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Abstract 18 
Lower frequency, feedback, activity in the alpha and beta range is thought to predominantly 19 
originate from infragranular cortical layers, whereas feedforward signals in the gamma range stem 20 
largely from supragranular layers.  Distinct anatomical and spectral channels may therefore play 21 
specialized roles in communication within hierarchical cortical networks; however, empirical 22 
evidence for this organization in humans is limited. We leverage high precision MEG to test this 23 
proposal, directly and non-invasively, in human participants during visually guided actions. Visual 24 
alpha activity mapped onto deep cortical laminae, whereas visual gamma activity predominantly 25 
arose from superficial laminae. This laminar-specificity was echoed in sensorimotor beta and gamma 26 
activity. Visual gamma activity scaled with task demands in a way compatible with feedforward 27 
signaling. For sensorimotor activity, we observed a more complex relationship with feedback and 28 
feedforward processes. Distinct frequency channels thus operate in a laminar-specific manner, but 29 
with dissociable functional roles across sensory and motor cortices.  30 
 31 
Keywords 32 
MEG, cortical laminae, action selection, feedback, feedforward 33 
 34 

35 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

mailto:j.bonaiuto@ucl.ac.uk
https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Introduction 36 
The cerebral cortex is hierarchically organized via feedback connections that originate 37 
predominantly from deep layers, and feedforward connections that predominate in superficial layers 38 
(Barone et al., 2000; Felleman and Van Essen, 1991; Markov et al., 2013, 2014a, 2014b). Evidence 39 
from non-human animal models suggests that information along those pathways is carried via 40 
distinct frequency channels: lower frequency (<30Hz) signals predominantly arise from deeper, 41 
infragranular layers, whereas higher frequency (>30Hz) rhythms stem largely from more superficial, 42 
supragranular layers (Bollimunta et al., 2008, 2011; Buffalo et al., 2011; Haegens et al., 2015; van 43 
Kerkoerle et al., 2014; Maier et al., 2010; Roopun et al., 2006, 2010; Smith et al., 2013; Sotero et al., 44 
2015; Spaak et al., 2012; Sun and Dan, 2009; Xing et al., 2012). These data have inspired general 45 
theories of cortical functional organization which ascribe specific computational roles to these 46 
pathways (Adams et al., 2013; Arnal and Giraud, 2012; Bastos et al., 2012; Donner and Siegel, 2011; 47 
Fries, 2005, 2015; Friston and Kiebel, 2009; Jensen and Mazaheri, 2010; Jensen et al., 2015; Stephan 48 
et al., 2017; Wang, 2010). In these proposals, lower frequency activity subserves feedback, top-down 49 
communication, locked to infragranular layers, whereas high-frequency activity is predominantly 50 
carried via feedforward projections from supragranular layers and conveys feedforward, bottom-up 51 
information.   52 

However, evidence for these proposals in humans is largely indirect and focused on visual and 53 
auditory areas (Fontolan et al., 2014; Kok et al., 2016; Koopmans et al., 2010; Michalareas et al., 54 
2016; Olman et al., 2012; Scheeringa and Fries, 2017). Whether one can indeed attribute low and 55 
high frequency activity in humans to laminar-specific channels, throughout the cortical hierarchy, 56 
remains unclear. Here we leverage recent advances in high precision magnetoencephalography 57 
(MEG; Meyer et al., 2017; Troebinger et al., 2014a) to address this issue directly and non-invasively 58 
across human visual and sensorimotor cortex.  59 

MEG is a direct measure of neural activity (Baillet, 2017), with millisecond temporal precision that 60 
allows for delineation of brain activity across distinct frequency bands. Recently developed 3D 61 
printed head-cast technology gives us precise models of the underlying cortical anatomy and allows 62 
us to  record higher SNR MEG data than previously achievable (Meyer et al., 2017; Troebinger et al., 63 
2014a). Theoretical and simulation work shows that these gains allow for distinguishing the MEG 64 
signal originating from either deep or superficial laminae (Troebinger et al., 2014b), in a time-65 
resolved and spatially localized manner (Bonaiuto et al., 2017). We therefore employed this 66 
approach to directly test for the proposed laminar-specificity of distinct frequency channels in 67 
human cortex. Such a demonstration would provide important clarification for the proposed 68 
mechanism of inter-regional communication in hierarchical cortical networks. 69 

 70 
Results  71 
 72 
Behavioral responses vary with perceptual evidence and cue congruence 73 
We investigated the laminar and spectral specificity of feedforward and feedback signals in visual 74 
and sensorimotor cortex with a visually guided action selection task. The task was designed to 75 
induce well-studied patterns of low- and high-frequency activity in visual (Busch et al., 2004; Fries et 76 
al., 2001; Hari and Salmelin, 1997; Hoogenboom et al., 2006; Mazaheri et al., 2014; Müller et al., 77 
1996; Muthukumaraswamy and Singh, 2013; Sauseng et al., 2005; Thut, 2006; Yamagishi et al., 2005) 78 
and sensorimotor cortices (Cheyne et al., 2008; Crone et al., 1998; Donner et al., 2009; Gaetz et al., 79 
2011; Haegens et al., 2011; Huo et al., 2010; de Lange et al., 2013; Pfurtscheller and Neuper, 1997; 80 
Pfurtscheller et al., 1996; Tan et al., 2016, 2014; Torrecillos et al., 2015) . Participants first viewed a 81 
random dot kinetogram (RDK) with coherent motion to the left or the right, which in most trials was 82 
congruent to the direction of the following instruction cue indicating the required motor response 83 
(Figure 1A). Participants could therefore accumulate the sensory evidence from the RDK in order to 84 
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prepare their response in advance of the instruction cue, but in incongruent trials the instruction cue 85 
indicated that a different response was required. The strength of the motion coherence was varied, 86 
modulating the strength of feedforward and feedback activity (Figure 1B; Donner et al., 2009; de 87 
Lange et al., 2013).  88 
 89 

 90 
Figure 1. Task structure and participant behavior. A) Each trial consisted of a fixation baseline (1-2s), random dot 91 
kinetogram (RDK; 2s), delay (0.5s), and instruction cue intervals, followed by a motor response (left/right button press) in 92 
response to the instruction cue. During congruent trials the coherent motion of the RDK was in the same direction that the 93 
arrow pointed in the instruction cue, while in incongruent trials the instruction cue pointed in the opposite direction. B) The 94 
task involved a factorial design, with three levels of motion coherence in the RDK and congruent or incongruent instruction 95 
cues. Most of the trials (70%) were congruent. C) Mean accuracy over participants during each condition. Error bars denote 96 
the standard error. Accuracy increased with increasing coherence in congruent trials, and worsened with increasing 97 
coherence in incongruent trials. D) The mean response time (RT) decreased with increasing coherence in congruent trials 98 
and slowed with increasing coherence in incongruent trials (* p<0.05). 99 
 100 
As expected, particpants responded more accurately and more quickly with increasing RDK motion 101 
coherence during congruent trials, while behavioral performance worsened with increasing 102 
coherence during incongruent trials (Figure 1C, D). This was demonstrated by a significant 103 
interaction between congruence and coherence for accuracy (F(2,35)=8.201, p=0.004), and RT 104 
(F(2,35)=7.392, p=0.006). Pairwise comparisons (Bonferroni corrected) showed that RTs were faster 105 
during congruent trials than incongruent trials at medium (t(7)=-3.235, p=0.0429) and high 106 
coherence levels (t(7)=-3.365, p=0.036). Participants were thus faster and more accurate when the 107 
cued action matched the action they had prepared (congruent trials), and slower and less accurate 108 
when these actions were incongruent. 109 
 110 
High SNR MEG recordings through individualized headcasts 111 
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Subject-specific headcasts minimize both within-session movement and co-registration error (Meyer 112 
et al., 2017; Troebinger et al., 2014a). This ensures that when MEG data are recorded over separate 113 
days, MEG sensors remain in the same location with respect to the brain. In all participants, within-114 
session movement was less than 0.2mm in the x and y dimensions and less than 1.5mm in the z 115 
dimension, and co-registration error was less than 1.5mm in any dimension (Figure S1). To assess 116 
the between-session homogeneity of our data, we examined topographic maps, event-related fields 117 
(ERFs), and time-frequency decompositions aligned to the onset of the RDK (Figure 2A), instruction 118 
cue (Figure 2B), and button response (Figure 2C) across recording sessions, which were spaced at 119 
least a week apart. This revealed that topographic maps and event-related fields from individual 120 
MEG sensors and time-frequency spectra from sensor clusters are highly repeatable and conserved 121 
across different days of recording within an individual. Because the headcast approach ensured that 122 
participants were in an identical position on repeated days of recording, we were able to obtain very 123 
high signal-to-noise (SNR) datasets.  124 

125 
Figure 2: Reproducibility. Topographic maps (left), event-related fields (ERFs, middle), and time-frequency decompositions 126 
(right) aligned to: A) the random dot kinetogram (RDK), B) instruction cue, and C) participant response for a sample 127 
participant for four sessions on different days (each including three, 15 minute blocks). The white circles on the topographic 128 
maps denote the sensor from which the ERFs in the middle are recorded. Each blue line in the ERF plots represents a single 129 
session, with shading representing the standard error (within-session variability) and the red lines show the time point that 130 
the topographic maps are plotted for (150ms for the RDK and instruction cue, 35ms for the response). The insets show a 131 
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magnified view of the plot within the black square. The time-frequency decompositions are baseline corrected (RDK-aligned: 132 
[-500, 0ms]; instruction cue-aligned: [-3s, -2.5s]; response-aligned: [-500ms, 0ms relative to the RDK]) and averaged over 133 
the sensors shown in the insets. 134 
 135 
 136 
Low and high frequency activity localize to different cortical laminae 137 
To address our main question about the laminar specificity of different frequency channels in human 138 
cortex, we extracted task-related low- and high-frequency activity from visual and sensorimotor 139 
cortices. Attention to visual stimuli is associated with decreases in alpha (Hari and Salmelin, 1997; 140 
Mazaheri et al., 2014; Sauseng et al., 2005; Thut, 2006; Yamagishi et al., 2005) and increases in 141 
gamma activity in visual cortex (Busch et al., 2004; Fries et al., 2001; Hoogenboom et al., 2006; 142 
Müller et al., 1996; Muthukumaraswamy and Singh, 2013). We therefore examined the decrease in 143 
alpha (7-13Hz) power following the onset of the RDK, as well as the increase in gamma (60-90Hz) 144 
activity following the onset of the RDK and the instruction cue.  145 

