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Abstract  39 

Age-related changes in DNA methylation have been observed in many cross-sectional studies, 40 

but longitudinal evidence is still very limited. Here, we aimed to characterize longitudinal age-41 

related methylation patterns (Illumina HumanMethylation450 array) using 1011 blood samples 42 

collected from 385 old Swedish twins (mean age of 69 at baseline) up to five times over 20 years. 43 

We identified 1316 age-associated methylation sites (p<1.3×10-7) using a longitudinal 44 

epigenome-wide association study design. We measured how estimated cellular compositions 45 

changed with age and how much they confounded the age effect. We validated the results in two 46 

independent longitudinal cohorts, where 118 CpGs were replicated in PIVUS (p<3.9×10-5) and 47 

594 were replicated in LBC (p<5.1×10-5). Functional annotation of age-associated CpGs showed 48 

enrichment in CCCTC-binding factor (CTCF) and other unannotated transcription factor binding 49 

sites. We further investigated genetic influences on methylation (methylation quantitative trait 50 

loci) and found no interaction between age and genetic effects in the 1316 age-associated CpGs. 51 

Moreover, in the same CpGs, methylation differences within twin pairs increased over time, 52 

where monozygotic twins had smaller intra-pair differences than dizygotic twins. We show that 53 

age-related methylation changes persist in a longitudinal perspective, and are fairly stable 54 

across cohorts. Moreover, the changes are under genetic influence, although this effect is 55 

independent of age. In addition, inter-individual methylation variations increase over time, 56 

especially in age-associated CpGs, indicating the increase of environmental contributions on 57 

DNA methylation with age. 58 

Keywords: DNA methylation, ageing, longitudinal study, meQTL, twin-pair analysis 59 

 60 
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Introduction 63 

DNA methylation is known as a key factor in human aging (1). In the human aging process, 64 

alterations of DNA methylation indicate a loss of epigenetic control and relate to pathological 65 

phenotypes (2, 3). Today, epigenome-wide association studies (EWAS) have established 66 

general knowledge on age-related methylation patterns in humans (4–8). Overall, approximately 67 

30% of cytosine-phosphate-guanine (CpG) sites measured by Illumina 450k array are 68 

associated with age (7, 9). and they can be divided into hypo- or hypermethylations (10). 69 

Moreover, individual variation of DNA methylation partly depends on genetic variants and 70 

methylation is believed to be a mediator of genetic effects (11). Several studies on methylation 71 

quantitative trait loci (meQTL) have identified genetic associations with methylation (2, 12). In 72 

addition, it has been suggested that age-related methylation alterations depend on genetic 73 

effects (9), and another recent study on mother-children pairs reported that meQTL associations 74 

were stable over time (12). Twin studies of the epigenome have been used to estimate 75 

methylation heritability (9, 13), and higher methylation correlation has been observed in 76 

monozygotic (MZ) than dizygotic (DZ) twin pairs (5, 14). However, the change of intra-twin-pair 77 

methylation difference over time has not been studied. 78 

To date, most EWAS publications on age used cross-sectional data, while longitudinal studies 79 

on intra-individual change in methylation over time are still sparse (15).  Hence, the aim of this 80 

study was to investigate longitudinal age-related alterations in DNA methylation, using whole 81 

blood samples from old Swedish twins (mean age of 69 at baseline) collected up to five times 82 

across 20 years. Age-associated CpGs were then validated in two independent longitudinal 83 

cohorts. Age-related changes of cellular compositions were estimated and their effects on age-84 

related change of methylation were measured. In addition, we analyzed meQTL associations 85 

and studied genetic effects on age-related methylation patterns over time, with specific 86 

emphasis on twin-pair differences.  87 
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Results 88 

Longitudinal EWAS on age 89 

Using the Illumina HumanMethylation450k array, DNA methylation data of 390,894 autosomal 90 

CpGs were obtained from 385 twins (73 MZ, 96 DZ complete twin pairs) enrolled in the Swedish 91 

Adoption/Twin Study of Aging (SATSA) (16) (Table 1), which is part of the Swedish Twin 92 

Registry (17). The longitudinal EWAS analysis revealed systematic changes of methylation with 93 

age. In total 1316 CpGs were identified as significantly associated with age using a Bonferroni-94 

corrected threshold (p<1.3×10-7) (Figure S1, File S1), where 1026 CpGs were hypomethylated. 95 

