varying

amounts of data ∆ in order to test for performance as this parameter is varied. Depending

on the choice of this parameter and the duration of the awake and anesthesia intervals

of each experiment, adjacent vectors within an interval may be constructed with partially

overlapping data.

We used support vector machines (SVM) for classification. SVMs in their simplest form

are linear classifiers which are particularly efficient in high dimensional spaces and for which

there are efficient training methods. In this work we implemented the machine learning

python library scikit-learn35 to train SVMs with linear kernels for classifying whether a

subject is awake or unconscious.

Training and testing protocol. We test our classifiers on unseen data. Given a train

dataset (T) and test dataset (P) to assess performance we proceed as follows. We take half

the vectors on (T) at random to train the SVM and then ask the classifier to predict the

full (P) dataset of a different subject. We then define the error as the number of wrong

classifications in percent. Thus, one source of variability in the errors when this protocol is

repeated comes from different choices for the training vectors.
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III. RESULTS
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FIG. 1. Changes in dynamical stability as subjects are induced into anesthesia. We

computed the dynamical stability of VAR(1) models fitted to the ECoG recordings as the subjects

underwent general anesthesia. The intervals labeled as awake and anesthetized were determined

from responsiveness assesments performed during the experiments. A Electrode placement B Data

recorded from channels 1 through 32 for the awake condition (left) and the anesthetized condition

(right) undeter ketamine-medetomedine. C We quantified changes in the stability of the models by

comparing the distributions of damping time scales (Reλ) using a Kolmogorov-Smirnov test. The

y-axis corresponds to the KS coefficient of comparing the initial reference distribution (awake, no

drugs) versus the distributions of damping time scales obtained at subsequent time stamps.

A total of 16 experiments were analyzed in this work. Figure 1A shows the electrode
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placement and Figure 1B shows the recordings of channels 1 through 32 (indicated by red

dashed lines in Fig. 1A) for a short temporal segment (500msecs). As a way to track changes

in the dynamical stability (DS) of the fitted VAR(1) models as anesthesia is induced, we

compare the initial distribution of damping time scales (Re(λ)) against subsequent distri-

butions using a Kolmogorv-Smirnov test. Figure 1C shows the KS value of the test along

the course of a full experiment in one subject, for each anesthetic. First (t < 1000secs),

the subjects are resting with their eyes open and no drugs are given. At about t = 1000

the subjects are blindfolded and this changes the stability of the models. Drugs are given

at time t ≈ 2200secs and responsiveness assements are performed to determine the state of

the subject. The subjects recover from anesthesia and the blind is removed (t > 5500). For

each experiment we determined the intervals of the awake state and the anesthetized state

by assessing the experiments videos.

Our study aims to determine whether DS can be used to predict whether a subject is

conscious or not by using a short temporal segment ∆ of the ECoG recordings. For this

we imagine two situations of clinical relevance. First, the awake and anesthetized states

for three subjects are known and this information is used to train a classifier. The trained

classifier is then used to predict the state of the subject left out for every session of the same

drug (KM). The second scenario we tested is when the awake and anesthetized activity for

an individual is known and the outcome of the next session for the same drug is predicted.

We computed the dynamical stability (DS) of the models fitted to the signals in the awake

and anesthetized intervals and obtained vectors from binning the distributions of eigenvalues

(see methods). We then trained support vector machines (SVM) classifiers on subsets of the

experiments and tested the resulting classifiers on the remnant unseen subsets. We compare

the performance of our protocol (DS) with spectral measures (FFT) and DS vectors built

with surrogate data. Throughout this work, the classifiers are tested on unseen data.

Figure 2A shows the vectors obtained for subject M1 for both drugs and for both the

awake and anesthetized conditions. The distribution of eigenvalues of the models fitted to

the recordings is binned in a range and the vectors are built by keeping the count in each bin.

The awake and anesthetized distributions exhibit remarkable differences for both anesthetic

agents. These differences are highlighted in the overlay plots in row (Fig. 2B). The awake

distribution is represented in cyan while the anesthetized distribution is represented in red.
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FIG. 2. Description of the dataset. We used the distributions of eigenvalues of the fitted

VAR models to build vectors by computing a 2D histogram over a range. Mean vectors for M1.

Left panels: Ketamine Medetomidine. Right panels: Propofol. (A) Mean DS vectors for awake

and anesthetized conditions. (B) Overlay between awake (blue) and anesthetized (red) vectors.

