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Abstract

We explore a method for reconstructing visual stimuli from brain activity. Using large
databases of natural images we trained a deep convolutional generative adversarial network
capable of generating gray scale photos, similar to stimuli presented during two functional
magnetic resonance imaging experiments. Using a linear model we learned to predict the gen-
erative model’s latent space from measured brain activity. The objective was to create an image
similar to the presented stimulus image through the previously trained generator. Using this
approach we were able to reconstruct structural and some semantic features of a proportion of
the natural images sets. A behavioral test showed that subjects were capable of identifying a
reconstruction of the original stimulus in 67.2% and 66.4% of the cases in a pairwise compari-
son for the two natural image datasets respectively. Our approach does not require end-to-end
training of a large generative model on limited neuroimaging data. Rapid advances in genera-
tive modeling promise further improvements in reconstruction performance.

1 Introduction

Since the advent of functional magnetic resonance imaging (fMRI), numerous new research di-
rections that leverage its exceptional spatial resolution, leading to classifiable brain activity pat-
terns, have been explored (Haynes, 2015). New approaches to decoding specific brain states have
demonstrated the benefits of pattern-based fMRI analysis. Pattern-based decoding from the vi-
sual system has shown that it is possible to decode edge orientation (Kamitani and Tong, 2005),
perceived categories of both static and dynamic stimuli (Haxby, 2001; Huth et al., 2016), up to
identifying a specific stimulus image (Kay et al., 2008) and generically identifying new categories
from image descriptors predicted from brain activity (Horikawa and Kamitani, 2017).

Here we focus on an advanced problem in brain decoding, which is reconstructing a perceived
(natural) visual stimulus. The reconstruction problem is demanding since the set of possible stim-
uli is effectively infinite. A functioning reconstruction system may however prove highly useful
for neuroscience, for instance for studying synesthesia and optical illusions; or drive explorative
insight into visual cortex activity when controlled experimental setups are difficult – such as dur-
ing imagery or visual hallucinations. This problem has been explored at different spatial scales
(e.g. invasively at the cellular level (Chang and Tsao, 2017)) and in different regions of the visual
system (e.g. in the LGN (Stanley et al., 1999) and in the retina (Parthasarathy et al., 2017)). In
this manuscript we discuss a new method for reconstruction from brain activity measured with
fMRI. This approach was pioneered by Thirion et al. (2006), who reconstructed dot patterns with
rotating Gabors from perception and imagery. Miyawaki et al. (2008) used binary 10× 10 images
as stimuli and demonstrated the possibility of decoding pixels independently from each other,
reconstructing arbitrary new images with this basis set. Naselaris et al. (2009) introduced a com-
bination of encoding brain activity with structural and semantic features, as well as a Bayesian
framework to identify the most likely stimulus image from a very large image database given the
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brain activity. Combining the most likely stimuli from a database leads to effective reconstruc-
tions, with (Nishimoto et al., 2011) being the most impressive example to date. These approaches
were further developed. Examples are enhancing decoding using feature sets learned with in-
dependent component analysis (Güçlü and van Gerven, 2013) and accurate reconstruction of
handwritten characters using stimulus domain priors and a linear model for predicting brain
activity (Schoenmakers et al., 2013, 2015). The most recent entries in the reconstruction domain
make use of promising new developments in generative image models. Du et al. (2017) used
Bayesian inference to derive missing latent variables, and effectively reconstruct handwritten
digits and 10 × 10 binary images. Finally, the idea of reconstruction based on adversarial train-
ing has been used for reconstructing face photos from fMRI with much low-level and abstract
detail by learning to encode to and decode from a learned latent space for faces (Güçlütürk et al.,
2017).

