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1 Abstract

2 The light-dependent ion-transport function of microbial rhodopsin has
3 been widely used in optogenetics for optical control of neural activity. In
4 order to increase the variety of rhodopsin proteins having a wide range of
5 absorption wavelengths, the light absorption properties of various wild-
6 type rhodopsins and their artificially mutated variants were investigated
7 in the literature. Here, we demonstrate that a machine-learning-based
8 (ML-based) data-driven approach is useful for understanding and predict-
9 ing the light-absorption properties of microbial rhodopsin proteins. We
10 constructed a database of 796 proteins consisting of microbial rhodopsin
11 wildtypes and their variants. We then proposed an ML method that
12 produces a statistical model describing the relationship between amino-
13 acid sequences and absorption wavelengths and demonstrated that the
14 fitted statistical model is useful for understanding colour tuning rules and
15 predicting absorption wavelengths. By applying the ML method to the
16 database, two residues that were not considered in previous studies are
17 newly identified to be important to colour shift.

s 1 Introduction

19 Microbial rhodopsin is a photoreceptive membrane protein of microbial species,
2 such as eubacteria, archaea, fungi, and algae. The functions of microbial rhodopsin
2 are very diverse. Light-driven ion (proton, chloride, sodium, and so on) pumps,
2 light-gated cation and anion channels, photochromatic gene regulator and light-
»  regulated enzymes have been reported for various species®. The light-dependent
2 ion-transport function of microbial rhodopsin is widely used in optogenetics
s for optical control of neural activity in the brain network?. Most microbial
2 rhodopsins bind a common chromophore, all-trans retinal, via a protonated
2 Schiff-base linkage in the center of the hepta-transmembrane scaffold (Fig. 1).
s Each microbial rhodopsin exhibits a variety of specific visible absorption wave-

20 lengths of their retinal. While the protonated all-trans retinal Schiff-base shows
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» the absorption peak at ~450 nm in organic solvents®, the wavelengths of ab-
a sorption maxima of retinal (Apmaxs) in microbial rhodopsin range from 436 nm
»  of channel-thodopsin from Tetraselmis striata (TsChR)* to 587 nm of sensory
13 rhodopsin I°. This wide-range colour tuning of the retinal in rhodopsin is con-
2 sidered to be achieved by optimizing the steric and/or electrostatic interaction
s with surrounding amino-acid residues.

36 Increasing the variety of absorption wavelengths enables simultaneous optical
sz control by different colours of light. Furthermore, the microbial rhodopsin hav-
s ing highly red-shifted absorption maximum is strongly demanded for optogenetic
s application, because of the lower phototoxicity and higher tissue-penetration
w0 length of longer-wavelength light*. As such, various rhodopsin genes have been

s screened in order to find additional colour-shifted proteins®®.

While many
2 blue-absorbing rhodopsin at A < 500 nm have been reported” and even ap-
s plied to optogenetics?, the longer absorption maxima are limited in < 600 nm.
w Thus, further artificial molecular modifications of protein were needed in order
s to achieve greater red-shifted absorption. Random and/or semi-empirical point
s mutations identify the types of amino-acid mutation that are effective for colour

89, Although numerous mutations causing bathochromic shift without

7 tuning
s disrupting protein function were identified in this way, the degree of shift is
2 insufficient for application, and comprehensive screening is difficult because of
o the large number of possible mutations (> 202°°). Although more rational
51 molecular design is expected for quantum chemical calculation to estimate the
2 absorption energy !0, its high calculation cost makes application to wide-range
53 screening difficult. An alternative technique for expanding the absorption range
s« is the incorporation of natural or artificial retinal analogues'!. For optogenetic
ss application, however, a tissue-directed delivery method of these analogues must
ss  be developed.

57 In the present paper, we report the results of a data-driven approach for
ss  studying the light-absorption properties of microbial rhodopsin proteins by ma-

o chine learning (ML). We constructed a database of 796 proteins consisting of

¢ microbial rhodopsin wildtypes and their variants, some of which were previously
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s reported in the literature and others of which are newly reported herein (see
2 Supplementary Table 1). Each entry of the database consists of the amino-acid
63 sequence and absorption wavelength A\, .y of a rhodopsin. We introduce an ML
e method for constructing a statistical model describing the relationship between
s amino-acid sequences and absorption wavelengths. The goal of the present pa-
6 per is to demonstrate the effectiveness of ML-based data-driven approaches for
e functional protein studies. By constructing a database based on past experi-
e¢ mental results and applying an ML method to the database, a statistical model
e describing the relationship between amino-acid sequences and molecular prop-
7 erties can be constructed. In the context of microbial rhodopsin studies, we
7 illustrate the utility of such a statistical model by demonstrating that it can
2 be effectively used for understanding the colour tuning rules and predicting the
73 absorption wavelength (see Fig. 2).