The top CpG was found within the gene ELOVL2 (Figure S2). Sex was adjusted for as a 96 

covariate in the model, and 6509 CpGs were significantly associated with sex (p<1.3×10-7), of 97 

which 16 were also found among the 1316 age-related CpGs. Overall, sex-associated CpGs 98 

were not enriched in the age-associated CpGs. A sensitivity analysis showed that twin zygosity 99 

had little impact on results. 100 

Validation of age-associated CpGs was done in two independent longitudinal cohorts; the 101 

Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) (18) and the Lothian 102 

Birth Cohort (LBC) (19). The PIVUS cohort measured methylation data from 196 individuals at 103 

age 70 and 80, and the LBC cohort, including two sub-cohorts of 906 and 436 individuals at 104 

baseline, measured blood samples at three time points, with mean ages of 70 and 79 at baseline 105 

(Table S1). Among the 1316 age-associated CpGs identified in SATSA, 1271 and 973 CpGs 106 

were available in PIVUS and LBC respectively. In PIVUS, 118 of the 1271 CpGs were consistent 107 

in effect directions and significant at a Bonferroni-correction threshold for validation p<3.9×10-5. 108 

In LBC, 594 out of 973 CpGs were consistent in effect directions and significant with p<5.1×10-5. 109 

The correlation of effect sizes between PIVUS and SATSA was 0.57, and 0.87 between LBC 110 

and SATSA (Figure 1).   111 
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Cellular compositions change with age 112 

Cellular compositions were estimated from methylation data using the method by Houseman (20) 113 

and the longitudinal change of cellular compositions with age was measured using a mixed 114 

effect model. The total peripheral blood mononuclear cell (PBMC) proportions increased with 115 

age (p=4.6×10-8) while granulocytes proportions decreased with age (p=1.1×10-4). Within 116 

PBMCs, CD14+ monocytes (p=9.4×10-16) and natural killer cells (p=6.0×10-4) significantly 117 

increased with age, while CD19+ B cells decreased with age (p=9.2×10-4). Within granulocytes, 118 

eosinophils increased with age (p=2.6×10-4) while neutrophils did not change with age (Figure 2). 119 

However, in general, age only explains a small proportion of the variance of cellular 120 

compositions in our cohort (Figure 2, File S1). 121 

Furthermore, the adjustment of cellular compositions in the 1316 age-associated CpGs only 122 

slightly increases the effect sizes of age, especially for hypermethylated CpGs. In total, 246 123 

CpGs were significantly (p<3.8×10-5) associated with at least one cell type and 40 of them were 124 

associated with all estimated cell types. However, effect sizes of most CpGs did not change 125 

much (Figure S3, File S1).  126 

Regulatory and functional annotations of age-associated CpGs 127 

The CpG island locations of the identified age-associated CpGs were obtained from the Illumina 128 

manifest file. Age-associated CpGs were less frequently found in CpG islands and open sea 129 

regions, and more frequently in CpG shores among the probes designed in the 450k chip. The 130 

majority (1026 of 1316) of the CpGs showed decreased methylation with age, and among the 131 

hypermethylated CpGs, the majority (85.2%) were located in CpG islands (Error! Reference 132 

source not found.A).  133 

To explore biological functions, we annotated the age-associated CpGs using regulatory 134 

features from the Ensembl database, showing CpGs in relation with regulatory protein binding 135 
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sites (21). Compared to regulatory features of the 450k probe background, age-associated 136 

CpGs were found enriched in CTCF binding sites, promoter flanking regions and other 137 

transcription factor binding sites (Figure 3B). In particular, a much higher proportion of 138 

hypermethylated CpGs were found in transcription factor binding sites than other regulatory 139 

features. 140 

We further mapped the 1316 age-associated CpGs to 878 genes according to the Illumina 141 

manifest file. Consequently, genes were annotated using the Database for Annotation, 142 

Visualization and Integrated Discovery (DAVID) online tool (22, 23), and 85.3% of the genes 143 

were categorized according to the biological process term of gene ontology (GO). Seven GO 144 

terms were found significantly enriched (false discovery rate [FDR] < 0.05), and the top function 145 

was homophilic cell adhesion via plasma membrane adhesion molecules (Table 2). Moreover, 146 

many of the genes were found to be enriched in functions related to nervous system 147 

development and neurogenesis.  148 

Identification of cis-meQTLs  149 

To investigate genetic influences on methylation, cis-meQTLs (distance between markers <1 150 

million base pairs) from 1.9 billion possible associations between 6.5 million single nucleotide 151 

polymorphisms (SNPs) and 390,894 CpGs across the genome were analyzed. Over 1.4 million 152 

associations were statistically significant using a Bonferroni-corrected threshold (p<2.5×10-11). 153 