Motor responses are associated with a stereotypical pattern of spectral activity in contralateral 146 
sensorimotor cortex involving a decrease in beta power during response preparation, followed by a 147 
rebound in beta activity. Moreover, a burst of gamma activity typically occurs in contralateral 148 
sensorimotor cortex aligned to the movement (Cheyne et al., 2008; Crone et al., 1998; Gaetz et al., 149 
2011; Huo et al., 2010; Pfurtscheller and Neuper, 1997; Pfurtscheller et al., 1996). These two signals 150 
are relevant for testing the proposed feedback and feedforward role of low and high frequency 151 
activity, respectively, for the following reasons. First, the beta power decrease prior to movement is 152 
thought to reflect the removal of inhibition that prevents movement (Engel and Fries, 2010). 153 
Moreover, gamma bursts at movement onset arise from motor cortex, are effector-specific, and are 154 
thought to reflect the feedback control of discrete movements (Cheyne et al., 2008; 155 
Muthukumaraswamy, 2010), and prediction error processing for the purpose of updating motor 156 
predictions (Mehrkanoon et al., 2014). The akinetic role of pre-movement beta and the proposed 157 
role of movement-related gamma would be difficult to reconcile with the proposed role of these 158 
frequency channels in feedback and feedforward control in sensory cortices. This suggests that in 159 
sensorimotor cortex, these activity channels may not be organized in the same laminar-specific 160 
manner. Alternatively, the same laminar-specific organization may have functional roles that are 161 
distinct from the proposed feedback and feedforward communication in sensory cortex. We 162 
therefore analyzed the decrease in sensorimotor beta (15-30Hz) power during the RDK and its 163 
subsequent rebound following the participant’s response, as well as the response-aligned gamma 164 
(60-90Hz) burst.  165 

Localization of activity measured by MEG sensors requires accurate generative forward models 166 
which map from cortical source activity to measured sensor data (Baillet, 2017; Hillebrand and 167 
Barnes, 2002, 2003; Larson et al., 2014). We constructed a generative model for each participant 168 
based on a surface mesh combining their white matter and pial surfaces, representing both deep 169 
and superficial cortical laminae, respectively (Figure 3, left column). We are thus able to compare 170 
estimated source activity for measured visual and sensorimotor activity on the white matter and pial 171 
surface, and infer its laminar origin as deep if the activity is strongest on the white matter surface or 172 
superficial if it is strongest on the pial surface. For the purposes of comparison with invasive neural 173 
recordings, deep laminae correspond to infragranular cortical layers, and superficial laminae 174 
correspond to supragranular layers.  175 

The veracity of laminar inferences using this analysis is highly dependent on the accuracy of the 176 
white matter and pial surface segmentations. Imprecise surface reconstructions from standard 1mm 177 
isotropic T1-weighted volumes result in coarse-grained meshes, which do not accurately capture the 178 
separation between the two surfaces, and thus do not allow distinctions to be made between deep 179 
and superficial laminae (Figure S2). We therefore extracted each surface from high-resolution 180 
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(800μm isotropic) MRI multi-parameter maps (see Methods; Figure S2; Carey et al., 2017), allowing 181 
fine-grained segmentation of the white matter and pial surfaces. 182 

For each low- and high-frequency visual and sensorimotor signal, the laminar analysis compared the 183 
absolute change in power from a baseline time window on the vertices of each surface over trials, 184 
using paired t-tests. The resulting t-statistic was positive when the change in power was greater on 185 
the pial surface (superficial), and negative when the change was greater on the white matter surface 186 
(deep; Figure 3). To get a global measure of laminar specificity, we averaged the change in power 187 
over the whole brain (all vertices) within each surface. In order to make spatially localized laminar 188 
inferences, we then defined regions of interest (ROIs) in each subject based on the mean frequency-189 
specific change in power from a baseline time window on vertices from either surface (Bonaiuto et 190 
al., 2017; Figure 3). We further compared two metrics for defining the ROIs: functionally defined 191 
(centered on the vertex with the peak mean difference in power), and anatomically-constrained 192 
(centered on the vertex with the peak mean power difference within the visual cortex bilaterally, or 193 
in the contralateral motor cortex). 194 
 195 

 196 
Figure 3: Laminar analysis. Pial and white matter surfaces are extracted from quantitative maps of proton density and T1 197 
times obtained from a multi-parameter mapping MRI protocol (A, top). The analysis creates a single generative model 198 
combining both surfaces (A, bottom) which is used to perform source inversion using the measured sensor data, resulting in 199 
an estimate of the activity at every vertex on each surface (B, top left). The ROI analysis defined a region of interest by 200 
comparing the change in power in a particular frequency band during a time window of interest from a baseline time period 201 
(B, top right). The ROI included all vertices in either surface in the 80th percentile as well as corresponding vertices in the 202 
other surface. The absolute change in power on each surface was then compared within the ROI (B, bottom; C, top). 203 
Pairwise t-tests were performed between corresponding vertices on each surface within the ROI to examine the distribution 204 
of t-statistics (C, bottom), as well as on the mean absolute change in power within the ROI on each surface to obtain a 205 
single t-statistic which was negative if the greatest change in power occurred on the white matter surface, and positive if it 206 
occurred on the pial surface (C, middle). 207 
 208 
Visual alpha and gamma have distinct laminar specific profiles 209 
Based on in vivo laminar recordings in non-human primates (Bollimunta et al., 2008, 2011; Buffalo et 210 
al., 2011; Haegens et al., 2015; van Kerkoerle et al., 2014; Maier et al., 2010; Spaak et al., 2012; Sun 211 
and Dan, 2009; Xing et al., 2012), we reasoned that changes in alpha activity following the RDK 212 
should predominate in infragranular cortical layers. By contrast, changes in gamma activity following 213 
the RDK and instruction cue should be strongest in supragranular layers. Source reconstructions of 214 
the change in visual alpha activity following the onset of the RDK on the white matter and pial 215 
surfaces approximating the proposed infra- and supragranular origin, are shown for an example 216 
participant over the whole brain and within the functionally defined ROI in Figure 4A. Activity on 217 
both surfaces localized to visual cortex bilaterally. When performing paired t-tests over all trials 218 
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between corresponding vertices on the pial and white matter surfaces, the distribution of alpha 219 
activity was skewed toward the white matter surface, in line with an infragranular origin. This bias 220 
was also observed within the functionally defined ROI. When averaging the change in power either 221 
over the whole brain, within a functionally-defined, or an anatomically constrained ROI, the visual 222 
alpha activity of most participants was classified as originating from the white matter surface (global: 223 
8/8 participants, functional ROI: 7/8 participants, anatomical ROI: 5/8 participants; Figure 4A, right).  224 

Conversely, the increase in visual gamma following the onset of the RDK and instruction cue was 225 
strongest on the pial surface (Figure 4B, C). Example source reconstructions on the pial and the 226 
white matter surface show activity in the same bilateral areas over visual cortex as visual alpha 227 
(Figure 4B, C). For visual gamma, the distributions of t-statistics for pairwise vertex comparisons 228 
were skewed toward the pial surface, a finding that is compatible with a supragranular origin of 229 
high-frequency gamma activity. This was confirmed in subsequent global, functional, and anatomical 230 
ROI metrics (RDK gamma, global: 7/8 participants; RDK gamma, functional ROI: 7/8 participants; RDK 231 
gamma, anatomical ROI: 7/8 participants; instruction cue gamma, global: 7/8 participants; 232 
instruction cue gamma, functional ROI: 7/8 participants; instruction cue gamma, anatomical ROI: 5/8 233 
participants). 234 

We then conducted three control analyses to ascertain the robustness of our findings: shuffling of 235 
the position of the sensors, simulation of increased co-registration error, and decreasing effective 236 
SNR by using only a random subset of the trials for each participant (see Supplemental Information). 237 
Shuffling the position of the sensors destroys any correspondence between the anatomy and the 238 
sensor data. Added co-registration error simulates the effect of between-session spatial uncertainty 239 
arising from head movement and inaccuracies of the forward model typically experienced without 240 
headcasts (Hillebrand and Barnes, 2003, 2011; Medvedovsky et al., 2007; Troebinger et al., 2014b; 241 
Uutela et al., 2001). For both control analyses, visual alpha and gamma activity now localized to the 242 
pial surface (Figure S3, S4), suggesting that the laminar discrimination between visual alpha and 243 
gamma in our main analyses would not have been possible were it not for the high-SNR data 244 
coupled with the high-precision anatomical models.  245 

The magnitude of the ROI t-statistics for all participants increased with the number of trials used in 246 
the analysis, with more trials required for visual gamma signals to reach significance (Figure S5). 247 
Therefore the laminar bias exhibited by visual alpha and gamma was unlikely to be driven by a small 248 
subset of the trials. One concern was that the effects could be driven by signal power (i.e. higher 249 
power signals always localize deeper). Importantly however, regardless of the SNR the poor 250 
anatomical models did not show this behaviour within the functionally defined and anatomically 251 
constrained ROIs (Figure S5).  252 
 253 
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 254 
Figure 4: Laminar specificity of visual alpha and gamma. A) Estimated changes in alpha power (7-13Hz) from baseline on 255 
the white matter and pial surface following the onset of the random dot kinetogram (RDK), over the whole brain and within 256 
a functionally defined region of interest (ROI). Histograms show the distribution of t-statistics comparing the absolute 257 
change in power between corresponding pial and white matter surface vertices over the whole brain, or within the ROI. 258 
Negative t-statistics indicate a bias toward the white matter surface, and positive t-statistics indicate a pial bias. The bar 259 
plots show the t-statistics comparing the absolute change in power between the pial and white matter surfaces averaged 260 
within the ROIs, over all participants. T-statistics for the whole brain (black bars), functionally defined (grey bars), and 261 
anatomically constrained (white bars) ROIs are shown (red = biased toward the white matter surface, blue = biased pial). 262 
Dashed lines indicate the threshold for single subject statistical significance. B) As in A, for gamma (60-90Hz) power 263 
following the RDK. C) As in A and B, for gamma (60-90Hz) power following the instruction cue. 264 
 265 