7 We consider the following hypothetical scenario for the purpose of demon-
s stration. The database is divided into two sets: a target protein set and a
7 training protein set. The target set contains KR2 wild-type rhodopsin and its
77 variants (which, in the present study, are assumed to be uninvestigated as of
7 yet), whereas the training set contains the remaining proteins in the database.
7 We constructed an ML model using only the proteins in the training set. The
s constructed model was then applied to the proteins in the target set for pre-
s dicting the absorption wavelengths of KR2 and its variants. This scenario is
s interpreted as a hypothetical situation where a researcher is interested in pre-
& dicting the absorption wavelengths of a new group of rhodopsin proteins based
s on previously reported data on other groups of rhodopsin proteins.

8 Among the various available ML methods, we used a group-wise sparse learn-
& ing approach!'?1314 The advantages of group-wise sparse learning approaches
s are not only predictability but also interpretability of the constructed models.
ss  As we report later herein, by using a group-wise sparse learning approach, the
s absorption wavelengths of KR2 and its variants could be predicted from their
o amino-acid sequences with an average error of +7.8 nm. The residues affecting

o1 the absorption wavelength were also identified, and their strength for colour
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o shift and the effect of mutation were quantitatively investigated. Through this
s analysis, the positions of BR Glul61 and Alal26, the effects for colour shift
oa of which were not reported in previous studies, were newly shown to signifi-
os cantly affect the absorption wavelengths. Furthermore, the model constructed
e by a group-wise sparsity learning approach enables the identification of active
o residues, i.e., residues for which the choice of the amino-acid species has a great
¢ influence on the absorption wavelength. Although we herein focus on the pre-
o diction of absorption wavelengths of rhodopsin proteins, the same ML approach
w0 can be used to predict other molecular properties in other types of functional

11 proteins.

» 2 Results

103 Microbial rhodopsin database In order to demonstrate the effectiveness
14 of ML-based data-driven approaches for microbial rhodopsin studies, we con-
105 structed a database. The database is composed of amino-acid sequences and
ws absorption wavelengths Ay axs of 519 proteins previously reported in the liter-
w7 ature and 277 proteins investigated by our group without previous report (see
s Supplementary Table 1). As reported in a previous study!®, for data-driven
109 approaches such as the present study, it is important to construct a database
no containing not only reported experimental results but also unreported results.
w We applied alignment algorithm ClustalW to these amino-acid sequences and
u2 obtained aligned sequences of 475 residues, among which we extracted the trans-
u3  membrane region, resulting in 210 residues. For the purpose of demonstration,
us  we divided the dataset into a target protein set and a training protein set (see
us  Fig. 3).

116 The target set consists of 119 rhodopsin proteins in the KR2 group (KR2
w7 wildtype and its 118 variants), whereas the training set consists of the remain-
us ing 677 rhodopsin proteins (see Figs. 1 and 3). We applied an ML method to
o the training set and constructed a statistical model describing the relationship

120 between the amino-acid sequences and absorption wavelengths. The statistical
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121 model was then applied to the rhodopsin proteins in the target set in order
122 to predict their absorption wavelengths. This scenario assumes a hypotheti-
s cal situation in which a researcher is interested in investigating a new group
12« of rhodopsin proteins based on previously reported data on other groups of

125 rhodopsin proteins.

s  Machine learning method In order to handle amino-acid sequences in the
w7 ML framework, we introduced a binary representation, as depicted in Fig. 4(a).
s Let M = 20 be the number of different amino-acid species, and let N = 210 be
129 the number of residues considered herein. Then, an amino-acid sequence is rep-
1 resented by M x N = 4,200 binary variables, which we denote as & € {0,1}M¥,
. We consider a linear model for such M N-dimensional variables with an intercept
12 parameter By and M N coefficient parameters 3;;,4 = 1,...,M,j =1,...,N
13 (see Fig. 4(b)). These 1 + M N parameters are fitted based on the training set
1 so that the output of the model f(x) can predict the absorption wavelength of
135 the rhodopsin protein for which the amino-acid sequence is coded as x. Since
136 this model has so many parameters, it is difficult to interpret the fitted model
w  if we simply use conventional methods such as the least-squares method. We
s thus introduced the group-wise sparsity mechanism (See the Method section and
1o the Supplemental information for details). Using this mechanism, the fitted co-
uo  efficient parameters §; ; have residue-wise sparsity. Here, M = 20 coefficient
w1 parameters corresponding to the choice of an amino-acid species in each residue
12 is considered as a group. After we fitted the model, in many groups, all of the
w3 M coefficient parameters become zero, indicating that the choice of an amino-
us acid species in these residues does not affect the colour tuning property. On the
us other hand, a small number of residues at which the coefficient parameters are
us NOT zero are called active residues, i.e., the choice of the amino-acid species
w7 in these residues is expected to play an important role in colour tuning. Figure
s 4(c) illustrates the fitted coefficient parameters using the group-wise-sparsity
uws  mechanism. If a parameter 3; ; is positive/negative, then the i-th amino-acid

50 species in the j-th residue has a red-shifting/blue-shifting effect on the light
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151 absorption properties of rhodopsin proteins.