As expected, we observed more associations and lower p-values when SNPs were closer to 154 

their associated CpGs (Figure S4). In total, 14,714 CpGs were significantly associated with at 155 

least one SNP.  156 

Overall, our results were consistent with associations in the mQTL database (12). About 44% of 157 

SNP-CpG associations identified in SATSA were also significant (p<10-14) in the middle-age 158 

group in the mQTL database. Also, 8950 out of the 14,714 (61%) SNP-associated CpGs 159 
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identified in SATSA were also significantly (p<10-14) associated with SNPs in the mQTL 160 

database. 161 

Genetic effects on age-associated CpGs 162 

To investigate the relationship between age and genetic effects on methylation, we specifically 163 

studied CpGs that were significantly associated with both age and genetic variants. Among the 164 

1316 age-associated CpGs discovered in the longitudinal analysis, 123 (9.3%) were also 165 

associated with at least one SNP. The proportion of genetic-associated CpGs among the age-166 

associated CpGs (9.3%) was higher than the proportion in all CpGs (3.7%; p=6.7×10-26). For 167 

each of those CpGs, a longitudinal mixed effect model was performed including the associated 168 

SNP with the lowest p-value as a covariate. The age effects were still significant after adjusting 169 

for top associated SNPs (File S2). Moreover, interactions between age and SNPs were tested in 170 

the models as covariates, and no significant interaction was observed. 171 

Methylation differences within twin pairs 172 

We further calculated standardized Euclidean distances from genome-wide methylation data to 173 

measure intra-pair differences between MZ and DZ twins over time (Table S3). Taking all CpGs 174 

into account, distances within twin pairs increased significantly with age (β=0.021, p=9.4×10-4) 175 

(Figure 4A), with steeper slopes when using the 1316 age-associated CpGs only (β=0.029, 176 

p=2.9×10-5; Figure 4B). The slope of the age effect on methylation differences in SNP-177 

associated CpGs was smaller than that of all CpGs (β=0.015, p=3.32×10-5; Figure 4C). 178 

Furthermore, MZ and DZ twins showed significant intra-twin-pair Euclidean distances based on 179 

all CpGs, where MZ twins had significantly smaller distances compared to DZ twins (β=0.499, 180 

p=1.0×10-4; Figure 4A). In particular, the difference was much clearer for the 14714 SNP-181 

associated CpGs (β=1.689, p=1.46×10-65; Figure 4C).  The difference between zygosities for the 182 
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1316 age-associated CpGs was significant and the effect size is larger than that of all CpGs 183 

(β=0.697, p=6.75×10-8; Figure 4B). 184 

Moreover, for each CpG, we performed an intra-twin-pair analysis to measure how much each 185 

one of them contributed to the total increasing methylation distances within twin pairs. Although 186 

no CpG passed the Bonferroni threshold (p<1e-7), almost all CpGs with p<0.05 have positive 187 

estimates of age, indicating that the differences in global methylation patterns between twins 188 

increased over time (Figure S5). On average, the age-associated CpGs have a higher effect size 189 

compared to all CpGs (15% higher, p=4.18×10-05 from a t-test), explaining the steeper slope of 190 

age-associated CpG in Figure 4. However, the CpGs that contributed to the growing intra-twin-191 

pair methylation distances (p<0.05), have a much larger mean effect size than age-associated 192 

CpGs (Figure S5).  193 

Discussion 194 

In this study, we characterized longitudinal age-related DNA methylation patterns in old twins, 195 

and identified 1316 CpGs associated with age. The strongest age-associated CpG was found in 196 

the promoter of the ELOVL2 gene. Also, we described the longitudinal change of estimated 197 

cellular compositions with age and how cellular compositions affect age-associated methylation 198 

patterns. Moreover, genetic effects were observed for some age-associated CpGs, but they 199 

were independent of age effects. Furthermore, analyses of methylation differences within twin 200 

pairs revealed increasing differences over time, where MZ twins showed smaller dissimilarities 201 

than DZ twins in age-associated CpGs. 202 

The age-related CpGs from SATSA were successfully validated in the longitudinal cohort LBC, 203 

but not so consistent in PIVUS. The LBC cohort validated 594 of the 1316 age-related CpGs at 204 

p<5.1×10-5, with a large sample size and three longitudinal waves. The high correlation of effect 205 
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sizes of age (r=0.87) between SATSA and LBC indicated that LBC verified the effect sizes 206 

estimated by SATSA as well. The PIVUS cohort validated 118 of the 1316 CpGs at p<3.9×10-5 207 

and had an intermediate correlation (r=0.57) of age effect sizes with SATSA. Specifically, PIVUS 208 

failed to validate the convincing top hit cg16867657 from SATSA. One explanation could be that 209 

the PIVUS cohort only collected data from participants at two ages, 70 and 80 years. Thus, the 210 