 266 

Sensorimotor beta and gamma originate from distinct cortical laminae 267 
The above results provide novel support for distinct anatomical pathways through which different 268 
frequency channels contribute to intra-areal communication. We next addressed whether this 269 
laminar specificity of different frequency channels occurred throughout cortex. Cortical regions vary 270 
in terms of thickness (Fischl and Dale, 2000; Jones et al., 2000; Kabani et al., 2001; Lerch and Evans, 271 
2005; MacDonald et al., 2000), as a result of inter-regional variation in cortical folding and the 272 
morphology of cortical layers (Barbas and Pandya, 1989; Hilgetag and Barbas, 2006; Matelli et al., 273 
1991; Rajkowska and Goldman-Rakic, 1995). Moreover, the distinction of feedback and feedforward 274 
cortical processing channels may be less clear for motor cortex, which is agranular and projects to 275 
the spinal cord. Supporting this argument, motor gamma bursts are closely tied to movement onset, 276 
and thought to reflect the execution, or feedback control, of movement (Cheyne and Ferrari, 2013; 277 
Cheyne et al., 2008).While frequency-specific activity thus occurs throughout cortex, the laminar 278 
distribution of different frequency channels may differ across different levels in the cortical 279 
hierarchy. Because MEG is only sensitive to the synchronous activity of large populations of 280 
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pyramidal cells, it is likely that different laminar microcircuits could give rise to the same measurable 281 
MEG signals (Cohen, 2017). Alternatively, if the layer specificity of low and high frequency activity is 282 
a general organizing principle of cortex, one would expect the pre-movement beta decrease and 283 
post-movement rebound to originate from infragranular cortical layers, and the movement-related 284 
gamma increase to be strongest in supragranular layers. Moreover, the ability of MEG to accurately 285 
segregate deep from superficial laminar source activity may vary throughout cortex, a possibility we 286 
have previously explored (Bonaiuto et al., 2017). 287 

We analyzed two task-related modulations of sensorimotor beta activity: the decrease in beta power 288 
following the onset of the RDK, just prior to the motor response, and the post-movement beta 289 
rebound (Cassim et al., 2001; Jurkiewicz et al., 2006; Parkes et al., 2006; Pfurtscheller et al., 1996; 290 
Salmelin et al., 1995). Both signals localized to the left sensorimotor cortex (contralateral to the 291 
hand used to indicate the response; Figure 5A, B), and both signals were strongest on the white 292 
matter surface, as evidenced by the white matter skews in the global and functional ROI t-statistics. 293 
This laminar pattern held for all but one participant, with both the beta decrease and rebound 294 
classified as originating from the white matter surface. This is of relevance as it addresses concerns 295 
that the high SNR of beta activity trivially leads to its attribution to the deeper cortical surface. Here, 296 
the two epochs of beta activity were characterized by power decreases and increases, respectively. 297 

The burst of gamma aligned with the onset of the movement localized to the same patch of left 298 
sensorimotor cortex (Figure 5C), but in the example participant shown in Figure 5 and for most 299 
participants, was strongest on the pial surface (global: 7/8 participants; function ROI: 6/8 300 
participants; anatomical ROI: 6/8 participants). 301 
 302 

 303 
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Figure 5: Laminar specificity of sensorimotor beta and gamma. As in figure 5, for A) the beta (15-30Hz) decrease prior to 304 
the response, B) beta (15-30Hz) rebound following the response, and C) gamma (60-90Hz) power change from baseline 305 
during the response. In the histograms and bar plots, positive and negative values indicate a bias towards the superficial 306 
and deeper cortical layers, respectively. The dashed lines indicate single subject level significance thresholds. The black, 307 
grey, and white bars indicate statistics based on regions of interest comprising the whole brain, functional and 308 
anatomically-constrained ROIs, respectively.  309 
 310 
The results of the sensorimotor laminar control analyses mirrored those of visual alpha and gamma. 311 
Sensor shuffling, as well as the addition of co-registration error, resulted in sensorimotor beta and 312 
gamma localizing to the pial surface (Figure S3, S4), and the ROI t-statistics increased in magnitude 313 
with the number of trials used in the analysis, with more trials required for sensorimotor gamma 314 
signals to pass the significance threshold (Figure S5). Again, importantly, the gamma superficial bias 315 
within the functionally defined and anatomically constrained ROIs did not increase with SNR for the 316 
poor anatomical models (Figure S5). 317 
 318 
Superficial visual gamma scales with cue congruence 319 
Finally, we asked whether the observed low and high-frequency laminar-specific activity in visual and 320 
sensorimotor cortex dynamically varied with task demands in line with proposals about their role in 321 
feedback and feedforward message passing. This would provide additional indirect support for the 322 
idea that communication in hierarchical cortical networks is organized through distinct frequency 323 
channels along distinct anatomical pathways, to orchestrate top-down and bottom-up control.  324 

In our task, the direction of the instruction cue was congruent to the motion coherence direction in 325 
the RDK during most trials. For example, if the direction of motion coherence is to the left, the 326 
instruction cue will most likely be a leftward arrow. Gamma activity increases in sensory areas during 327 
presentation of unexpected stimuli (Arnal et al., 2011; Gurtubay et al., 2001; Todorovic et al., 2011), 328 
and therefore we expected visual gamma activity in supragranular layers to be greater following 329 
incongruent instruction cues than after congruent cues. Indeed, the increase in visual gamma on the 330 
pial surface following the onset of the instruction cue was greater in incongruent compared to 331 
congruent trials (W(8)=0, p=0.008; 8/8 participants; incongruent-congruent M=1.64%, SD=2.34%; 332 
Figure 6). 333 
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 334 

 335 
Figure 6: Visual gamma activity by task condition. Visual gamma activity following the onset of the instruction stimulus 336 
within the functionally defined ROI of an example participant (left), and averaged within the time window represented by 337 
the shaded rectangle for all participants (right). Each dashed line on the right shows the normalized values for each 338 
participant. The bar height represents the mean normalized change in gamma power, and the error bars denote the 339 
standard error. Visual gamma activity is stronger following the onset of the instruction cue when it is incongruent to the 340 
direction of coherent motion in the random dot kinetogram (RDK). 341 
 342 
Deep sensorimotor beta scales with RDK motion coherence and cue congruence 343 
Changes in sensorimotor beta power during response preparation predict forthcoming motor 344 
responses (Donner et al., 2009; Haegens et al., 2011; de Lange et al., 2013), whereas the magnitude 345 
of sensorimotor beta rebound is attenuated by movement errors (Tan et al., 2014, 2016; Torrecillos 346 
et al., 2015). We therefore predicted that, in infragranular layers, the decrease in sensorimotor beta 347 
would scale with the motion coherence of the RDK, and the magnitude of the beta rebound would 348 
be decreased during incongruent trials when the prepared movement has to be changed in order to 349 
make a correct response. 350 

The behavioral results suggest that participants accumulated perceptual evidence from the RDK in 351 
order to prepare their response prior to the onset of the instruction cue. This preparation was 352 
accompanied by a reduction in beta power in the sensorimotor cortex contralateral to the hand used 353 
to indicate the response (Figure 5A). This beta decrease began from the onset of the RDK and was 354 
more pronounced with increasing coherence, demonstrating a significant effect of coherence on the 355 
white matter surface (Figure 7A; Χ2(2)=9.75, p=0.008), with beta during high coherence trials 356 
significantly lower than during low coherence trials (8/8 participants; t(7)=-3.496, p=0.033; low-high 357 
M=2.42%, SD=1.96%). Following the response, there was an increase in beta in contralateral 358 
sensorimotor cortex (beta rebound) which was greater in congruent, compared to incongruent trials 359 
on the white matter surface (Figure 7B; W(8)=34, p=0.023; 7/8 participants, congruent-incongruent 360 
M=5.13%, SD=5.19%). In other words, the beta rebound was greatest when the cued response 361 
matched the prepared response.  362 
 363 
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 364 
Figure 7: Sensorimotor beta activity by task condition. A) Beta decrease following the onset of the random dot kinetogram 365 
(RDK) within the functionally defined ROI of an example participant over the duration of the RDK (left), and averaged over 366 
this duration for all participants (right). The bar height represents the mean normalized change in gamma power, and the 367 
error bars denote the standard error. The beta decease becomes more pronounced with increasing coherence. B) As in A, 368 
for beta rebound following the response and averaged within the time window shown by the black rectangle. Beta rebound 369 
is stronger following responses in congruent trials. 370 
 371 
Discussion 372 

We have demonstrated that low and high frequency channels localize predominantly to deep and 373 
superficial laminae, respectively, in human visual and sensorimotor cortex. These channels play 374 
distinct roles in feedback and feedforward processing during visually guided action selection, with 375 
high frequency visual activity enhanced by a mismatch between feedforward and feedback signals, 376 
and low frequency sensorimotor activity modulated by a combination of feedforward and feedback 377 
influences during different task epochs. Through the use of novel MEG head-cast technology (Meyer 378 
et al., 2017; Troebinger et al., 2014a) and spatially and temporally resolved laminar analyses 379 
(Bonaiuto et al., 2017; Troebinger et al., 2014b), we provide novel evidence for the layer- and 380 
frequency-specific accounts of hierarchical cortical organization in humans. 381 
 382 
Low and high frequency channels localize to deep and superficial cortical laminae across visual and 383 
sensorimotor cortex 384 
We found that low frequency activity (alpha, 7-13Hz; and beta, 15-30Hz) predominately originated 385 
from deep cortical laminae, and high frequency activity (gamma, 60-90Hz) from superficial laminae 386 
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in both visual and sensorimotor cortex. Our analysis included two built-in controls. Firstly, visually 387 
induced gamma after both the RDK and the instruction cue localized superficially, reinforcing the 388 
proposal that visual gamma generally predominates from superficial laminae. Secondly, both a 389 
decrease and increase in sensorimotor beta power localized to deep laminae, meaning that the 390 
laminar analysis was not simply biased toward deep sources for high power signals. Moreover, this 391 
laminar specificity was abolished by shuffling the sensors (Figure S3) and introducing co-registration 392 
error (Figure S4), underlining the need for spatially precise anatomical data and MEG recordings. 393 
Finally, the laminar bias of both low and high frequency signals increased monotonically as the 394 
number of trials included in the analysis increased, but not when the sensors were shuffled (Figure 395 
S5). 396 

The localization of alpha activity to predominately deep laminae of visual cortex is in line with 397 
evidence from depth electrode recordings in visual areas of the non-human primate brain (Buffalo et 398 
al., 2011; van Kerkoerle et al., 2014; Maier et al., 2010; Smith et al., 2013; Spaak et al., 2012; Xing et 399 
al., 2012). Several studies who have found alpha generators in both infra- and supragranular layers 400 
in primary sensory areas (Bollimunta et al., 2008, 2011; Haegens et al., 2015), and it has been 401 
suggested that this discrepancy is due to a contamination of infragranular layer LFP signals by 402 
volume conduction from strong alpha generators in supragranular layers (Haegens et al., 2015). This 403 
is unlikely to apply to the results presented here as this type of laminar MEG analysis is biased 404 
toward superficial laminae when SNR is low (Figure S3, S4; Bonaiuto et al., 2017). However, this 405 
analysis can only determine the laminar origin of the strongest activity when it occurs 406 
simultaneously at multiple depths (Bonaiuto et al., 2017), which is consistent with the fact that 407 
infragranular cortical layers contain the primary local pacemaking alpha generators (Bollimunta et 408 
al., 2008, 2011).  409 