In this work we expand on the idea of using adversarial training for reconstruction, but ex-
plore the capabilities of reconstructing arbitrary natural images using generative adversarial net-
works (GANs, (Goodfellow et al., 2014)). We train a deep convolutional generative adversarial
network (DCGAN, (Radford et al., 2015)) separately on large image data sets and let it learn the
latent space in an unsupervised manner. This DCGAN is used to generate arbitrary images from
the stimulus domain (handwritten characters or natural gray scale images). Keeping this DC-
GAN fixed, we learn to predict the latent space of the generator based on the fMRI BOLD signal
in response to a presented stimulus. The objective of the predictive model is achieving high sim-
ilarity between the generated and the original image in the image domain. The image domain
losses that are used to train the predictive model are derived with a complex loss function. We
show that this approach is capable of generating reasonable reconstructions from fMRI data for
the given stimulus domains. The method presented here is not limited to fMRI, but can be ap-
plied equally to other pattern-like responses measured for static images, which include calcium
imaging or multielectrode arrays. Given suitable generative models for dynamic stimuli (such as
video and audio), it may also be possible to transfer the method to other stimulus modalities.

2 Methods

2.1 Functional MRI data sets

We made use of three publicly available fMRI data sets originally acquired for experiments re-
lated to identifying stimulus images and categories or reconstruction of perception. In the fol-
lowing we briefly list their properties. Extensive descriptions of recording details and methods
can be found in the original publications.

2.1.1 Handwritten characters

We used this dataset (referred to as BRAINS dataset) to test our method in a simpler, restricted
domain. Three subjects were presented with grayscale images of 360 examples of six handwritten
characters (B, R, A, I, N and S). Images were taken from data published in (Van der Maaten,
2009; Schomaker and Vuurpijl, 2000). Stimuli were presented foveally with fixation in a 3T fMRI
experiment (TR=1.74 s, voxel size=2 mm3). The images were shown for 1 s at 9 × 9◦ of visual
angle, flashed at approximately 3 Hz. The characters were repeated twice, and responses were
averaged. The original studies reconstructed handwritten characters using a linear decoding
approach (Schoenmakers et al., 2013) and Gaussian mixture models (Schoenmakers et al., 2015).
We made use of the preprocessed data from V1 and V2 available in the BRAINS dataset and
used the original train / test set split (290 and 70 class-balanced characters respectively). The
voxel response (β) per image was estimated in the original study, with a GLM and a canonical
HRF, and we used the preprocessed result of their method. The dataset can be downloaded from
www.artcogsys.com.
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2.1.2 Masked natural images

Three subjects saw natural gray scale images with a circular mask, taken from different sources
(the commercial Corel Stock Photo Libraries from Corel Corporation, and the Berkeley Segmen-
tation Dataset) at 20 × 20◦ of the visual field with fixation. The dataset and experiments were
described in (Kay et al., 2008) and (Naselaris et al., 2009). The training set consisted of 1750 im-
ages, presented twice and averaged. The test set consisted of 120 images, presented 13 times.
Images were presented for 1 s and flashed at approximately 3 Hz. Data was acquired in a 4T
scanner (TR=1 s, voxel size=2 × 2 × 2.5 mm3). The dataset is available on www.crcns.org
under the identifier vim-11, which is also how we refer to it in this manuscript. We obtained a
version of the dataset with updated preprocessing for all three subjects from the author via per-
sonal communication. The peak voxel responses (as β) per image were estimated in the original
study, with a voxel-wise HRF, and we used the result of their method here. The advantage of this
dataset for this study is the relatively high amount of data and the variety of high-quality photo
stimuli.