PIVUS cohort was quite different from SATSA in study design, where SATSA had up to five 211 

longitudinal waves and a much wider age range (49-99 year). Moreover, the age-related CpGs 212 

identified in this study were generally consistent with several published cross-sectional studies 213 

using 450k data (Table S). Johansson (7) and Dongen (9) reported around 30% of all CpGs to 214 

be age-related, which overlapped with a majority (91% and 66% respectively) of the 1316 age-215 

associated CpGs we identified. Florath (8) only reported 162 significant CpGs and half were also 216 

found in SATSA. Our results did not overlap much with the longitudinal study by Tan (15), 217 

however, the set-up of the study with data from 43 twin pairs at two time points (10 years apart) 218 

was again different from ours. In general, when conducting a longitudinal EWAS study, many 219 

more covariates come into place and technical variation from different waves could bias the 220 

estimates. The SATSA methylation samples, however, were completely randomized on 221 

methylation arrays across waves. Overall, much of published cross-sectional results were 222 

relevant also in our longitudinal study, indicating that age-associated methylation alterations are 223 

persistent over time. 224 

Cellular compositions estimated from methylation data are useful to show how white blood cells 225 

change with age. In our longitudinal cohort, T cell compositions were not observed to decrease 226 

with age, while the changes of other cell types were in accordance to a previous study (24). The 227 

discrepancy in T cells between studies may highlight differences regularly observed between 228 

cross-sectional and longitudinal associations where the former sometimes overestimate an 229 

association with age. However, it may also be explained by technical artifacts because many 230 
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samples had cellular estimates very close to zero, making it difficult to perform good regression 231 

analyses. In addition, in spite of the observed cellular composition changes with age, they 232 

contributed little to the 1316 age-associated CpGs, where estimates of age were similar with and 233 

without adjusting for cellular compositions. 234 

Regulatory annotation of age-associated CpGs indicated enrichment in predicted CTCF binding 235 

sites, promoter flanking regions and unannotated TF binding sites. DNA methylation has been 236 

reported to regulate CTCF binding to DNA, which in turn regulates gene expression through long 237 

range interactions with enhancers and promoters (25). Thus, we suggest that this methylation of 238 

CTCF is important in the aging process. Hypermethylated CpGs were not enriched in promoter 239 

regions, where age-related hypermethylation was believed to occur. Instead, hypermethylated 240 

CpGs were commonly associated with TF binding sites than in other regulatory regions, 241 

indicating the importance of age-related hypermethylation which occurs in TF binding sites 242 

unannotated to known regulatory features. The mechanism of age-related methylation in 243 

enhancers and open chromatin regions were not clear, because these regions were poorly 244 

covered by the 450k array. 245 

The meQTL analysis identified a large number of CpG-SNP associations and showed that 246 

genetic variants have strong effects on DNA methylation. The higher proportion of genetic-247 

associated CpGs found among the age-associated CpGs (9.2%) than in all CpGs (3.7%) 248 

indicates enriched genetic impact on age-related methylation. Our results suggested no 249 

interaction between genetic and age effects on methylation, which supports the conclusion by 250 

Gaunt (12) that genetic effects on methylation are stable over time. Similarly, heritability 251 

analyses by Tan (15) showed that intra-individual longitudinal change of age-associated CpGs 252 

was mostly (90%) explained by individual specific environmental factors. Thus, genetic variants 253 

can affect methylation levels of age-associated CpGs, but not the speed of methylation changes 254 
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over time. A previous study on methylation heritability (9) suggested gene-age interactions on 255 

methylation, but they were not detected in our study. 256 

Furthermore, twin-pair methylation differences using information from all CpGs indicated a global 257 

increase in inter-individual methylation variations over time. This increase is probably due to 258 

both environmental and stochastic factors. Especially, the increase in methylation differences 259 

was stronger (steeper slope) in the age-associated CpGs. Thus, age-associated CpGs not only 260 

change with age, but also have higher age-induced variations than average. The result could 261 

imply that age-related methylation is more vulnerable to environmental and stochastic effects. 262 

Also, comparing MZ and DZ twins showed that genetic effects were stronger in the age-263 

associated CpGs than all CpGs. It corresponded with meQTL results that a higher proportion of 264 