We found that gamma activity was strongest in superficial cortical laminae, which was expected 410 
given that gamma activity has been found to predominantly occur in supragranular layers in visual 411 
cortex (Buffalo et al., 2011; van Kerkoerle et al., 2014; Smith et al., 2013; Spaak et al., 2012; Xing et 412 
al., 2012), but see (Nandy et al., 2017). The mechanisms underlying the generation of gamma activity 413 
are diverse across the cortex (Buzsáki and Wang, 2012), but commonly involve reciprocal 414 
connections between pyramidal cells and interneurons, or between interneurons (Tiesinga and 415 
Sejnowski, 2009; Whittington et al., 2011). The local recurrent connections necessary for such 416 
reciprocal interactions are most numerous in supragranular layers (Buzsáki and Wang, 2012), as are 417 
fast-spiking interneurons which play a critical role in generating gamma activity (Cardin et al., 2009; 418 
Carlén et al., 2012; Sohal et al., 2009). 419 

It is widely hypothesized that the laminar segregation of frequency specific channels is a common 420 
organizing principle across the cortical hierarchy (Arnal and Giraud, 2012; Bastos et al., 2012; Fries, 421 
2015; Wang, 2010). However, most evidence for this claim comes from depth electrode recordings 422 
in primary sensory areas, with the vast majority in visual cortical regions (Buffalo et al., 2011; van 423 
Kerkoerle et al., 2014; Smith et al., 2013; Spaak et al., 2012; Xing et al., 2012). While in vivo laminar 424 
data from primate sensorimotor cortex are lacking, in vitro recordings from somatosensory and 425 
motor cortices demonstrate that beta activity is generated in neural circuits dominated by 426 
infragranular layer V pyramidal cells (Roopun et al., 2006, 2010; Yamawaki et al., 2008). By contrast, 427 
gamma activity is thought to arise from supragranular layers II/III of mouse somatosensory cortex 428 
(Cardin et al., 2009; Carlén et al., 2012). The results presented here support generalized theories of 429 
laminar organization across cortex, and are the first to describe the laminar origin of movement-430 
related sensorimotor activity. 431 
 432 
High frequency activity in visual cortex is enhanced by mismatches in feedforward and feedback 433 
signals 434 
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We found that visual gamma was enhanced following the presentation of the instruction cue in 435 
incongruent compared to congruent trials. This was in agreement with our predictions, based on the 436 
fact that supragranular layer gamma activity is implicated in feedforward processing (van Kerkoerle 437 
et al., 2014). In our task, the direction of coherent motion in the RDK was congruent with the 438 
direction of the following instruction cue in most trials. Participants could therefore form a sensory 439 
expectation of the direction of the forthcoming instruction cue, which was violated in incongruent 440 
trials. The enhancement of visual gamma following incongruent cues is therefore consistent with the 441 
gamma activity increase observed in sensory areas during perceptual expectation violations (Arnal et 442 
al., 2011; Gurtubay et al., 2001; Todorovic et al., 2011) as well as layer-specific synaptic currents in 443 
supragranular cortical layers during performance error processing (Sajad et al., 2017). 444 

 445 
Low frequency activity in sensorimotor cortex reflects a combination of feedforward and feedback 446 
processes 447 
There are numerous theories for the computational role of beta activity in motor systems. Decreases 448 
in beta power prior to the onset of a movement predict the selected action (Donner et al., 2009; 449 
Haegens et al., 2011; de Lange et al., 2013), whereas the beta rebound following a movement is 450 
attenuated by error monitoring processes (Tan et al., 2014, 2016; Torrecillos et al., 2015). Our results 451 
unify both of these accounts, showing that the level of beta decrease prior to a movement is 452 
modulated by the accumulation of sensory evidence predicting the cued movement, while the beta 453 
rebound is diminished when the prepared action must be suppressed in order to correctly perform 454 
the cued action. This suggests that in the sensorimotor system, low frequency activity can reflect 455 
both bottom-up and top-down processes depending on the task epoch. This may occur via bottom-456 
up, feedforward projections from intraparietal regions to motor regions (Hanks et al., 2006; Kayser 457 
et al., 2010; Platt and Glimcher, 1999; Tosoni et al., 2008) or top-down, feedback projections from 458 
the dorsolateral prefrontal cortex (Curtis and Lee, 2010; Georgiev et al., 2016; Heekeren et al., 2006, 459 
2004; Hussar and Pasternak, 2013). The dissociation between bottom-up and top-down influences 460 
during different task epochs could indicate that the decrease in beta and the following rebound are 461 
the result of functionally distinct processes. 462 

 463 
Future directions 464 
Our ROI-based comparison of deep and superficial laminae can only determine the origin of the 465 
strongest source of activity, which does not imply that activity within a frequency band is exclusively 466 
confined to either deep or superficial sources within the same patch of cortex (Bollimunta et al., 467 
2011; Haegens et al., 2015; Maier et al., 2010; Smith et al., 2013; Spaak et al., 2012; Xing et al., 468 
2012).  We should also note that in all of our control studies, in which we discard spatial information, 469 
a bias towards the superficial (pial) cortical surface was present. However, this bias does not 470 
increase with SNR for high frequency activity with poor anatomical models, mirroring the results of 471 
simulations showing that this type of laminar analysis is biased superficially at low SNR levels, but 472 
that the metrics are not statistically significant at these levels (Bonaiuto et al., 2017). Moreover, we 473 
used white matter and pial surface meshes to represent deep and superficial cortical laminae, 474 
respectively, and therefore our analysis is insensitive to granular sources. Recent studies have shown 475 
that beta, and perhaps gamma, activity is generated by stereotyped patterns of proximal and distal 476 
inputs to infragranular and supragranular pyramidal cells (Jones, 2016; Lee and Jones, 2013; 477 
Sherman et al., 2016). Future extensions to our laminar analysis could use a sliding time window in 478 
order determine the time course of laminar activity. MEG is a global measure of neural activity, and 479 
therefore uniquely situated to test large scale computational models of laminar and frequency-480 
specific interactions (Lee et al., 2013; Mejias et al., 2016; Pinotsis et al., 2017; Wang et al., 2013), as 481 
well as the possibility that other cortical areas are organized along different principles; for example, 482 
in inferior temporal cortex the primary local pacemaking alpha generators are in supragranular 483 
layers (Bollimunta et al., 2008). Finally, in the task used here, participants were told that the 484 
direction of coherent motion in the RDK predicts the forthcoming instruction cue. Further research 485 
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will determine how predictive cues are learned implicitly, and how this process shapes beta and 486 
gamma activity in visual and sensorimotor areas. 487 
 488 
Experimental Procedures 489 
Behavioral Task 490 
Eight neurologically healthy volunteers participated in the experiment (6 male, aged 28.5±8.52 491 
years). The study protocol was in full accordance with the Declaration of Helsinki, and all participants 492 
gave written informed consent after being fully informed about the purpose of the study. The study 493 
protocol, participant information, and form of consent, were approved by the local ethics committee 494 
(reference number 5833/001). Participants completed a visually guided action decision making task 495 
in which they responded to visual stimuli projected on a screen by pressing one of two buttons on a 496 
button box using the index and middle finger of their right hand. On each trial, participants were 497 
required to fixate on a small white cross in the center of a screen. After a baseline period randomly 498 
varied between 1s and 2s, a random dot kinetogram (RDK) was displayed for 2s with coherent 499 
motion either to the left or to the right (Figure 1A). Following a 500ms delay, an instruction cue 500 
appeared, consisting of an arrow pointing either to the left or the right, and participants were 501 
instructed to press the corresponding button (left or right) as quickly and as accurately as possible. 502 
Trials ended once a response had been made or after a maximum of 1s if no response was made.  503 

The task had a factorial design with congruence (whether or not the direction of the instruction cue 504 
matched that of the coherent motion in the RDK) and coherence (the percentage of coherently 505 
moving dots in the RDK) as factors (Figure 1B). Participants were instructed that in most of the trials 506 
(70%), the direction of coherent motion in the RDK was congruent to the direction of the instruction 507 
cue. Participants could therefore reduce their mean response time (RT) by preparing to press the 508 
button corresponding to the direction of the coherent motion.  The RDK consisted of a 10°×10° 509 
square aperture centered on the fixation point with 100, 0.3° diameter dots, each moving at 4°/s. 510 
The levels were individually set for each participant by using an adaptive staircase procedure 511 
(QUEST; Watson and Pelli, 1983) to determine the motion coherence at which they achieved 82% 512 
accuracy in a block of 40 trials at the beginning of each session, in which they had to simply respond 513 
with the left or right button to leftwards or rightwards motion coherence. The resulting level of 514 
coherence was then used as medium, and 50% and 150% of it as low and high, respectively.  515 

Each block contained 126 congruent trials, and 54 incongruent trials, and 60 trials for each 516 
coherence level with half containing coherent leftward motion, and half rightward (180 trials total). 517 
All trials were randomly ordered. Participants completed 3 blocks per session, and 1-5 sessions on 518 
different days, resulting in 540-2700 trials per participant (M=1822.5, SD=813.21). The behavioral 519 
task was implemented in MATLAB (The MathWorks, Inc., Natick, MA) using the Cogent 2000 toolbox 520 
(http://www.vislab.ucl.ac.uk/cogent.php). 521 
 522 
MRI Acquisition 523 
Prior to MEG sessions, participants underwent two of MRI scanning protocols during the same visit:  524 
one for the scan required to generate the scalp image for the headcast, and a second for MEG 525 
source localization. Structural MRI data were acquired using a 3T Magnetom TIM Trio MRI scanner 526 
(Siemens Healthcare, Erlangen, Germany). During the scan, the participant lay in the supine position 527 
with their head inside a 12-channel coil. Acquisition time was 3 min 42 s, plus a 45 s localizer 528 
sequence.  529 