2.1.3 Natural object photos

This dataset was originally recorded for (Horikawa and Kamitani, 2017), and is referred to as
Generic Object Decoding dataset. Five subjects were presented with square colour images
from 150 categories from the ImageNet database (Deng et al., 2009). We converted the stimulus
images to gray scale and applied a similar mild contrast enhancement as in (Kay et al., 2008) in-
stead of using the full color stimuli for reconstruction2. We also used the original train / test set
split. The training set consisted of 8 images from each category and was presented once, totaling
1200 presentations. The test set recording consisted of presenting single images of 50 categories
(not contained in the training set) 35 times each, and averaging this activity. The image-wise
response was estimated by averaging over the 9 s image presentation period. The data can be
obtained from www.brainliner.jp3. Next to having recordings of five subjects one advantage
of this dataset is the long stimulation time of 9 s (at 2 Hz flashing) per image, resulting in a high
signal-to-noise ratio (SNR). All images were presented at 12 × 12◦ of visual angle, with fixation,
in a 3T scanner (TR=3 s, voxel size= 3 mm3).

The data of the individual subjects of all datasets were mapped to a common representational
space based on hyperalignment (Haxby et al., 2011) using PyMVPA4 (Hanke et al., 2009). Hyper-
aligned data was averaged across subjects such as to obtain data for a single hyperaligned subject
with improved SNR5. Details about this procedure and the original voxel dimensions per subject,
and resulting common representational space dimensions can be found in Section A.2. After hy-
peralignment, the dimensionality of the feature (voxel activity) space was reduced by applying
principal component analysis (PCA, including demeaning) so that 99% (BRAINS leading to 248
dimensions, Generic Object Decoding leading to 1078 dimensions) or 90% (vim-1, due to
its much larger original voxel dimension, leading to 2101 dimensions) were preserved. Hyper-
alignment, PCA and statistical parameters (e.g. mean values) were computed on the training sets
and applied on the training and the separate test set. For these additional preprocessing steps
we used the single trial data for vim-1 and Generic Object Decoding, as the different av-
eraging strategies changed SNR between train and test. For BRAINS we used the provided data
averages over two trials as there was no such difference between the train and test recordings.

1https://crcns.org/data-sets/vc/vim-1 (last access May 2017)
2We focus on reconstructing gray scale images as our natural images DCGAN learned to generate more structural

detail when the color dimension was omitted. However with a more powerful GAN variant the method could also be
applied for reconstructing color stimuli.

3http://brainliner.jp/data/brainliner/Generic Object Decoding (last access August 2017)
4www.pymvpa.com, v2.6.3
5Our method was initially developed on the individual subject basis. This only seemed to lead to more variability in

the reconstruction quality between subjects, and we decided to finalize the study on hyperaligned data instead as this
made collecting behavioral data and developing the loss function more efficient.
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2.2 Generative Adversarial Networks

Figure 1: Generative adversarial networks. A generator network (G) learns to model a given distri-
bution pdata via feedback from a discriminator network (D). D learns to discriminate between images
coming from the real distribution and images from the generator.

Generative Adversarial Networks (GANs, (Goodfellow et al., 2014)) learn to synthesize ele-
ments of a target distribution pdata (e.g. images of natural scenes) by letting two neural networks
compete. Their results tend to have photo-realistic qualities. The Generator network (G) takes
an n-dimensional random sample from a predefined distribution – conventionally called latent
space z – and attempts to create an example G(z) from the target distribution, with z as initial
values. In the case of images and deep convolutional GANs (DCGANs), introduced in (Radford
et al., 2015), this is realized across a series of deconvolutional layers. The Discriminator network
(D) takes a generated or real example as input and has to make the binary decision whether the
input is real or generated, which would result in the output 1 or 0, respectively. In the discrim-
inator, DCGANs use a series of convolutional layers with a binary output. See Figure 1 for an
illustration. This competition process is expressed as a zero-sum game in the following loss term:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

where x is a real image and G(z) a generated image. During training, various – but certainly not
all – GAN variants learn to impose structure on the latent space. Learning this structure and the
learning procedure itself is a form of unsupervised learning. The algorithm we use was intro-
duced and popularized for image synthesis by (Goodfellow et al., 2014). Creswell et al. (2017) is
a recommended comprehensive review and discussion of various recent GAN approaches.