SNP-associated CpGs were found in age-associated CpGs.  265 

The strength of this study was the use of longitudinal methylation data with repeated measures 266 

sampled up to five times over 20 years in the same individuals. Moreover, we successfully 267 

validated our results in two independent longitudinal studies with high correlations of effect sizes. 268 

Although blood samples were collected, stored, and DNA extracted at different times, 269 

methylation data were measured and processed together with complete randomization. 270 

Therefore, we largely reduced the influences of uncorrected batch effects in the analysis. The 271 

twin design further enabled us to investigate methylation differences within twin pairs to 272 

specifically study environmental influences on methylation.   273 

Among the limitations for this study was that it was performed on a relatively small number of 274 

subjects (N=385) and some people only participated in one or two measures. Moreover, the 275 

results are only applicable in the old ages and for European ancestry populations. 276 

Further, methylation data were obtained from 450k arrays, which have poor coverage of 277 

enhancer regions, an important feature of gene regulation. Also, the quality of data from 278 
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methylation arrays is not always perfect due to potential unspecific hybridization and noises in 279 

signal detection. Stronger evidence could be provided by data from bisulfite pyrosequencing 280 

methods as validation.  281 

DNA methylation includes both cell-specific and unspecific patterns. Some evidence show that 282 

age-related hypermethylation are more conserved across different tissues than hypomethylation 283 

(5, 26). However, we only studied blood samples and adjusted methylation data using estimated 284 

cellular compositions (20). Further investigation on cell-type specific and unspecific methylation 285 

alterations in longitudinal studies may reveal methylation patterns in relation to cell types, since 286 

cellular composition changes across age in blood (24).  287 

Materials and Methods 288 

Study aim, design and settings  289 

This study used methylation data of people involved in SATSA (16), which aims to understand 290 

individual differences in aging. The SATSA is part of the Swedish Twin Registry (STR) (17), 291 

which is a population-based national register including twins born 1886-2000. The SATSA 292 

started in 1984, and continuously collected cognitive and health data every third year with up to 293 

ten waves in a total of 861 participants.   294 

Study population 295 

Blood samples were obtained from 402 SATSA participants, including 85 MZ and 116 DZ twin 296 

pairs. We collected in total 1122 samples at five time-points starting from 1992 to 2012. After 297 

quality control on methylation data, we retained 1011 samples from 385 twins. In the five 298 

longitudinal waves, numbers of participants with 1 to 5 measurements were 99, 86, 90, 80, 30 299 

(Table 1). Among them, 200 participants were measured at least three times. Phenotype data 300 
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were collected through comprehensive questionnaires and physical testing at each sampling 301 

wave. Phenotypes used in this study include chronological age, sex, zygosity. 302 

Methylation data 303 

For each sample, 200 ng of DNA were bisulfite converted using the EZ-96 DNA MagPrep 304 

methylation kit (Zymo Research Corp., Orange, CA, USA) according to the manufacturer’s 305 

protocol optimized for Illumina’s Infinium 450K assay. The bisulfite converted DNA samples were 306 

hybridized to the Infinium HumanMethylation450 BeadChips by the University College London 307 

Genomics Core Facility according to Illumina’s Infinium HD protocol (Illumina Inc., San Diego, 308 

CA, USA). Samples were randomly distributed into 13 plates. DNA methylation levels of 485,512 309 

CpGs were measured for each sample. 310 

We processed raw methylation data using the R package RnBeads (27). Quality control (QC) 311 

was performed in two steps removing; 1) samples having low median signal intensities, wrong 312 

predicted sex, or poor correlations (r<0.7) with genetic controls; 2) probes overlapping with a 313 

SNP and non-CpG probes. Additionally, we employed a greedy-cut algorithm that iteratively 314 

filtered out probes and samples. This was done by maximizing false positive rate minus 315 

sensitivity with a detection p-value cutoff of 0.05. In the end, probes on sex chromosomes were 316 

removed. After QC, we retained 1011 samples and 390,894 probes. 317 

Subsequently, we used a background correction method "noob” (28) from the methylumi 318 

package and a normalization method “dasen” (29) from the watermelon package. Next, we 319 

corrected normalized data for cellular compositions, which were estimated by the Houseman 320 

method (20) using a blood cell reference panel (30). In order to detect and remove technical 321 

variance, we used the Sammon mapping method (31) to achieve a lower-dimension projection 322 

preserving the original data structure. The low-dimensional data were then fitted to a linear 323 

regression model to test potential batch effects. The strongest batch effects were identified as 324 
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array slides, and corrected for using the ComBat method from the R package sva (32). Data 325 