The first protocol was used to generate an accurate image of the scalp for headcast construction 530 
(Meyer et al., 2017). This used a T1-weighted 3D spoiled fast low angle shot (FLASH) sequence with 531 
the following acquisition parameters: 1mm isotropic image resolution, field-of view set to 256, 256, 532 
and 192 mm along the phase (anterior-posterior, A–P), read (head-foot, H–F), and partition (right-533 
left, R–L) directions, respectively. The repetition time was 7.96ms and the excitation flip angle was 534 
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12°. After each excitation, a single echo was acquired to yield a single anatomical image. A high 535 
readout bandwidth (425Hz/pixel) was used to preserve brain morphology and no significant 536 
geometric distortions were observed in the images. Acquisition time was 3 min 42s, a sufficiently 537 
short time to minimize sensitivity to head motion and any resultant distortion. Care was also taken 538 
to prevent distortions in the image due to skin displacement on the face, head, or neck, as any such 539 
errors could compromise the fit of the headcast.  Accordingly, a more spacious 12 channel head coil 540 
was used for signal reception without using either padding or headphones. 541 

The second protocol was a quantitative multiple parameter mapping (MPM) protocol, consisting of 3 542 
differentially-weighted, RF and gradient spoiled, multi-echo 3D FLASH acquisitions acquired with 543 
whole-brain coverage at 800µm isotropic resolution. Additional calibration data were also acquired 544 
as part of this protocol to correct for inhomogeneities in the RF transmit field (Callaghan et al., 2015; 545 
Lutti et al., 2010, 2012). For this protocol, data were acquired with a 32-channel head coil to 546 
increase SNR. 547 
The FLASH acquisitions had predominantly proton density (PD), T1 or magnetization transfer (MT) 548 
weighting. The flip angle was 6° for the PD- and MT-weighted volumes and 21° for the T1 weighted 549 
acquisition. MT-weighting was achieved through the application of a Gaussian RF pulse 2 kHz off 550 
resonance with 4 ms duration and a nominal flip angle of 220° prior to each excitation. The field of 551 
view was set to 224, 256, and 179 mm along the phase (A–P), read (H–F), and partition (R–L) 552 
directions, respectively. Gradient echoes were acquired with alternating readout gradient polarity at 553 
eight equidistant echo times ranging from 2.34 to 18.44 ms in steps of 2.30 ms using a readout 554 
bandwidth of 488 Hz/pixel. Only six echoes were acquired for the MT-weighted acquisition in order 555 
to maintain a repetition time (TR) of 25 ms for all FLASH volumes. To accelerate the data acquisition 556 
and maintain a feasible scan time, partially parallel imaging using the GRAPPA algorithm (Griswold et 557 
al., 2002) was employed with a speed-up factor of 2 and forty integrated reference lines in each 558 
phase-encoded direction (A-P and R-L). 559 

To maximize the accuracy of the measurements, inhomogeneity in the transmit field was mapped by 560 
acquiring spin echoes and stimulated echoes across a range of nominal flip angles following the 561 
approach described in Lutti et al. (2010), including correcting for geometric distortions of the EPI 562 
data due to B0 field inhomogeneity. Total acquisition time for all MRI scans was less than 30 min. 563 

Quantitative maps of proton density (PD), longitudinal relaxation rate (R1 = 1/T1), magnetization 564 
transfer saturation (MT) and effective transverse relaxation rate (R2* = 1/T2*) were subsequently 565 
calculated according to the procedure described in Weiskopf et al. (2013). Each quantitative map 566 
was co-registered to the scan used to design the headcast, using the T1 weighted map. The resulting 567 
maps were used to extract cortical surface meshes using FreeSurfer (see below). 568 
 569 
Headcast Construction 570 
From an MRI-extracted image of the skull, a headcast that fit between the participant’s scalp and the 571 
MEG dewar was constructed (Meyer et al., 2017; Troebinger et al., 2014a). Scalp surfaces were first 572 
extracted from the T1-weighted MRI scans acquired in the first MRI protocol using standard SPM12 573 
procedures (http://www.fil.ion.ucl.ac.uk/spm/). Next, this tessellated surface was converted into the 574 
standard template library (STL) format, commonly used for 3D printing. Importantly, this conversion 575 
imposed only a rigid body transformation, meaning that it was easily reverse-transformable at any 576 
point in space back into native MRI space. Accordingly, when the fiducial locations were optimized 577 
and specified in STL space as coil-shaped protrusions on the scalp, their exact locations could be 578 
retrieved and employed for co-registration. Next, the headcast design was optimized by accounting 579 
for factors such as head-cast coverage in front of the ears, or angle of the bridge of the nose. To 580 
specify the shape of the fiducial coils, a single coil was 3D scanned and three virtual copies of it were 581 
placed at the approximate nasion, left peri-auricular (LPA), and right peri-auricular (RPA) sites, with 582 
the constraint that coil placements had to have the coil-body and wire flush against the scalp, in 583 
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order to prevent movement of the coil when the head-cast was worn.  The virtual 3D model was 584 
placed inside a virtual version of the scanner dewar such that the distance to the sensors was 585 
minimized (by placing the head as far up within the dewar as possible) while ensuring that vision was 586 
not obstructed. Next, the head-model (plus spacing elements and coil protrusions) was printed using 587 
a Zcorp 3D printer (Zprinter 510) with 600 x 540 dots per inch resolution. The 3D printed head model 588 
was then placed inside the manufacturer-provided replica of the dewar and liquid resin was poured 589 
in between the surfaces to fill the negative space, resulting in the subject-specific headcast. The 590 
fiducial coil protrusions in the 3D model now become indentations in the resulting headcast, in 591 
which the fiducial coils can sit during scanning. The anatomical landmarks used for determining the 592 
spatial relationship between the brain and MEG sensors are thus in the same location for repeated 593 
scans, allowing data from multiple sessions to be combined (Meyer et al., 2017).  594 
 595 
FreeSurfer Surface Extraction 596 
FreeSurfer (v5.3.0; Fischl, 2012) was used to extract cortical surfaces from the multi-parameter 597 
maps. Use of multi-parameter maps as input to FreeSurfer can lead to localized tissue segmentation 598 
failures due to boundaries between the pial surface, dura matter and CSF showing different contrast 599 
compared to that assumed within FreeSurfer algorithms (Lutti et al., 2014). Therefore, an in-house 600 
FreeSurfer surface reconstruction procedure was used to overcome these issues, using the PD and 601 
T1 maps as inputs. Detailed methods for cortical surface reconstruction can be found in Carey et al. 602 
(Carey et al., 2017). This process yields surface extractions for the pial surface (the most superficial 603 
layer of the cortex adjacent to the cerebro-spinal fluid, CSF), and the white/grey matter boundary 604 
(the deepest cortical layer). Each of these surfaces is downsampled by a factor of 10, resulting in two 605 
meshes comprising about 30,000 vertices each (M=30,094.75, SD=2,665.45 over participants).  For 606 
the purpose of this paper, we will use these two surfaces to represent deep (white/grey interface) 607 
and superficial (grey-CSF interface) cortical models. 608 
 609 
MEG Acquisition 610 
MEG recordings were made using a 275-channel Canadian Thin Films (CTF) MEG system with 611 
superconducting quantum interference device (SQUID)-based axial gradiometers (VSM MedTech, 612 
Vancouver, Canada) in a magnetically shielded room. The data collected were digitized continuously 613 
at a sampling rate of 1200 Hz. A projector displayed the visual stimuli on a screen (~8m from the 614 
participant), and participants made responses with a button box.  615 
 616 
Behavioral Analyses 617 
Participant responses were classified as correct when the button pressed matched the direction of 618 
the instruction cue, and incorrect otherwise. The response time (RT) was measured as the time of 619 
button press relative to the onset of the instruction cue. Both measures were analyzed using 620 
repeated measures ANOVAs with congruence (congruent or incongruent) and coherence (low, 621 
medium, and high) as factors. Pairwise follow-up tests were performed between congruence levels 622 
at each coherence level, Bonferroni corrected. 623 
 624 
MEG Preprocessing 625 
All MEG data preprocessing and analyses were performed using SPM12 626 
(http://www.fil.ion.ucl.ac.uk/spm/) using Matlab R2014a and are available at 627 
http://github.com/jbonaiuto/meg-laminar. The data were filtered (5th order butterworth bandpass 628 
filter: 2-100 Hz) and downsampled to 250 Hz. Eye-blink artifacts were removed using multiple source 629 
eye correction (Berg and Scherg, 1994). Trials were then epoched from 1s before RDK onset to 1.5s 630 
after instruction cue onset, and from 2s before the participant’s response to 2s after. Blocks within 631 
each session were merged, and trials whose variance exceeded 2.5 standard deviations from the 632 
mean were excluded from analysis. 633 
 634 
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Source reconstruction  635 
Source inversion was performed using the empirical Bayesian beamformer (EBB; Belardinelli et al., 636 
2012; López et al., 2014) within SPM. The sensor data were first reduced into 180 orthogonal spatial 637 
(lead field) modes and 16 temporal modes. The empirical Bayes optimization rests upon estimating 638 
hyper-parameters which express the relative contribution of source and sensor level covariance 639 
priors to the data (López et al., 2014). We assumed the sensor level covariance to be an identity 640 
matrix, with a single source level prior estimated from the data. The source level prior was based on 641 
the beamformer power estimate across a two-layer manifold comprised of pial and white cortical 642 
surfaces with source orientations defined as normal to the cortical surface. There were therefore 643 
only two hyper-parameters to estimate – defining the relative contribution of the source and sensor 644 
level covariance components to the data. We used the Nolte single shell head model as 645 
implemented in SPM (Nolte, 2003). 646 
 647 
Analyses for Laminar Discrimination 648 
The laminar analysis reconstructed the data onto a mesh combining the pial and white matter 649 
surfaces, thus providing an estimate of source activity on both surfaces (Figure 3). We analyzed six 650 
different visual and sensorimotor signals at different frequencies and time windows of interest 651 
(WOIs): RDK-aligned visual alpha (7-13Hz; WOI=[0s, 2s]; baseline WOI=[-1s, -.5s]), RDK-aligned visual 652 
gamma (60-90Hz; WOI=[250ms, 500ms]; baseline WOI=[-500ms, -250ms]), instruction cue-aligned 653 
visual gamma (60-90Hz; WOI=[100ms, 500ms]; baseline WOI=[-500ms, -100ms]), RDK-aligned 654 
sensorimotor beta (15-30Hz; WOI=[0s, 2s]; baseline WOI=[-500ms, 0ms]), response-aligned 655 
sensorimotor beta (15-30Hz; WOI=[500ms, 1s]; baseline WOI=[-250ms 250ms]), response-aligned 656 
sensorimotor gamma (60-90Hz; WOI=[-100ms, 200ms]; baseline WOI=[-1.5s, -1s]). For each signal, 657 
we defined an ROI by comparing power in the associated frequency band during the WOI with a 658 
prior baseline WOI at each vertex and averaging over trials. Vertices in either surface with a mean 659 
value in the 80th percentile over all vertices in that surface, as well as the corresponding vertices in 660 
the other surface, were included in the ROI. This ensured that the contrast used to define the ROI 661 
was orthogonal to the subsequent pial versus white matter surface contrast. For each trial, ROI 662 
values for the pial and white matter surfaces were computed by averaging the absolute value of the 663 
change in power compared to baseline in that surface within the ROI. Finally, a paired t-test was 664 
used to compare the ROI values from the pial surface with those from the white matter surface over 665 
trials (Figure 3). This resulted in positive t-statistics when the change in power was greatest on the 666 
pial surface, and negative values when the change was greatest on the white matter surface. All t-667 
tests were performed with corrected noise variance estimates in order to attenuate artifactually 668 
high significance values (Ridgway et al., 2012). 669 