12 Understanding colour tuning rules By applying the above ML method
153 to the training set containing pairs of the amino-acid sequence and absorption
15« wavelength for 677 rhodopsin proteins, we fitted a linear model with 1+ M N =
155 4,201 parameters. A complete list of the fitted parameters is presented in Sup-
155 plementary Table 2. Figure 5 shows the fitted coefficient parameters at 20 active
157 residues in decreasing order of s; := \/2?11 ﬂf’j,j =1,..., N, where the score
s 55 quantifies the activeness of the j-th residue. Here, red and blue indicate that
150 the corresponding parameters are positive and negative, respectively, whereas
1o grey indicates that the parameters were zero. In other words, red and blue sug-
11 gest that having the amino-acid species in the residue would have a red-shifting
12 and a blue-shifting effect, respectively. The results in Supplementary Table 2
13 and Fig. 5 can be interpreted as a comprehensive statistical description of the
1« colour tuning rules of rhodopsin proteins based on previously investigated ex-
16 perimental results for 677 rhodopsin proteins (Supplementary Figure 1 shows
166 the same results obtained using all 796 rhodopsin proteins, including those in

7 the KR2 group).

s Predicting absorption wavelengths of KR2 rhodopsin and its variants
1o Using the statistical model fitted based on the training set (containing all of the
wo rhodopsin proteins except for the KR2 group), the absorption wavelengths of
wm  the 136 rhodopsin proteins in the target set (containing KR2 group rhodopsin
w2 proteins) were predicted. Figures 6(a) and 6(b) show examples of predicted
s (green lines) and observed (blue lines) wavelengths for red-shifted KR2 mu-
w tants. For the KR2 NTQ/F72G mutant (Fig. 6(a)), the difference between
s the predicted (546.44 nm) and experimentally observed (543 nm) wavelengths
ws is only 3.44 nm. In contrast, we observed a larger discrepancy (8.51 nm) for
w7 the predicted (556.49 nm) and experimentally observed (565 nm) wavelengths
s for KR2 D116N. This means that the precision of ML prediction differs for each

w  type of mutation. Examples of blue-shifted mutants are shown in Figs. 6(c)
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1w (KR2 N112E) and 6(d) (KR2 DTD/D102N). The differences between the pre-
11 diction and the observation were 7.34 and 19.92 nm for the former and latter,
12 respectively. Figure 6(e) summarizes the prediction results for KR2 and all of
13 its mutants, where the horizontal axis represents the observed absorption wave-
18« lengths measured in the experiments, whereas the vertical axis represents the
185 predicted absorption wavelengths obtained by the ML model. The red points
185 indicate the KR2 group rhodopsin proteins in the target set, whereas the black
17 points indicate other rhodopsin proteins in the training set. Note that the pre-
s diction performance in the training set (black points) is slightly better than that
o  in the target set (red points). This is because the former is used for fitting the
1o ML model itself, whereas the latter is completely new to the fitted model. This
11 phenomenon is known as over-fitting in the literature of machine learning. The
12 absorption wavelengths of KR2 and its variants could be predicted from their
103 amino-acid sequences with average errors of £7.8 nm. The histogram in Fig.
s 6(b) shows the distribution of the prediction errors in the KR2 group rhodopsin

15 proteins in the target set.

s  Estimating the effect of point mutations The effect of a point mutation
17 on the absorption wavelength shift can be estimated based on the coefficient
s parameters 8;;, ¢ = 1,...,M,j = 1,...,N. Let xXR2) ¢ [0, 1}MN be the
19 binary vector representation of the KR2 wild-type sequence. The difference
20 in the predicted absorption wavelengths between KR2 wildtype and a variant

21 having amino-acid sequence (V) € {0, 1}M¥ is written as

f(w(\/ar)) IB(KR2) i ZN: J E\j/'ar) Z Zﬁz,j 7(IJ(R2).

i=1 j=1

22 The colour-shifting effect of point mutation at the j-th residue is written as

Zﬂu (a5 =257 1)

23 For example, if the i1-th amino-acid species in the KR2 wildtype is replaced

24 by the i5-th amino-acid species, the colour-shifting effect of the point mutation
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205 is By, ; — Biy,;- Figure 7 shows a portion of the amino-acid sequences of KR2
26 wildtype and its variants along with their observed and predicted absorption
207 wavelengths. In Fig. 7, red and blue indicate red-shifting and blue-shifting ef-
28 fects, respectively, in Eq. (1) estimated by the trained statistical model. Figure
20 7(a) suggests that point mutation at BR residue number 89 would have red-
20 shifting effects. On the other hand, Fig. 7(b) suggests that point mutation at
an BR residues 85 and 122 would have blue-shifting effects. These results indicate
a2 that the estimated colour-shifting effects are consistent with the actual observed

a3 wavelength shifts caused by the mutation.