(beta-values) were then transformed to M-values for statistical analysis through a logit 326 

transformation.  327 

𝑀 = log2 (
𝐵𝑒𝑡𝑎

1 − 𝐵𝑒𝑡𝑎
)                                                                     (1) 328 

 329 

Genotype data and imputation 330 

We generated genotype data using the Illumina PsychChip (Illumina Inc., San Diego, CA, USA), 331 

which detected 588,454 SNPs for each individual. We applied QC criteria by removing; 1) 332 

samples having >1% missing genotype, estimated inbreeding coefficient >3  standard deviations 333 

from the sample mean, wrong relatedness between individuals and wrong predicted sex; 2) 334 

SNPs not mapped to a chromosome, with over 2% missing calls, deviating from the Hardy-335 

Weinberg equilibrium (p<10-6) and with no observed minor alleles. 336 

After QC, we performed pre-phasing on genotype data using SHAPEIT v2.r837 with default 337 

parameters. Imputation was then performed in chunks of around 5 Mb using IMPUTE2 version 338 

2.3.2 with default parameters (33). The imputation reference was based on the 1000 Genomes 339 

Project phase 1 (34). Next, a QC step was performed on imputed genotype data to filter out low 340 

imputation quality variants (Info<0.6) and low minor allele frequency variants (MAF < 0.05). After 341 

imputation and QC, in total 363 individuals from SATSA had genetic data including 6,528,198 342 

imputed SNPs.  343 

PIVUS and LBC cohorts 344 

The PIVUS (18) study included 390 samples from 196 individuals collected at two specific ages, 345 

70 and 80 years. Half of the participants from PIVUS were women. Methylation data were 346 
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obtained from blood samples using the Illumina 450k array which has been described previously 347 

(35).  348 

The LBC study was composed of two different birth cohorts, LBC1936 and LBC1921 (19), with 349 

3018 samples collected in max of three time points. In the three waves, LBC1936 included 906, 350 

801 and 619 individuals with mean ages of 69.6, 72.5 and 76.3 years; LBC1921 included 436, 351 

174, 82 individuals with mean ages of 79.1, 86.7 and 90.2 years. Proportions of women were 352 

49.4% and 53.7% in LBC1936 and LBC1921 at baseline. Methylation data were obtained from 353 

blood samples using the Illumina 450k array as presented elsewhere (13).  354 

Statistical analyses 355 

We fitted a linear mixed model to describe longitudinal changes of methylation with age. The 356 

model included fixed effects of age and sex, and random intercepts and slopes between twins 357 

nested in twin pairs. In the model formula below, i, j and k denote twins, twin pairs and time 358 

points; γ, β1, β2, u, ω and ε denote fixed intercept, fixed coefficient of age, fixed coefficient of sex, 359 

random intercept, random coefficient of age and random error.  360 

𝑀𝑖,𝑗,𝑘 = 𝛾0 + 𝛽1𝐴𝑔𝑒𝑖,𝑗,𝑘 + 𝛽2𝑆𝑒𝑥𝑖 + 𝑢𝑖,𝑗 +  𝜔𝑖,𝑗𝐴𝑔𝑒𝑖,𝑗,𝑘 +  𝜀𝑖,𝑗,𝑘                             (2) 361 

The sensitivity analysis on twin zygosity adjusted zygosity as a random effect in the mixed model. 362 

We used two longitudinal cohorts, PIVUS and LBC, to validate our results. In PIVUS validation, a 363 

linear regression model using general least squares was performed to estimate methylation 364 

changes over 10 years for each CpG. Confounders included sex, smoking status, cell counts 365 

and batch effects were adjusted for in the model. In LBC validation, a mixed effect model 366 

allowing for random intercepts and slopes of age were performed to measure age-associated 367 

methylation longitudinally. Cell counts was adjusted as a covariate, and sex, sub-cohort, plates, 368 

array, position and hybridization date were adjusted as random effects.  369 
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The cis-meQTL analysis was performed on 363 participants in SATSA with both genotype and 370 

methylation data available. Methylation data from the first observation were used to identify 371 

meQTLs. To reduce the computational complexity, we employed the R package matrixEQTL (36) 372 

to perform a fast rough screening for cis-meQTLs. Genotypes were treated to have additive 373 

effects in the model. The screening method used a linear regression model, including age, sex 374 

and the first four genetic principle components as covariates, to calculate all cis-methylation-375 

genotype associations. We selected associations with p<1×10-8 from the screening results and 376 

further fit to a linear regression model including the same covariates. After that, sandwich 377 

estimators were used to correct standard errors for the effect of having correlated observations 378 

from twins in the sample. 379 

The intra-twin-pair differences of methylation patterns were measured by Euclidean distances. 380 