Histograms were normalized between 0 and 1 and the overlay highlights changes in the distributions

under both conditions. For each drug we plot the mean DS vectors overlay and the mean DS vectors

using surrogated data (phase randomization). (C) Distribution of damping timescales τ for awake

(blue) and anesthetized (red) conditions, for real and surrogate data. The vectors were built using

∆ = 2000msecs of data.

The points in which these distributions have similar occupancy are then represented in white.

Our previous work suggests that loss of consciousness is concomitant with increased stability

of the fitted models (more negative damping timescales τ). This observation is consistent

with the plots shown in Fig. 2C. The 2D distributions of eigenvalues for both states are

integrated along the frequency axis to obtain the distributions of damping timescales τ for

the awake (blue) condition and the anesthetized (red) condition. We performed the same
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analysis using phase surrogates of the data (see methods). Our surrogation procedure aims at

disrupting correlations amongst channels that may contain global information. We find that

by performing these disruptions the dynamical stability of the models changes noticeably

while still exhibiting consistent differences across states and drugs. These analysis are shown

in rows B and C and it is indicated in the figure labels.

FIG. 3. Best case performance across subjects (Ketamine Medetomidine). We test the

performance of the protocol using datasets for three subjects for training the classifiers and used

the subject left out for testing. We chose a window size ∆ = 2000msecs of data to build the

vectors. (A) Histograms show the error of the classifiers for N = 1000 folds of the protocol. (B)

Receiver operating characteristic (ROC) curves showing the performance of the best classifier as

its discrimination threshold is varied. The area under the curve (AUC) is indicated in the figure

labels.

Figure 3 shows the results of training the classifiers on three subjects and predicting

all the experiments for the subject left out. In this case the training (T) set corresponds to

stacking all the vectors for the KM condition in three subjects and the test set (P) is obtained

by stacking all the vectors for the KM condition in the subject left out. The vectors were

built using ∆ = 2secs of data (see methods). The figure corresponds to the histograms of

scores obtained for Nf = 1000 folds. In order to obtain a measure of the statistical power

of the classifier, we computed the ROC curve for the best classifier. This curve computes

the tradeoff between false positives and false negatives as the discrimination threshold of the
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classifier is varied. The area under the curve (AUC) is a measure of the statistical power of

the classifier and we indicated it in the figure labels.

FIG. 4. Performance increases as more data is included in the vectors. Improvement in

performance for increasing window size ∆ across sessions (Ketamine Medetomidine): we test the

performance of the protocol for increasing amounts of data that is used to build each vector. We

train the classifiers in M1 session 3, and predict the state of the same subject M1 in session 4. The

plot compares the performance of the task on vectors built with surrogate data against vectors built

with undisrupted data. Dynamical stability (DS) outperforms a local spectral method (FFT) and

disruption of global information leads to worse performances. The number of folds at each point is

Nf > 105

Figures 4 and 5 show the performance of the protocol as more data is utilized to build

the Ketamine Medetomidine vectors. We performed this test by training the classifiers

with vectors from one session of M1 for KM induction (T), and then tested our predictions

on a dataset corresponding to the same subject M1 and the same anesthetic KM, for a

different session (P). The figure is comparing the performance of our protocol (DS) against

different datasets. Dataset (FFT) is obtained based solely on spectral methods while the

surrogates correspond to DS vectors built using surrogated data. The figure shows that (DS)

outperforms (FFT) and interestingly, if data is disrupted the performance is worsened by

roughly two orders of magnitude. This suggests that our method is picking global dynamical

features of brain activity and that these features are useful to predict consciousness and
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FIG. 5. Improvement in performance for increasing window size ∆ across sessions (Ketamine

Medetomidine): we test the performance of the protocol for increasing amounts of data that is

used to build each vector. We train the classifiers in M1 session 1, and predict the state of the

same subject M1 in session 2. The number of folds at each point is Nf > 104

FIG. 6. Improvement in performance for increasing window size ∆ across sessions (Propofol).

Dynamical stability (DS) outperforms a local spectral method (FFT) and disruption of global

information leads to worse performances which are similar to (FFT). The number of folds at each

point is Nf > 104

lack of it. It is important to note in this case that while (DS) outperforms (FFT) this also

happens for (DS) vectors built with surrogate data. Our surrogation tests show that bulk
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stabilization of the distributions under anesthesia is moderately resistant to these disruptions.