2~ 3 Discussion

25 Colour tuning rules in the estimated statistical models by ML Ten
a6 residues showing the highest [-values were overlaid on the X-ray crystallo-
a7 graphic structure of BR (PDB code: 1BM1) (see Fig. 8). Eight of these
28 residues are located around retinal within < 5 A(BR Thr89, Ala215, Glyl122,
20 Leu93, Asp85, Asp212, Met118, and Trp86 in the order of degree of activeness).
20 Thr89 showed the highest degree of activeness. This is a member of the DTD-
2 motif, which represents the type of functional determining three residues in the
22 third transmembrane helix (helix-C) for each ion-pump rhodopsin. The DTD-
23 motif is typical for the outward HT pump and is composed of Asp85, Thr89,
2¢  and Asp96 for BR'6. While this threonine is conserved among most microbial
»s rhodopsins, it is replaced with an aspartate for sodium pump rhodopsin (NaR),
26 which has the NDQ-motif rather than the DTD-motif'"16:18 The position of
27 BR Thr89 is close to RSB (the distance between BR Thr89C~ and the nitrogen
26 atom of RSB is 3.4 A). The third and seventh active residues are BR Gly122
29 and Met118, respectively. These residues are highly conserved among various
230 microbial rhodopsins. Their mutation causes the rotation of the C6-C7 bond of
an retinal and the shortening of the m-electron conjugation between the S-ionone
2 ring and the polyene chain®2°. The largest coefficient parameters are obtained

23 for glycine and methionine for the former and latter positions. This implies
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24 any type of mutation of these residues results in the blue-shift of A\j.x and is
25 consistent with previous experimental reports!®19.

236 The residues of BR Ala215 and Leu93 exhibit the second and fourth highest
2 degrees of activeness. Both BR Ala215 and Leu93 are well known to have a
28 role in colour-tuning switching for various rhodopsins in nature. Shimono et
20 al. reported that, whereas green-to-orange absorbing archeal rhodopsins (BR,
20 halorhodopsin and sensory rhodopsin I) conserve an alanine at the position
2n of BR Ala215, blue-absorbing rhodopsins, such as pharaonis phoborhodopsin
22 (ppR, which is also referred to as pharaonis sensory rhodopsin II) has a serine
23 or threonine at this position2'. The difference of coefficient parameter values is
24 approximately 11.8, which is close to the reported Apax shift of ppR T204A (8-
x5 nm red-shift)?! and the BR homolog of Haloquadratum walsbyi (HwBR) A223T
us  (13-nm blue-shift) 22, BR Leu93 corresponds to Leul20 of green-absorbing pro-
27 teorhodopsin (GPR). This residue is replaced with a glutamine in blue-absorbing
2 proteorhodopsin (BPR), and this type of colour regulation is known as “L/Q-
uo  switching” 23, The lowest coefficient parameter (-11.2) was obtained for a glu-
0 tamine. This suggests that glutamine is most effective to achieve blue-shift
1 absorption and is considered to be optimized in natural evolution in the deep-
22 ocean environment?3. Ozaki et al. reported that mutations to valine or bulky
253 residues (lysine, phenylalanine, tyrosine, and tryptophan) cause a large red-
sse  shift?* of Ajax. Their larger coefficient parameters are consistent with previous
255 experimental results (Fig. 5).

256 BR Asp85 and Asp212 are generally deprotonated and work as counterions
»s7  to protonated RSB. The electrostatic interaction between their negative charges
s and the m-electron of retinal destabilizes the energy level of the electronically
20 excited state. This results in the blue-shift of Ayax 2°. Whereas the aspartate at
20 the position of BR Asp85 has the second lowest coefficient value (-19.5) among
21 all of the residues investigated herein, the value of the position of BR Asp212 is
22 moderate (-3.2). This result suggests that the former has a much stronger effect
23 on colour tuning, despite the symmetric location of these two residues relative

¢ t0 RSB. (The distances from Asp85 and Asp212 to the N atom of RSB are 3.4

10
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x5 and 3.5 A, respectively.)

266 The eighth largest coefficient parameter was the position of BR Trp86.
27 This tryptophan is one of the most highly conserved residues among micro-
xs Dbial rhodopsins. It forms a part of the binding pocket by direct contact with
%0 the extracellular side of the polyene chain of retinall. This strong interaction
a0 with retinal is consistent with the high degree of activeness of this residue and
o1 the coefficient parameter of tryptophan is a large positive value (12.0). This
o suggests that this tryptophan has a role in shifting the absorption wavelength
a3 to be longer in many rhodopsins.