The control analyses utilized the same procedure, but each introduced some perturbation to the 670 
data. The shuffled analysis permuted the lead fields of the forward model prior to source 671 
reconstruction in order to destroy any correspondence between the cortical surface geometry and 672 
the sensor data. This was repeated 10 times per session, with a different random lead field 673 
permutation each time. Each permutation was then used in the laminar analysis for every low and 674 
high frequency signal. The co-registration error analysis introduced a rotation (M=10°, SD=2.5°) and 675 
translation (M=10mm, SD=2.5mm) in a random direction of the fiducial coil locations prior to source 676 
inversion, simulating between-session co-registration error. This was done 10 times per session, with 677 
a different random rotation and translation each time. Again, each perturbation was used in the 678 
laminar analysis for every low and high frequency signal. The SNR analysis used a random subset of 679 
the available trials from each subject, gradually increasing the number of trials used from 10 to the 680 
number of trials available. This was repeated 10 times, using a different random subset of trials each 681 
time, and the resulting t-statistics were averaged. 682 
 683 
Condition Comparison 684 
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For each visual and sensorimotor frequency band/task epoch combination, induced activity was 685 
compared between task conditions on the surface and within the anatomically constrained ROI 686 
identified from the corresponding laminar analysis. Seven-cycle Morlet wavelets were used to 687 
compute power within the frequency band and this was baseline-corrected in a frequency-specific 688 
manner using robust averaging. For each participant, the mean percent change in power over the 689 
WOI was averaged over all trials within every condition. Wilcoxon tests for comparing two repeated 690 
measures were used to compare the change in power for instruction cue-aligned visual gamma and 691 
sensorimotor beta rebound between congruent and incongruent trials. A Friedman test for 692 
comparing multiple levels of a single factor with repeated measures was used to compare the 693 
sensorimotor beta decrease between low, medium, and high RDK coherence trials. This was 694 
followed up by Tukey-Kramer corrected pairwise comparisons. Only trials in which a correct 695 
response was made were analyzed. 696 
 697 
Author contributions 698 
Conceptualization, J.J.B., G.R.B., and S.B.; Methodology, J.J.B., S.S.M., M.F.C, F.D., G.R.B., and S.B.; 699 
Formal Analysis, J.J.B.; Investigation, J.J.B. and S.S.M., Writing – Original Draft, J.J.B., S.S.M., S.L., 700 
H.R., M.F.C., F.D., G.R.B., and S.B.; Writing – Review and Editing,  J.J.B., S.S.M., S.L., H.R., M.F.C., F.D., 701 
G.R.B., and S.B.; Supervision, S.B. and G.R.B.; Funding Acquisition, S.B,  GRB. 702 
 703 
Acknowledgements 704 
JB is funded by a BBSRC research grant (BB/M009645/1). SM is supported by a Medical Research 705 
Council and Engineering and Physical Sciences Research Council grant MR/K6010/86010/1, the 706 
Medical Research Council UKMEG Partnership grant MR/K005464/1, and a Wellcome Principal 707 
Research Fellowship to Neil Burgess. SL is supported by a Wellcome Trust clinical postdoctoral grant 708 
(105804/Z/14/Z). The WCHN is supported by a strategic award from Wellcome (091593/Z/10/Z). 709 
 710 
References 711 