Figure 2: Training a DCGAN for naturalistic vim1-like gray scale images. Left: Examples from the
gray scale natural image domain DCGAN training set (gray scale MS COCO or ImageNet; masked).
Right: Examples of images randomly generated by a trained natural image DCGAN.

For this work we used a DCGAN architecture that implements architectural improvements
suggested in (Radford et al., 2015) and (Salimans et al., 2016). We based the model on a publicly
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available framework and implementation (musyoku, 2017). This generative model is merely a
module of the method and can be replaced by any better-performing advanced deterministic
generator. Details of the architecture and the training parameters are described in section A.1.

We trained the same DCGAN architecture separately for each dataset, for approximately 300
iterations through all training images. Figure 2 shows examples from the vim-1 training set, and
randomly generated examples from a DCGAN trained on this data. The network seems to have
learned the contrast properties of the vim-1 stimulus set, and seems to have acquired the ability
to create complex image content. As we selected these random example images manually they
reflect our preference for semantically meaningful content. Yet, as with most GAN architectures,
much of what is created is rather abstract and can not be interpreted. The handwritten character
GAN in contrast learned to create primarily meaningful new examples of the reduced hand-
written character set. We noticed that it rarely generated B examples though. So the DCGAN
architecture we are using potentially suffers from a form of the so far unsolved problem of mode
collapse.

Figure 3: The natural images GAN captures the vim-1 training stimuli. We overfitted the model
on random training set images to demonstrate that the latent space the GAN has learned is powerful
enough to capture and regenerate the variety of the vim-1 stimulus images satisfactorily. The top row
shows the original stimulus image, the bottom row the overfitted reconstruction.

We checked whether the expressive power of the chosen DCGAN is sufficient for reconstruct-
ing natural stimuli from the experiments by overfitting the model predicting z from BOLD data
on the training data. For this we used a multi-layer perceptron (MLP) instead of the linear regres-
sion approach outlined in the following section 2.3. In Figure 3 we show training set reconstruc-
tions on vim-1 from such an overfitted model. These examples can also be seen as an upper limit
of the accuracy that can be expected with the DCGAN architecture used here. It is obvious that
especially broad high-contrast boundaries can be reconstructed, but the natural images DCGAN
also seems to capture patterns, luminance, luminance gradients and some of the semantic content
(e.g. landscapes) that are in the stimulus set. We thus can state that the natural image DCGAN
reflects the reconstruction target sufficiently. We assume but can not verify that semantic content
can be reproduced if structural properties of the image restrict the semantic space. For instance,
landscape photos frequently feature a horizontal bar across the whole image.

2.3 Latent space estimation from BOLD data

We fixed the trained DCGANs and attempted to predict the latent space z ∈ [−1, 1]50 that repro-
duces the correct image directly, with the estimated BOLD data per image as the independent
variable. The loss for this model was gathered in image space with a complex multi-component
loss function that compares the real and the reconstructed images with pixel data and perceptual
features learned by a convolutional neural network. The linear regression model was imple-
mented as an approximating neural network with one weight layer. The procedure is illustrated
in Figure 4. For weight optimization we used the Adam optimizer (Kingma and Ba, 2014), again
with default parameters. We applied a weak L2-regularization on the weights (λL2 = 0.01). The
same normalization that we used as a boundary on z when training the GAN was applied to the
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predicted z after applying the linear regression weights. The model was trained for 300 epochs
on BRAINS and vim-1, and for only 100 epochs on Horikawa as the model seemed to learn this
data set faster (and could overfit if trained much longer).

Figure 4: Predicting z from BOLD data with a complex loss function in image space between the
reconstructed image and the image actually shown in the experiment. We make use of the DCGAN
generator, which is pretrained for the necessary stimulus domain and not updated further during
reconstruction model training.