274 The positions of BR Glul61 and Alal26 are relatively far from retinal (having
25 the 9-th and 10-th largest coefficient parameters). To our knowledge, there
o6 are no previous studies focused on the colour-tuning effects of these residues.
o7 For the position of BR Glul61, larger red- and blue shifts are expected for
2 valine and tyrosine. In fact, sensory rhodopsin I (SRI), which is a positive
o0 phototactic sensor, has a valine at this position and exhibits relatively longer
2 absorption maxima (e.g., the SRI of Halobacterium salinarum (HsSRI): 587
s nm; SRI of Haloarcula vallismortis (HvSRI): 545 nm). In contrast, a tyrosine
22 is conserved among various channelrhodopsins (ChRs), which generally have
23 short absorption wavelengths (e.g., the ChR1 of Chlamydomonas reinhardtii
2« (CrChR1): 453 nm; ChR1 of Dunaliella salina (DChR1): 475 nm; ChR2 of
w5 Proteomonas sulcata (PsChR2): 444 nm). The results of ML analysis suggest
286 the position of BR Glul61 is important for the colour tuning of these rhodopsins
27 in nature. The position of BR Alal26 exhibited a large coefficient value for
s glutamic acid (10.5). Actually, Gloeobacter rhodopsin (GR), the outward H™
250 pump rhodopsin of cyanobacterium, Gloeobacter violaceus PCC 7421, has a
20 glutamic acid at this position (GR Glul66), and the mutation of this residue
21 exhibited a blue-shift of 1 to 22 nm (Supplementary Table 1). Thus, GR Glul66
22 works as an active residue for the colour tuning in GR.

203 These results imply the usefulness of ML analysis in identifying active residues
2 located far from retinal, which are generally of less concern in experimental re-

25 search on the colour tuning mechanism from a structural point of view. The

11


https://doi.org/10.1101/226118

bioRxiv preprint doi: https://doi.org/10.1101/226118; this version posted November 29, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

26 effects on the absorption wavelength by the mutation of these residues have not
27 yet been reported. However, we expect that they will be experimentally verified

208 in the near future.

20 Toward Experimental Design The fitted linear model parameters f; ;,
w0 4 =1,....,M,57 = 1,...,N can be also used as a guide for new functional
sn  protein design. For example, suppose that a researcher wants to construct a
sz rhodopsin mutant, the absorption wavelength of which is as long as possible for
303 opt-genetics application. Note that positive/negative coefficient parameter val-
s ues indicate that the amino-acid species at the residue have a red-shifting/blue-
ws  shifting effect, respectively, on the light-absorption properties of rhodopsin pro-
25 teins. Consider a residue j at which there exists ¢; and 45 such that §;, ; < B, ;.
sor  If there exists a rhodopsin protein having the i;-th amino-acid species at the
w8 j-th residue, by replacing this species with the io-th amino-acid species, the new
39 protein is expected to have a longer wavelength than the original protein. This
s means that, the basic experimental design strategy for the above-mentioned re-
an  searcher would be to replace the amino-acid species having a smaller coefficient
sz parameter with that having a larger coefficient parameter. Although many other
a1z factors, such as protein stability and functionality, must be taken into account in
s new functional protein design, the above discussion suggests that the ML-based
ais  data~-driven approach enables systematic design of experiments without relying

a6 on the intuition or heuristics of researchers.

+ 4 Methods

sis Construction of a dataset of amino-acid sequences and A,.xs For ML
a0 analysis, we constructed a database (Supplementary Table 1) composed of the
20 amino-acid sequences and the previously and newly reported A axs of microbial
;21 rhodopsins and their variants. Previously reported Ap.xs were collected from
2 102 reports (listed in Supplementary Information 2). Newly reported Apaxs

s23  were experimentally determined in our group by the hydroxylamine bleaching

12
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26 or purified protein by

;24 method for E. coli membrane expressing rhodopsins
»s  Ni- or Co-NTA chromatography!”, as described previously. The method used

26 to determine each rhodopsin is also listed in Supplementary Table 1.

sz Details of the ML method with group-wise sparsity regularization
2s  Our data contains a larger number of variables (4,200 binary variables) than
20 the number of instances (677 rhodopsin proteins). In this case, classical least-
a0 squares methods may cause over-fitting of the training data, which results in

12,13 i3 a stan-

sn poor prediction accuracy for the target data. Sparse modeling
s dard approach to this problem setup so that only a small subset of coefficient
;33 parameters is automatically selected. In particular, we use a group-wise sparsity
2 method ™ to analyze the residue-wise effect on the absorption wavelength. Let

s x;; € {0,1} be a binary variable that indicates the existence of the i-th amino-