Adams, R.A., Shipp, S., and Friston, K.J. (2013). Predictions not commands: active inference in the 712 
motor system. Brain Struct. Funct. 218, 611–643. 713 
Arnal, L.H., and Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. Trends Cogn. Sci. 714 
16, 390–398. 715 
Arnal, L.H., Wyart, V., and Giraud, A.-L. (2011). Transitions in neural oscillations reflect prediction 716 
errors generated in audiovisual speech. Nat. Neurosci. 14, 797–801. 717 
Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 718 
20, 327–339. 719 
Barbas, H., and Pandya, D.N. (1989). Architecture and intrinsic connections of the prefrontal cortex 720 
in the rhesus monkey. J. Comp. Neurol. 286, 353–375. 721 
Barone, P., Batardiere, A., Knoblauch, K., and Kennedy, H. (2000). Laminar distribution of neurons in 722 
extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and 723 
indicates the operation of a distance rule. J. Neurosci. 20, 3263–3281. 724 
Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., and Friston, K.J. (2012). Canonical 725 
microcircuits for predictive coding. Neuron 76, 695–711. 726 
Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U., and Preissl, H. (2012). Source reconstruction 727 
accuracy of MEG and EEG Bayesian inversion approaches. PLoS One 7, e51985. 728 
Berg, P., and Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. 729 
Electroencephalogr. Clin. Neurophysiol. 90, 229–241. 730 
Bollimunta, A., Chen, Y., Schroeder, C.E., and Ding, M. (2008). Neuronal Mechanisms of Cortical 731 
Alpha Oscillations in Awake-Behaving Macaques. J. Neurosci. 28. 732 
Bollimunta, A., Mo, J., Schroeder, C.E., and Ding, M. (2011). Neuronal mechanisms and attentional 733 
modulation of corticothalamic α oscillations. J. Neurosci. Off. J. Soc. Neurosci. 31, 4935–4943. 734 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Bonaiuto, J.J., Rossiter, H.E., Meyer, S.S., Adams, N., Little, S., Callaghan, M.F., Dick, F., Bestmann, S., 735 
and Barnes, G.R. (2017). Non-invasive laminar inference with MEG: Comparison of methods and 736 
source inversion algorithms. bioRxiv. 737 
Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., and Desimone, R. (2011). Laminar differences in 738 
gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. U. S. A. 108, 11262–11267. 739 
Busch, N.A., Debener, S., Kranczioch, C., Engel, A.K., and Herrmann, C.S. (2004). Size matters: effects 740 
of stimulus size, duration and eccentricity on the visual gamma-band response. Clin. Neurophysiol. 741 
115, 1810–1820. 742 
Buzsáki, G., and Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 743 
203–225. 744 
Callaghan, M.F., Josephs, O., Herbst, M., Zaitsev, M., Todd, N., and Weiskopf, N. (2015). An 745 
evaluation of prospective motion correction (PMC) for high resolution quantitative MRI. Front. 746 
Neurosci. 9, 97. 747 
Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., and Moore, C.I. 748 
(2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 749 
663–667. 750 
Carey, D., Caprini, F., Allen, M., Lutti, A., Weiskopf, N., Rees, G., Callaghan, M.F., and Dick, F. (2017). 751 
Quantitative MRI Provides Markers Of Intra-, Inter-Regional, And Age-Related Differences In Young 752 
Adult Cortical Microstructure. bioRxiv. 753 
Carlén, M., Meletis, K., Siegle, J.H., Cardin, J.A., Futai, K., Vierling-Claassen, D., Rühlmann, C., Jones, 754 
S.R., Deisseroth, K., Sheng, M., et al. (2012). A critical role for NMDA receptors in parvalbumin 755 
interneurons for gamma rhythm induction and behavior. Mol. Psychiatry 17, 537–548. 756 
Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J.L., Defebvre, L., Derambure, P., and Guieu, J.D. 757 
(2001). Does post-movement beta synchronization reflect an idling motor cortex? Neuroreport 12, 758 
3859–3863. 759 
Cheyne, D., and Ferrari, P. (2013). MEG studies of motor cortex gamma oscillations: evidence for a 760 
gamma “fingerprint” in the brain? Front. Hum. Neurosci. 7, 575. 761 
Cheyne, D., Bells, S., Ferrari, P., Gaetz, W., and Bostan, A.C. (2008). Self-paced movements induce 762 
high-frequency gamma oscillations in primary motor cortex. Neuroimage 42, 332–342. 763 
Cohen, M.X. (2017). Where Does EEG Come From and What Does It Mean? Trends Neurosci. 40, 764 
208–218. 765 
Crone, N., Miglioretti, D.L., Gordon, B., and Lesser, R.P. (1998). Functional mapping of human 766 
sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in 767 
the gamma band. Brain 121, 2301–2315. 768 
Curtis, C.E., and Lee, D. (2010). Beyond working memory: the role of persistent activity in decision 769 
making. Trends Cogn. Sci. 14, 216–222. 770 
Donner, T.H., and Siegel, M. (2011). A framework for local cortical oscillation patterns. Trends Cogn. 771 
Sci. 15, 191–199. 772 
Donner, T.H., Siegel, M., Fries, P., and Engel, A.K. (2009). Buildup of choice-predictive activity in 773 
human motor cortex during perceptual decision making. Curr. Biol. 19, 1581–1585. 774 
Engel, A.K., and Fries, P. (2010). Beta-band oscillations--signalling the status quo? Curr. Opin. 775 
Neurobiol. 20, 156–165. 776 
Felleman, D.J., and Van Essen, D.C. (1991). Distributed hierarchical processing in the primate 777 
cerebral cortex. Cereb Cortex 1, 1–47. 778 
Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781. 779 
Fischl, B., and Dale, A.M. (2000). Measuring the thickness of the human cerebral cortex from 780 
magnetic resonance images. Proc. Natl. Acad. Sci. U. S. A. 97, 11050–11055. 781 
Fontolan, L., Morillon, B., Liegeois-Chauvel, C., and Giraud, A.-L. (2014). The contribution of 782 
frequency-specific activity to hierarchical information processing in the human auditory cortex. Nat. 783 
Commun. 5, 4694. 784 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal 785 
coherence. Trends Cogn. Sci. 9, 474–480. 786 
Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron 88, 220–235. 787 
Fries, P., Reynolds, J., Rorie, A.E., and Desimone, R. (2001). Modulation of Oscillatory Neuronal 788 
Synchronization by Selective Visual Attention. Science (80-. ). 291, 1560–1563. 789 
Friston, K., and Kiebel, S. (2009). Predictive coding under the free-energy principle. Philos. Trans. R. 790 
Soc. Lond. B. Biol. Sci. 364, 1211–1221. 791 
Gaetz, W., Edgar, J.C., Wang, D.J., and Roberts, T.P.L. (2011). Relating MEG measured motor cortical 792 
oscillations to resting γ-Aminobutyric acid (GABA) concentration. Neuroimage 55, 616–621. 793 
Georgiev, D., Rocchi, L., Tocco, P., Speekenbrink, M., Rothwell, J.C., and Jahanshahi, M. (2016). 794 
Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter 795 
Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making. Brain Stimul. 9, 796 
601–608. 797 
Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., and Haase, 798 
A. (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 799 
47, 1202–1210. 800 
Gurtubay, I.G., Alegre, M., Labarga, A., Malanda, A., Iriarte, J., and Artieda, J. (2001). Gamma band 801 
activity in an auditory oddball paradigm studied with the wavelet transform. Clin. Neurophysiol. 112, 802 
1219–1228. 803 
Haegens, S., Nácher, V., Hernández, A., Luna, R., Jensen, O., and Romo, R. (2011). Beta oscillations in 804 
the monkey sensorimotor network reflect somatosensory decision making. Proc. Natl. Acad. Sci. U. 805 
S. A. 108, 10708–10713. 806 
Haegens, S., Barczak, A., Musacchia, G., Lipton, M.L., Mehta, A.D., Lakatos, P., and Schroeder, C.E. 807 
(2015). Laminar Profile and Physiology of the Rhythm in Primary Visual, Auditory, and 808 
Somatosensory Regions of Neocortex. J. Neurosci. 35, 14341–14352. 809 
Hanks, T.D., Ditterich, J., and Shadlen, M.N. (2006). Microstimulation of macaque area LIP affects 810 
decision-making in a motion discrimination task. Nat. Neurosci. 9, 682–689. 811 
Hari, R., and Salmelin, R. (1997). Human cortical oscillations: A neuromagnetic view through the 812 
skull. Trends Neurosci. 20, 44–49. 813 
Heekeren, H., Marrett, S., Ruff, D.A., Bandettini, P., and Ungerleider, L.G. (2006). Involvement of 814 
human left dorsolateral prefrontal cortex in perceptual decision making is independent of response 815 
modality. Proc. Natl. Acad. Sci. U. S. A. 103, 10023–10028. 816 
Heekeren, H.R., Marrett, S., Bandettini, P.A., and Ungerleider, L.G. (2004). A general mechanism for 817 
perceptual decision-making in the human brain. Nature 431, 859–862. 818 
Hilgetag, C.C., and Barbas, H. (2006). Role of Mechanical Factors in the Morphology of the Primate 819 
Cerebral Cortex. PLoS Comput. Biol. 2, e22. 820 
Hillebrand, A., and Barnes, G.R. (2002). A quantitative assessment of the sensitivity of whole-head 821 
MEG to activity in the adult human cortex. Neuroimage 16, 638–650. 822 
Hillebrand, A., and Barnes, G.R. (2003). The use of anatomical constraints with MEG beamformers. 823 
Neuroimage 20, 2302–2313. 824 
Hillebrand, A., and Barnes, G.R. (2011). Practical constraints on estimation of source extent with 825 
MEG beamformers. Neuroimage 54, 2732–2740. 826 
Hoogenboom, N., Schoffelen, J.-M., Oostenveld, R., Parkes, L.M., and Fries, P. (2006). Localizing 827 
human visual gamma-band activity in frequency, time and space. Neuroimage 29, 764–773. 828 
Huo, X., Xiang, J., Wang, Y., Kirtman, E.G., Kotecha, R., Fujiwara, H., Hemasilpin, N., Rose, D.F., and 829 
Degrauw, T. (2010). Gamma oscillations in the primary motor cortex studied with MEG. Brain Dev. 830 
32, 619–624. 831 
Hussar, C.R., and Pasternak, T. (2013). Common rules guide comparisons of speed and direction of 832 
motion in the dorsolateral prefrontal cortex. J. Neurosci. 33, 972–986. 833 
Jensen, O., and Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: 834 
Gating by Inhibition. Front. Hum. Neurosci. 4, 186. 835 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Jensen, O., Bonnefond, M., Marshall, T.R., and Tiesinga, P. (2015). Oscillatory mechanisms of 836 
feedforward and feedback visual processing. Trends Neurosci. 38, 192–194. 837 
Jones, S.R. (2016). When brain rhythms aren’t “rhythmic”: implication for their mechanisms and 838 
meaning. Curr. Opin. Neurobiol. 40, 72–80. 839 
Jones, S.E., Buchbinder, B.R., and Aharon, I. (2000). Three-dimensional mapping of cortical thickness 840 
using Laplace’s equation. Hum. Brain Mapp. 11, 12–32. 841 
Jurkiewicz, M.T., Gaetz, W.C., Bostan, A.C., and Cheyne, D. (2006). Post-movement beta rebound is 842 
generated in motor cortex: Evidence from neuromagnetic recordings. Neuroimage 32, 1281–1289. 843 
Kabani, N., Le Goualher, G., MacDonald, D., and Evans, A.C. (2001). Measurement of Cortical 844 
Thickness Using an Automated 3-D Algorithm: A Validation Study. Neuroimage 13, 375–380. 845 
Kayser, A.S., Buchsbaum, B.R., Erickson, D.T., and D’Esposito, M. (2010). The Functional Anatomy of 846 
a Perceptual Decision in the Human Brain. J. Neurophysiol. 103, 1179–1194. 847 
Van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., and 848 
Roelfsema, P.R. (2014). Alpha and gamma oscillations characterize feedback and feedforward 849 
processing in monkey visual cortex. Proc. Natl. Acad. Sci. U. S. A. 111, 14332–14341. 850 
Kok, P., Bains, L.J., van Mourik, T., Norris, D.G., and de Lange, F.P. (2016). Selective Activation of the 851 
Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback. Curr. Biol. 26, 371–376. 852 
Koopmans, P.J., Barth, M., and Norris, D.G. (2010). Layer-specific BOLD activation in human V1. Hum. 853 
Brain Mapp. 31, 1297–1304. 854 
De Lange, F.P., Rahnev, D.A., Donner, T.H., and Lau, H. (2013). Prestimulus oscillatory activity over 855 
motor cortex reflects perceptual expectations. J. Neurosci. 33, 1400–1410. 856 
Larson, E., Maddox, R.K., and Lee, A.K.C. (2014). Improving spatial localization in MEG inverse 857 
imaging by leveraging intersubject anatomical differences. Front. Neurosci. 8, 330. 858 
Lee, S., and Jones, S.R. (2013). Distinguishing mechanisms of gamma frequency oscillations in human 859 
current source signals using a computational model of a laminar neocortical network. Front. Hum. 860 
Neurosci. 7, 869. 861 
Lee, J.H., Whittington, M.A., Kopell, N.J., Deuchars, J., and Silberberg, G. (2013). Top-Down Beta 862 