When vectors are built with surrogated data, the distribution of eigenvalues still exhibits

consistent differences across states. This is in turn consistent with comparable performances

of the classification tasks on real and surrogate data vectors.

In Figure 6 we show the same analysis as in Figures 4 and 5 for inductions with Propofol

across sessions for subject M1. In this case, the performance of the classifiers on the (DS)

vectors is about 3 to 4 orders of magnitude better than on the (FFT) vectors. Interestingly,

in this case the (FFT) vectors perform similarly to the (DS) vectors built with surrogate

data. This is also consistent with Figure 1 row C in which we show that while in the

Ketamine Medetomidine case, bulk differences across states persist after surrogation, for the

case of Propofol differences across states depend more strongly on global correlations which

are disrupted by surrogation. Performance across subjects for propofol is not presented in

this work since our analysis suggests that M4 does not become fully anesthetized with this

drug. This in turn could be due to the fact that M4 belongs to a different species than the

other subjects.

We found that the performance on real data is larger than on surrogate data for both

anesthetics. This suggests the exciting possibility that the classifier is picking up on global

dynamical features which are disrupted by surrogation. Our current results do not demon-

strate that the global feature that is being picked up is similar across monkeys and across

drugs. However, our results suggest that a simple linear approach is able to capture global

features that are associated to loss of consciousness. Our numerical estimates provide a mea-

sure of the utility of such global information. Consistent with the fact that the stability of

the fitted models is to a certain degree independent of global correlations, the performance

of our procedure is only moderately worsened by disruption of such global features. This

suggests that high performances might be achieved by these means even in the more common

situation in which a smaller portion of the cortex is being monitored

IV. CONCLUSIONS

Unveiling the mechanisms by which consciousness emerges is among the ultimate goals

of systems neuroscience. Within this broad scope, a more immediate goal is understanding
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the quantitative imprint of consciousness on electrophysiological activity. Our efforts aimed

at establishing a relationship between brain activity under different anesthetic regimes and

the linear stability of the registered ECoG signals. Our previous studies have shown that

under induction of anesthesia the dynamical stability (DS) of linear models fitted to the

ECoG signals is increased and thus become less responsive, then reversed upon emergence

to wakefulness17,18.

We have developed a single-trial classifier based on this measure using support vector

machines. Our results indicate that dynamical stability (DS) can be used to determine

whether a subject is conscious or not with remarkable accuracy. We also found that by

performing these procedures we outperform other single-channel measures based only on

spectral properties (FFT). According to the literature this procedure has the potential to

outperform other previously published procedures.

Our method is novel since it aims to fit global brain dynamics as opposed to relying on

many single-channel measurements. The assumptions behind our procedure are minimal,

namely, that the dynamics is linear in short temporal intervals. This assumption enables

efficient estimation procedures and we kept the simplest approach within this premise. Our

results suggest that it is likely that a global feature which could be associated to conscious-

ness may be revealed by a many-channel linear approach. Interestingly, we found that the

classifiers are using global information to increase performance to a certain degree. This

is exciting because if the presence of a global dynamical feature is important to increase

performance in a consciousness detection task, there are chances this can be linked to con-

sciousness provided we can show consistency across anesthetics and subjects. Our current

approach does not probe the possibility that the global feature that is being picked up is

similar across monkeys and across drugs. On the other hand, our approach demonstrates

that fitting the simplest dynamical system to the data has the potential to outperform other

methods to monitor for loss of consciousness.

We found a potentially important clinical application. Our procedure yields unprece-

dented performance in several consciousness detection tasks of clinical relevance. The proce-

dure makes use of information on the global dynamical state of the brain to further increase

performance. It cannot be discarded that such global features can be linked to consciousness

and additional tests with other anesthetics are required to establish a stronger connection.
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Consistent with the fact that the stability of the fitted models is only moderately dependent

on correlations, the performance of the method is also moderately worsened by disruption

of such global features. On the other hand, we showed that if global information is not

disrupted, then the procedure consistently performs better. We believe that this procedure

has the potential to outperform other methods currently utilized to monitor for depth anes-

thesia. Further tests with other anesthetics are required to attempt a thorough translational

effort. Extensions of these methods for non-invasive recordings as EEG as well as invasive

recordings as Utah arrays is highly desirable.
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