35 acid species in the j-th residue, where ¢ = 1,...,M and j = 1,..., N. Here,

s eachi=1,..., M of z; ; corresponds to one of M = 20 amino-acid species.
338 We consider predicting the absorption wavelength based on a linear model:
M N
f@)=Bo+ > Y Bijwiy
i=1j=1
10 where g and 3;; fori =1,...,M and j = 1,..., N are parameters. Suppose

a0 that we have K pairs of an amino-acid sequence and its absorption wavelength
w {(x®), )\gfgx)}fzp where (®) € RM¥ is the binary representation of the amino-
s acid sequence aligned as a vector, and )\gfgx € R is the absorption wavelength of
us  the k-th rhodopsin protein. The parameters are fitted by solving the following

s penalized least-squares problem:

K

M ON 2 N | M
min B —Bo — ZZ@;CEE? +WZ Zﬁij’
j=1 \ i=1

BoB 1 i=1j=1

us  where 7 > 0 is a tuning parameter. This formulation is called group LASSO ',
us in which the first term is the sum of the squared prediction errors, and the
sar second term is the group-wise penalty for the parameters. For each residue

s j=1,...,N, we define the M = 20 coefficient parameters (31 ;,...,08nm,;) as a

13
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s group. If the training set indicates that the choice of the amino-acid species at
0 the j-th residue does not affect the colour tuning property, then the group-wise
31 sparsity penalty forces all of the M = 20 parameters (51 5, ..., Bum,;) to be ex-
32 actly zero. We can easily identify a set of important residues for determining the
13 absorption wavelength by this effect, called group-wise sparsity, because usually
¢ only a small subset of the residues have non-zero coefficient parameters. In
35 our experiment, the parameter v was objectively chosen by the cross-validation

36 procedure within the training set.

7 Code availability Our program code of the group LASSO for wavelength

s prediction is available at http://...!

0 Data availability The database of the amino-acid sequences and their wave-

w0 lengths is provided in Supplementary Table 1.

IThe site will be public after acceptance. The code is attached to our submission.
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Figure 1: The chemical structure of all-trans retinal (upper) and phy-

logenetic tree of microbial rhodopsins (lower). The bootstrap values

> 80% are shown for the corresponding branches.

The photographs of the

DMSO solution of all-trans retinal and detergent solubilized rhodopsins were

aligned to show representative colours. The abbreviations of rhodopsin proteins

are listed in Supplementary Information 1. In the present paper, we construct

a machine-learning-based (ML-based) statistical model that describes the rela-

tionship between amino-acid sequences and absorption wavelengths of microbial

rhodopsins based on past experimental data.
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(e.g., KR2 and their variants)
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ML-based prediction model |
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A 123 ... e.g., wavelength prediction
[} Sequence Predicted
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= —H: MTQEL.. o
Active residues
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Figure 2: An overview of the machine-learning-based (ML-based) data-
driven approach introduced in the present paper for functional pro-
tein studies. Using past experimental data, a training protein set containing
pairs of amino-acid sequence and molecular properties is first constructed. Then,
an ML method is applied to the training set, and an ML-based statistical model
is constructed. The obtained ML model can be used in understanding the re-
lationship between amino-acid sequences and molecular properties, such as the
colour tuning rules in the case of microbial rhodopsins. The ML model can also
be used to predict the molecular properties of new uninvestigated proteins. We
refer to the set of new proteins as the target protein set. In the present paper, for
the purpose of demonstration, we regard KR2 wildtype and its 118 variants as
target proteins and other 677 rhodopsin proteins in the database as the training

proteins.
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Protein Amino-acid Seguence A/ N
(transmembrane region, N = 210)
BR TGRPE“RYADWLFTTPLLLLDL=DVSAK=1FG®G 560
AR3 LGLGD~RYADWLFTTPLLLLDL=DVTAK:=AIL 552
NpHR PLLAS-RYLTWALSTPMILLAL=DIVAK=TSN 577
Rhodopsins othg;;h;rrgéﬁz Source
KR2 wildtype KR2 FSEIA RYLNWLIDVPMLLFAQI DV S sK TLS 524
KR2D116N|[F s E 1 A..RYLNWL I NVPMLLFQI DVSsSK.TLS 565
KR2 mutants - - Target
118 proteins

Figure 3: Structure of the database used in the present study. The
database is composed of the sequences and Apaxs of 519 previously reported
proteins and 277 newly reported proteins. We used 677 rhodopsin proteins
other than KR2 and their variants as the training proteins (red rectangle) and

119 proteins in KR2 group as the target proteins (blue rectangle), respectively.
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Figure 4: (See next page for the caption)
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Figure 4: A schematic description of the ML method introduced in
the present paper for functional protein studies. (a) Binary sequence
representation of an amino-acid sequence. Let M = 20 be the number of amino-
acid species, and let N be the number of residues considered in the present study.
Then, the amino-acid sequence of a protein is represented by M x N binary
variables, each of which represents the amino-acid species at each residue. (b) By
writing the M N binary variables as z; ;,i =1,...,M,j=1,..., N, we consider
an M N-dimensional linear model. The linear model has an intercept parameter
Bo and MN coefficient parameters ; j,i = 1,...,M,j =1,...,N. (c) When
the linear model is fitted, a group-wise sparsity constraint is introduced. Then,
in many residues, all of the corresponding M coefficients would be fitted to
zero, and only a small number of residues have nonzero coefficient parameters.
The latter residues are called active residues. The choice of amino-acid species
in these active residues is expected to play an important role in determining

molecular properties such as absorption wavelength.
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Helix ID C G D C C G D C E D E C D G F E C G B E
Residue no.of BR 89 215 122 93 85 212 118 86 161 126 141 95 115 208 185 145 90 201 56 136
Residue no. of Kiz 116 254 153 120 112 251 149 113 193 157 174 122 146 247 218 178 117 240 74 169