Methylation distances were calculated within twin pairs at the same time point across the CpGs 381 

used. In total 154 complete twin pairs (69 MZ, 85 DZ pairs, 660 samples) were available at the 382 

same time point. Methylation distances were standardized before regression.  383 

Three sets of methylation distances were calculated using all CpGs, age-associated CpGs and  384 

SNP-associated CpGs respectively. Then, a linear mixed effect model was fitted to measure 385 

how intra-twin-pair methylation differences changed over time. The mixed effect model included 386 

age, sex and twin zygosity as fixed effects and twin pair as the random effect shown below, 387 

where i and j denote twin pairs and time points, γ, β1, β2, β3, u, and ε denote fixed intercept, fixed 388 

coefficient of age, fixed coefficient of sex, fixed coefficient of zygosity, random intercept and 389 

random error. 390 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 = 𝛾0 + 𝛽1𝐴𝑔𝑒𝑖,𝑗 + 𝛽2𝑆𝑒𝑥𝑖 + 𝛽3𝑍𝑦𝑔𝑜𝑠𝑖𝑡𝑦𝑖 + 𝑢𝑖 +  𝜀𝑖,𝑗                      (3)       391 
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The probe-wise methylation distances were calculated from the absolute difference between M-392 

values. The same regression model (Equation 3) was employed to estimate the change of intra-393 

twin-pair distances overtime. 394 

Regulatory annotation and functional analysis 395 

We annotated genome locations and related regulatory features of identified age-associated 396 

CpGs using Ensembl Funcgen database (21). Regulatory features were classified according to 397 

the Ensembl Regulatory Build (37). In addition, we performed functional annotation on enriched 398 

genes using DAVID (22, 23) online tools.  399 
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Figure title and legends 523 

Figure 1. The effect sizes of age on age-associated CpGs in SATSA and two independent 524 

longitudinal cohorts. Effect sizes of age were estimated from a longitudinal epigenome-wide associated 525 

study of age in SATSA, using a mixed effect model. The 1316 Bonferroni significant CpGs (p<1.3×10-7) 526 

were tested for age associations in PIVUS and LBC. A) The Pearson correlation of the effect sizes is 0.57 527 

(p<10-16) between PIVUS and SATSA. The slope of the linear regression line is 0.63. B) The Pearson 528 

correlation is 0.87 (p<10-16) between SATSA and LBC. The slope of linear regression is 0.96. 529 

Figure 2. Longitudinal changes of cellular compositions with age. Estimated cellular compositions 530 

were plotted against age for each cell types. Grey lines indicate multiple observations of individuals. P-531 

values were calculated from a mixed effect model measuring the longitudinal change of cellular 532 

proportions. PBMC, peripheral blood mononuclear cell; NK cell, natrual killer cell. 533 

Figure 1. The distribution of age-associated CpGs in relation to CpG islands and regulatory 534 

features. A) Proportions of age-related hyper- and hypomethylated CpGs in different CpG island regions 535 

compared to proportions on the 450k array. Age-associated CpGs are enriched in CpG shores  536 

(North Shore p=3.7×10-12 and South Shore p=1.8×10-18), and depleted in CpG islands (p=6.6×10-7) and 537 

open sea regions (p=1.1×10-17). Outside of CpG islands, 918 out of 961 CpGs are hypomethylated with 538 

age, and in CpG islands, 247 out of 355 CpGs are hypermethylated with age. B) The proportions of age-539 

related hyper- and hypomethylation, as well as background CpGs, in different regulatory regions. Age-540 

associated CpGs are highly enriched in CTCF binding cites (p=3.9×10-27). Only in TF binding sites, the 541 

proportion of age-related hypermethylated CpGs is higher than hypomethylated CpGs. The enrichment or 542 

depletion is shown by p-values calculated from two-sample proportion tests. CpG, cytosine-phosphatate-543 

guanine; ns, non-significant; CTCF, CCCTC-binding factor; TF, transcription factor.  544 

Figure 2. Regression plots of intra-twin-pair methylation differences over time in SATSA. 545 

Methylation differences within twin pairs at the same time point calculated by Euclidean distances of A) all 546 