Rhythms Support Selective Attention via Interlaminar Interaction: A Model. PLoS Comput. Biol. 9, 863 
e1003164. 864 
Lerch, J.P., and Evans, A.C. (2005). Cortical thickness analysis examined through power analysis and a 865 
population simulation. Neuroimage 24, 163–173. 866 
López, J.D., Litvak, V., Espinosa, J.J., Friston, K., and Barnes, G.R. (2014). Algorithmic procedures for 867 
Bayesian MEG/EEG source reconstruction in SPM. Neuroimage 84, 476–487. 868 
Lutti, A., Hutton, C., Finsterbusch, J., Helms, G., and Weiskopf, N. (2010). Optimization and validation 869 
of methods for mapping of the radiofrequency transmit field at 3T. Magn. Reson. Med. 64, 229–238. 870 
Lutti, A., Stadler, J., Josephs, O., Windischberger, C., Speck, O., Bernarding, J., Hutton, C., and 871 
Weiskopf, N. (2012). Robust and fast whole brain mapping of the RF transmit field B1 at 7T. PLoS 872 
One 7, e32379. 873 
Lutti, A., Dick, F., Sereno, M.I., and Weiskopf, N. (2014). Using high-resolution quantitative mapping 874 
of R1 as an index of cortical myelination. Neuroimage 93, 176–188. 875 
MacDonald, D., Kabani, N., Avis, D., and Evans, A.C. (2000). Automated 3-D Extraction of Inner and 876 
Outer Surfaces of Cerebral Cortex from MRI. Neuroimage 12, 340–356. 877 
Maier, A., Adams, G.K., Aura, C., and Leopold, D.A. (2010). Distinct Superficial and deep laminar 878 
domains of activity in the visual cortex during rest and stimulation. Front. Syst. Neurosci. 4. 879 
Markov, N.T., Ercsey-Ravasz, M., Van Essen, D.C., Knoblauch, K., Toroczkai, Z., and Kennedy, H. 880 
(2013). Cortical high-density counterstream architectures. Science 342, 1238406. 881 
Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou, L., Vezoli, J., Misery, P., 882 
Falchier, A., Quilodran, R., Gariel, M.A., et al. (2014a). A Weighted and Directed Interareal 883 
Connectivity Matrix for Macaque Cerebral Cortex. Cereb. Cortex 24, 17–36. 884 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Markov, N.T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., Misery, P., 885 
Giroud, P., Ullman, S., et al. (2014b). Anatomy of hierarchy: Feedforward and feedback pathways in 886 
macaque visual cortex. J. Comp. Neurol. 522, 225–259. 887 
Matelli, M., Luppino, G., and Rizzolatti, G. (1991). Architecture of superior and mesial area 6 and the 888 
adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311, 445–462. 889 
Mazaheri, A., van Schouwenburg, M.R., Dimitrijevic, A., Denys, D., Cools, R., and Jensen, O. (2014). 890 
Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual 891 
and auditory modalities. Neuroimage 87, 356–362. 892 
Medvedovsky, M., Taulu, S., Bikmullina, R., and Paetau, R. (2007). Artifact and head movement 893 
compensation in MEG. Neurol. Neurophysiol. Neurosci. 4. 894 
Mehrkanoon, S., Breakspear, M., and Boonstra, T.W. (2014). The reorganization of corticomuscular 895 
coherence during a transition between sensorimotor states. Neuroimage 100, 692–702. 896 
Mejias, J.F., Murray, J.D., Kennedy, H., and Wang, X.-J. (2016). Feedforward and feedback frequency-897 
dependent interactions in a large-scale laminar network of the primate cortex. Sci Adv 2, e1601335. 898 
Meyer, S.S., Bonaiuto, J., Lim, M., Rossiter, H., Waters, S., Bradbury, D., Bestmann, S., Brookes, M., 899 
Callaghan, M.F., Weiskopf, N., et al. (2017). Flexible head-casts for high spatial precision MEG. J. 900 
Neurosci. Methods 276, 38–45. 901 
Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., and Fries, P. (2016). Alpha-902 
Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual 903 
Cortical Areas. Neuron 89, 384–397. 904 
Müller, M.M., Bosch, J., Elbert, T., Kreiter, A., Sosa, M. V, Sosa, P. V, and Rockstroh, B. (1996). 905 
Visually induced gamma-band responses in human electroencephalographic activity--a link to animal 906 
studies. Exp. Brain Res. 112, 96–102. 907 
Muthukumaraswamy, S.D. (2010). Functional Properties of Human Primary Motor Cortex Gamma 908 
Oscillations. J. Neurophysiol. 104, 2873–2885. 909 
Muthukumaraswamy, S.D., and Singh, K.D. (2013). Visual gamma oscillations: The effects of stimulus 910 
type, visual field coverage and stimulus motion on MEG and EEG recordings. Neuroimage 69, 223–911 
230. 912 
Nandy, A.S., Nassi, J.J., and Reynolds, J.H. (2017). Laminar Organization of Attentional Modulation in 913 
Macaque Visual Area V4. Neuron 93, 235–246. 914 
Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation and its use for 915 
magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 916 
3637–3652. 917 
Olman, C.A., Harel, N., Feinberg, D.A., He, S., Zhang, P., Ugurbil, K., and Yacoub, E. (2012). Layer-918 
Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1. PLoS One 919 
7, e32536. 920 
Parkes, L.M., Bastiaansen, M.C.M., and Norris, D.G. (2006). Combining EEG and fMRI to investigate 921 
the post-movement beta rebound. Neuroimage 29, 685–696. 922 
Pfurtscheller, G., and Neuper, C. (1997). Motor imagery activates primary sensorimotor area in 923 
humans. Neurosci. Lett. 239, 65–68. 924 
Pfurtscheller, G., Stancák, A., and Neuper, C. (1996). Post-movement beta synchronization. A 925 
correlate of an idling motor area? Electroencephalogr. Clin. Neurophysiol. 98, 281–293. 926 
Pinotsis, D.A., Geerts, J.P., Pinto, L., FitzGerald, T.H.B., Litvak, V., Auksztulewicz, R., and Friston, K.J. 927 
(2017). Linking canonical microcircuits and neuronal activity: Dynamic causal modelling of laminar 928 
recordings. Neuroimage 146, 355–366. 929 
Platt, M.L., and Glimcher, P.W. (1999). Neural correlates of decision variables in parietal cortex. 930 
Nature 400, 233–238. 931 
Rajkowska, G., and Goldman-Rakic, P.S. (1995). Cytoarchitectonic Definition of Prefrontal Areas in 932 
the Normal Human Cortex: I. Remapping of Areas 9 and 46 using Quantitative Criteria. Cereb. Cortex 933 
5, 307–322. 934 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Roopun, A.K., Middleton, S.J., Cunningham, M.O., LeBeau, F.E.N., Bibbig, A., Whittington, M.A., and 935 
Traub, R.D. (2006). A beta2-frequency (20-30 Hz) oscillation in nonsynaptic networks of 936 
somatosensory cortex. Proc. Natl. Acad. Sci. U. S. A. 103, 15646–15650. 937 
Roopun, A.K., Lebeau, F.E.N., Rammell, J., Cunningham, M.O., Traub, R.D., and Whittington, M.A. 938 
(2010). Cholinergic neuromodulation controls directed temporal communication in neocortex in 939 
vitro. Front. Neural Circuits 4, 8. 940 
Sajad, A., Godlove, D.C., and Schall, J.D. (2017). Microcircuitry of Performance Monitoring. bioRxiv. 941 
Salmelin, R., Hämäläinen, M., Kajola, M., and Hari, R. (1995). Functional segregation of movement-942 
related rhythmic activity in the human brain. Neuroimage 2, 237–243. 943 
Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., Gruber, W.R., 944 
and Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG 945 
alpha activity. Eur. J. Neurosci. 22, 2917–2926. 946 
Scheeringa, R., and Fries, P. (2017). Cortical layers, rhythms and BOLD signals. Neuroimage. 947 
Sherman, M.A., Lee, S., Law, R., Haegens, S., Thorn, C.A., Hämäläinen, M.S., Moore, C.I., and Jones, 948 
S.R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence from 949 
humans, computational modeling, monkeys, and mice. Proc. Natl. Acad. Sci. U. S. A. 113, E4885–950 
E4894. 951 
Smith, M.A., Jia, X., Zandvakili, A., and Kohn, A. (2013). Laminar dependence of neuronal correlations 952 
in visual cortex. J. Neurophysiol. 109, 940–947. 953 
Sohal, V.S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin neurons and gamma 954 
rhythms enhance cortical circuit performance. Nature 459, 698–702. 955 
Sotero, R.C., Bortel, A., Naaman, S., Mocanu, V.M., Kropf, P., Villeneuve, M.Y., and Shmuel, A. (2015). 956 
Laminar Distribution of Phase-Amplitude Coupling of Spontaneous Current Sources and Sinks. Front. 957 
Neurosci. 9, 454. 958 
Spaak, E., Bonnefond, M., Maier, A., Leopold, D.A., and Jensen, O. (2012). Layer-specific entrainment 959 
of γ-band neural activity by the α rhythm in monkey visual cortex. Curr. Biol. CB 22, 2313–2318. 960 
Stephan, K.E., Petzschner, F.H., Kasper, L., Bayer, J., Wellstein, K.V., Stefanics, G., Pruessmann, K.P., 961 
and Heinzle, J. (2017). Laminar fMRI and computational theories of brain function. Neuroimage. 962 
Sun, W., and Dan, Y. (2009). Layer-specific network oscillation and spatiotemporal receptive field in 963 
the visual cortex. Proc. Natl. Acad. Sci. U. S. A. 106, 17986–17991. 964 
Tan, H., Jenkinson, N., and Brown, P. (2014). Dynamic Neural Correlates of Motor Error Monitoring 965 
and Adaptation during Trial-to-Trial Learning. J. Neurosci. 34, 5678–5688. 966 
Tan, H., Wade, C., and Brown, P. (2016). Post-Movement Beta Activity in Sensorimotor Cortex 967 
Indexes Confidence in the Estimations from Internal Models. J. Neurosci. 36, 1516–1528. 968 
Thut, G. (2006). -Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial 969 
Attention Bias and Predicts Visual Target Detection. J. Neurosci. 26, 9494–9502. 970 
Tiesinga, P., and Sejnowski, T.J. (2009). Cortical Enlightenment: Are Attentional Gamma Oscillations 971 
Driven by ING or PING? Neuron 63, 727–732. 972 
Todorovic, A., van Ede, F., Maris, E., and de Lange, F.P. (2011). Prior Expectation Mediates Neural 973 
Adaptation to Repeated Sounds in the Auditory Cortex: An MEG Study. J. Neurosci. 31, 9118–9123. 974 
Torrecillos, F., Alayrangues, J., Kilavik, B.E., and Malfait, N. (2015). Distinct Modulations in 975 
Sensorimotor Postmovement and Foreperiod -Band Activities Related to Error Salience Processing 976 
and Sensorimotor Adaptation. J. Neurosci. 35, 12753–12765. 977 
Tosoni, A., Galati, G., Romani, G.L., and Corbetta, M. (2008). Sensory-motor mechanisms in human 978 
parietal cortex underlie arbitrary visual decisions. Nat. Neurosci. 11, 1446–1453. 979 
Troebinger, L., López, J.D., Lutti, A., Bradbury, D., Bestmann, S., and Barnes, G. (2014a). High 980 
precision anatomy for MEG. Neuroimage 86, 583–591. 981 
Troebinger, L., López, J.D., Lutti, A., Bestmann, S., and Barnes, G. (2014b). Discrimination of cortical 982 
laminae using MEG. Neuroimage 102, 885–893. 983 
Uutela, K., Taulu, S., and Hämäläinen, M. (2001). Detecting and Correcting for Head Movements in 984 
Neuromagnetic Measurements. Neuroimage 14, 1424–1431. 985 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. 986 
Physiol. Rev. 90, 1195–1268. 987 
Wang, P., Knösche, T.R., Raij, T., Bonmassar, G., and Devore, S. (2013). A Realistic Neural Mass Model 988 
of the Cortex with Laminar-Specific Connections and Synaptic Plasticity – Evaluation with Auditory 989 
Habituation. PLoS One 8, e77876. 990 
Watson, A.B., and Pelli, D.G. (1983). Quest: A Bayesian adaptive psychometric method. Percept. 991 
Psychophys. 33, 113–120. 992 
Weiskopf, N., Suckling, J., Williams, G., Correia, M.M., Inkster, B., Tait, R., Ooi, C., Bullmore, E.T., and 993 
Lutti, A. (2013). Quantitative multi-parameter mapping of R1, PD(*), MT, and R2(*) at 3T: a multi-994 
center validation. Front. Neurosci. 7, 95. 995 
Whittington, M.A., Cunningham, M.O., LeBeau, F.E.N., Racca, C., and Traub, R.D. (2011). Multiple 996 
origins of the cortical gamma rhythm. Dev. Neurobiol. 71, 92–106. 997 
Xing, D., Yeh, C.-I., Burns, S., and Shapley, R.M. (2012). Laminar analysis of visually evoked activity in 998 
the primary visual cortex. Proc. Natl. Acad. Sci. U. S. A. 109, 13871–13876. 999 
Yamagishi, N., Goda, N., Callan, D.E., Anderson, S.J., and Kawato, M. (2005). Attentional shifts 1000 
towards an expected visual target alter the level of alpha-band oscillatory activity in the human 1001 
calcarine cortex. Cogn. Brain Res. 25, 799–809. 1002 
Yamawaki, N., Stanford, I.M., Hall, S.D., and Woodhall, G.L. (2008). Pharmacologically induced and 1003 
stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. 1004 
Neuroscience 151, 386–395.  1005 

 1006 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2017. ; https://doi.org/10.1101/226274doi: bioRxiv preprint 

https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/