B 20
20
10

-10
-20

<E<HNTBOVZZ- X—IOTMOO!

Figure 5: Coefficient parameters of the fitted statistical model. Coef-
ficients for the top 20 active residues, where the activeness of each residue is
defined as s; := 1/Z£1 zj,j =1,...,N. Here, red and blue indicate that the
corresponding parameters are positive and negative, respectively, whereas grey
indicates that the amino-acid species did not exist in the training data. The
figure can be interpreted such that, if the value of a coefficient parameter j3; ;
is positive/negative (i.e., red/blue), then the existence of the i-th amino-acid

species at the j-th residue has a red-shifting/blue-shifting effect.
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Figure 6: (See next page for the caption)
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Figure 6: Absorption wavelength prediction results for KR2 wildtype
and its 118 variants. (a)-(d) Absorption spectra of KR2 mutants ((a) KR2
NTQ/F72G, (b) D116N, (c) N112E, and (d) DTD/D102N) with their absorp-
tion maxima as predicted by ML analysis (green lines) and experimentally deter-
mined (blue lines). The spectrum of KR2 wildtype is indicated by the solid grey
line. (e) The horizontal axis represents the experimentally observed absorption
wavelengths, whereas the vertical axis represents the absorption wavelengths
predicted by the ML model. The red points indicate the KR2 group rhodopsin
proteins in the target set, whereas the black points indicate other rhodopsin
proteins in the training set. (f) Histogram of the prediction errors for KR2

group proteins in the target set.
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(@)