CpGs, B) age-associated CpGs, and C) SNP-associated CpGs. Blue lines and points are MZ and red 547 

lines and points are DZ. Methylation differences within twin pairs increase with age, especially in age-548 
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associated CpGs. CpG, cytosine-phosphatate-guanine; MZ, monozygotic; DZ, dizygotic; SNP, single 549 

nucleotide polymorphism. 550 

Tables 551 

Table 1. Characteristics of the longitudinal DNA methylation samples collection in SATSA. 552 

Longitudinal  
wave 

Year of sample 
collection 

Number of 
Participants  

(new recruits)* 

Female 
Proportion 

Age 
mean (SD) 

1 1992-1994 239 59% 68.6 (9.1) 

2 1999-2001 242 (102) 63% 71.2 (10.1) 

3 2002-2004 188 (26) 54% 72.1 (9.1) 

4 2008-2010 186 (15) 61% 76.2 (8.5) 

5 2010-2012 156 (3) 66% 77.9 (8.4) 

* The numbers of newly recruited participants in each wave in parenthesis. 200 participants were available 553 
in at least three waves. SATSA, the Swedish Adoption/Twin Study of Aging; SD, standard deviation. 554 

Table 2. Enriched Gene Ontology terms for genes mapped to the age-associated CpGs.  555 

Gene Ontology term 
Number of 

genes 
p-value FDR  

Homophilic cell adhesion via plasma 

membrane adhesion molecules 
42 5.4×10-22 1.0×10-18 

Nervous system development 147 1.3×10-9 2.4×10-6 

Neurogenesis 100 6.0×10-7 1.1×10-3 

Organ morphogenesis 73 1.2×10-6 2.3×10-3 

Cell development 121 7.2×10-6 1.3×10-2 

Neuron differentiation 83 1.9×10-5 3.4×10-2 

CpG, cytosine-phosphatate-guanine; FDR, false discovery rate 556 

  557 
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 558 

Figure 1. The effect sizes of age on age-associated CpGs in SATSA and two independent 559 

longitudinal cohorts. Effect sizes of age were estimated from a longitudinal epigenome-wide associated 560 

study of age in SATSA, using a mixed effect model. The 1316 Bonferroni significant CpGs (p<1.3×10-7) 561 

were tested for age associations in PIVUS and LBC. A) The Pearson correlation of the effect sizes is 0.57 562 

(p<10-16) between PIVUS and SATSA. The slope of the linear regression line is 0.63. B) The Pearson 563 

correlation is 0.87 (p<10-16) between SATSA and LBC. The slope of linear regression is 0.96. 564 
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 566 

Figure 2. Longitudinal changes of cellular compositions with age. Estimated cellular compositions 567 

were plotted against age for each cell types. Grey lines indicate multiple observations of individuals. P-568 

values were calculated from a mixed effect model measuring the longitudinal change of cellular 569 

proportions. PBMC, peripheral blood mononuclear cell; NK cell, natrual killer cell 570 
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 572 

Figure 3. The distribution of age-associated CpGs in relation to CpG islands and regulatory 573 

features. A) Proportions of age-related hyper- and hypomethylated CpGs in different CpG island regions 574 

compared to proportions on the 450k array. Age-associated CpGs are enriched in CpG shores  575 

(North Shore p=3.7×10-12 and South Shore p=1.8×10-18), and depleted in CpG islands (p=6.6×10-7) and 576 
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open sea regions (p=1.1×10-17). Outside of CpG islands, 918 out of 961 CpGs are hypomethylated with 577 

age, and in CpG islands, 247 out of 355 CpGs are hypermethylated with age. B) The proportions of age-578 

related hyper- and hypomethylation, as well as background CpGs, in different regulatory regions. Age-579 

associated CpGs are highly enriched in CTCF binding cites (p=3.9×10-27). Only in TF binding sites, the 580 

proportion of age-related hypermethylated CpGs is higher than hypomethylated CpGs. The enrichment or 581 

depletion is shown by p-values calculated from two-sample proportion tests. CpG, cytosine-phosphatate-582 

guanine; ns, non-significant; CTCF, CCCTC-binding factor; TF, transcription factor.  583 
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Figure 4. Regression plots of intra-twin-pair methylation differences over time in SATSA. 586 

Methylation differences within twin pairs at the same time point calculated by Euclidean distances of A) all 587 

CpGs, B) age-associated CpGs, and C) SNP-associated CpGs. Blue lines and points are MZ and red 588 

lines and points are DZ. Methylation differences within twin pairs increase with age, especially in age-589 

associated CpGs. CpG, cytosine-phosphatate-guanine; MZ, monozygotic; DZ, dizygotic; SNP, single 590 

nucleotide polymorphism. 591 
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