HelixD A A B B B B C C C C D F F F G G G G
Residue numberof BR 8 13 43 52 54 60 82 8 89 96 122 174 177 185 204 214 222 224 Wavelength (nm)
Residue numberof KR2 25 30 61 70 72 78 109 112 116 123 153 207 210 218 243 253 261 263 Observed Predicted
KR2 | Y |H FIQ | R D/ Q|G LI|Y|R LG 528 531.68
KR2 D116A Y| H FIQ|R AlQ |G LI{YIR LIG 578 558.92
KR2 D116N Y| H FIQ|R NJIQ |G LI{YIR LG 565 556.49
KR2 NTQ/D102N Y| H FIQ R T]Q |G LI{YIR LG 557 542.65
KR2 NTQ Y| H FIQ|R TJ]Q |G [ LIYIR LG 556 542.65
KR2 Y218F Y| H S|F|Q|R DlQ|G| I LIFJR|S|L|G 549 528.12
KR2R109Q | Y | H S|FIQJQJN/DIQ|G|I|LJY|R|S|L|G 547 531.68
KR2NTQ/F72G | Y [H|N|SJGJQ[R|[NJTJQ[G|I|L|Y|R|S|L|G 543 546.44
KR2 NTQ/F72G/D102N Y| H SIGIQ R T1Q|G LIYIR LIG 541 546.44
KR2 NTQ/F72G/D102N/Q78E Y| H S GIEIJR T]1Q|G LIY[R L{G 541 546.12
KR2 R243A Y| H S FIQ]R D|IQ|G LIY]LA L{G 540 531.68
KR2R109A | Y | H S|F[Q]A D|Q]|G LIY]R L]G 538  531.68
KR2 G263Y Y|H S|F|Q|R DlQ|G]|I LIYI/R|S|L 537 531.68
KR2 N61A Y/ HJAIS|F|Q|R|N|D|Q|G]| I LIY/IRIS|LIG 537 531.68
KR2N61PL210AG263W | Y |H|{PJS|F|[Q|R|N|D[Q|G|IJAJY|R|S|LJW 537 531.73
KR2G263T | Y |H[ NS FIQ|R D|Q|G LI{IY/ R|S|LJT 535 531.68
KR2 N61L G263F Y HLL]JS FIQ|R DIQIG LIYIR[S|L]LF 535 531.68
KR2N61T | Y [H] T ]S FIQ|R DIQIG LIY/R[S|LIG 535 531.68
KR2 G263A Y | H S FIQ|R D|Q|G L{Y|R L1A 534 531.68
KR2 N61P L261A G263W Y|H]P]S FIQ|R DlQIG| I LIY|R AW 534 528.49
KR2 N61P Q123A G263W Y HJPIS|F|Q|R|N|DJAJG | I L|Y|R LIW 534 535.12
KR2 N61P Q123N G263W Y/ HIPIS|F|Q|R|N|DINJG]| I LIY[R|S|LJW 534 534.34
KR2N61S | Y |H] S FIQ R D[QG LIY RIS|L|G 534 531.68
KR2Y25S | S| H FIQ|R D|Q|G LIY RIS|L|G 534 531.68 40
KR2 H30A | Y LA FIQ|R DlQ G LIVIR[S[L|G] 53 53168 [
KR2N61P1207AG263W [ Y [H[PJS[F[Q[R D[QJG LIVYIR[S[L[W 533  531.68 20
0
(b) -20
Helix ID A A B B B B C C C C D F F F G G G G
Residue number of BR 8 13 43 52 54 60 82 8 89 96 122 174 177 185 204 214 222 224 Wavelength (nm) 40
Residue numberof KR2 25 30 61 70 72 78 109 112 116 123 153 207 210 218 243 253 261 263 Observed Predicted
KR2 | Y | H S|IFIQ|RINID|Q|G|I|L|JY|R|S|L]|G 528  531.68
KR2 N112D Y|H S|F|Q|R DjQ|G || LIY/R|S|L]G 519 503.77
KR2N61PG263F | Y | H | P FIQ[R[NID|Q|G|[I|L|Y|R[S|LLF 518 531.68
KR2 N112Y Y|H FIQIRJYID|Q|G LIY|R LIG 518 523.31
KR2 N112F Y|H FIQIRLF]ID|Q|G LIYIR LIG 518 523.31
KR2 S70T Y|H FIQIRINID|Q|G LIYIR LIG 517 534.37
KR2 N112Q Y|H S|FIQ[RlIQID|Q|G LIYIR LIG 517 526.38
KR2 N112| Y| H SIFIQ|RLI D|Q |G| LIY|R|S LG 517 523.31
KR2 N112C Y|H S|F|Q|RJC]ID|Q |G| I LIY/R|S|L|G 517 523.31
KR2E160A | Y | H SIF|Q|R DIQ|G|I|JL|Y|R|S|L|G 517 531.68
KR2N112S/S70N | Y | H NIFIQ|RIS]D|Q|G LIY R L |G 516 527.09
KR2 S70A/N112A Y|H AJFIQ[RJAJD Q|G LIYIR LG 515 529.80
KR2 G263S Y|H SIF|IQ|R DIQ|G LIYIR L LS 515 531.68
KR2 S70A Y|H AJFIQ|R D|Q|G LIY|RILS L{G 514 534.14
KR2 S253A Y|H S|F|Q|R D|Q|G LIYIRIAJL |G 514 531.68
KR2 N112S Y|H S|F|Q|RIS]ID|Q |G| I LIY/RIS|L|G 512 524.89
KR2 N61P Y|/H{PIS|F|Q|R D|Q|G || LIYIR|S|L]|G 511 531.68
KR2N112E | Y | H FIQ|RJEJDIQIG[I|L|Y|R[S|L|G 508 515.34
KR2 DTE Y|H FIQ|R EJG LIY/R[S|LI|G 504 515.68
KR2DTD | Y | H FIQIR DJ]G LIYRIS|L|G 502 519.92
KR2 DTE/D102N Y|H FIQ|R E]G LIY/R[S|L|G 501 515.68
KR2 DTD/D102N Y|H FIQ|R D ]G LIY/R[S|L|G 500 519.92
KR2 G153F Y|H S|FIQ|R|[N[D|QJF | LIY/R|S|L|G 475 508.75
KR2 G153L Y|H S|FIQ|R|N|D|Q | LIYIR|S|L|G 474 499.15
KR2G1531 | Y | H S|FI|Q|R|N|D|Q]I I TLIY[R|S|L|G 472 508.75
KR2G153v | Y [H|N|S|F[Q|JR|N|D|Q IJLIY[R|S|L]|G 465 495.85

Figure 7: Lists of sequences for the KR2 wildtype and the variants with
their observed and predicted absorption wavelengths. (a) KR2 and the
25 variants that have the longest observed wavelengths, and (b) KR2 and the 25
variants that have the shortest observed wavelengths. The residues shown here
are replaced at least once among the 50 variants. Boxes with thick black lines
indicate positions that have different amino-acid species from the KR2 wild-

type. For these boxes, the colour indicates the wavelength change produced by

the replacement of the j-th position, estimated by Zfil Bi (IE\J’W) — xfj{-m)),

where :U(-KRQ) and x(v-ar)

i ij  are the binary representation the KR2 wildtype and a

variant, respectively.
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Figure 8: Top 10 active residues identified by the fitted statistical
model. The positions of the active residues showing larger coefficient parameter

values (green spheres) are mapped on the X-ray crystallographic structure of

BR (blue, PDB code: 1BM127) with their numbers in the case of BR.
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