To compute the loss for training, we passed the predicted latent vector z for every batch
(using a mini batch size of 3) through generator network G of the previously trained DCGAN.
The image produced by the generatorG(z) (reconstructed) was compared to the image x actually
shown in the experiment with a complex image loss function. This loss function is a weighted
sum of the following components (formulated as an average over mini batches):

Mean absolute error on pixels The 64 × 64 images were downsized by 10% with bilinear in-
terpolation. This is merely for avoiding the blurring effect of the MSE observed in autoencoders.
Then mean absolute error (MAE6 ) was calculated between them to obtain the pixel loss lpx:

lpx =
1

n

n∑
k=1

∣∣x(k) −G
(
z(k)

)∣∣ (2)

where k ranges over images in the image batch of length n The pixel loss optimizes towards
matching local luminance values between reconstruction and the stimulus images.

Feature losses Weights learned by convolutional neural networks on natural image data present
a set of low- and intermediate level feature detectors useful for various applications. In methods
such as autoencoders a feature-based loss seems to lead to higher perceptual similarity, whereas
using pixel-wise loss functions such as MSE leads to blurry results (Johnson et al., 2016). We
trained a variant of the AlexNet neural network to obtain suitable feature detectors (Krizhevsky
et al., 2012).

Here, the perceptual features of an image are defined as the outcome of passing an image
through a trained multi-layer neural network and obtaining its hidden unit activity matrix at
certain layers in its hierarchy. As an example, many convolutional neural networks trained for
object recognition in natural images learn a series of oriented Gabor filters in their first layer. After
passing an image through the network and obtaining its activity in this first layer, we would have
a matrix indicating local similarities to these Gabor filters (similar to the idea of receptive fields
in neuroscience). This matrix is called feature matrix. Feature activations were gathered from the
feature matching network before any nonlinearities or local response optimization.

6A proposed alternative for plain MAE loss would be the MS-SSIM loss (Ridgeway et al., 2015). However, we instead
decided to enhance this loss with a series of feature (perceptual) losses.
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For computing the loss between G(z) and x on the basis of features from the trained AlexNet
hierarchy (the feature matching network ) we used the following loss component: The feature
activation matrices of the real stimulus images for each layer L, denoted φL(x) were transformed
to binary representations φL,b(x) by applying a threshold of 1.0. The second component of the
reconstruction loss function is then feature magnitude loss lf,m, which equates mean squared
error computed between φL(x) and φL(G(z)) on feature map elements that met the binarization
threshold in the original stimulus image (1 in φL,b(x)):

lf,m =
1

n

n∑
k=1

∑
L

∣∣∣∣φ̄L (x(k)
)
− φ̄L

(
G(z(k))

)∣∣∣∣2 (3)

where φ̄L(u) = φL(u) � φL,b(x); � denoting element-wise multiplication. This is merely a
formalization for using φL,b (i.e. the binary matrix of feature matrix entries whose activation
passed the threshold) as a binary mask. This loss term ensures that the activation magnitudes
(saliency) of the various perceptual features stay similar to the real image and avoids some of the
fallacies of using MSE directly between feature matrices7.

We used layers conv1, conv3 and conv4 for feature matching as these represent universal
low-level features and simple patterns in the AlexNet architecture. The highest layers of AlexNet
may otherwise represent sparse semantic properties. Furthermore matching the final layers may
also drive the reconstruction towards the limited set of categories learned by AlexNet. From
conv1 we also collected lf,m on negative feature activations, using the threshold 1.0 on their ab-
solute representation, as they are collected via meaningful convolutions in pixel space. Negative
feature activations for higher layers are likely meaningless as they are not used during training.

The complete loss function is then given by adding the terms with a weight:

loss = lΩ = λpxlpx + λf,mlf,m (4)

where we chose λpx = 100.0 and λf,m = 1.0 for all three datasets.These weights, the set of
layers used for feature matching and the feature threshold were determined via optimizing on
the training set of BRAINS. Optimization specifically for each data set may improve the results
further, however a cross-validated hyperparameter search would require more data than we had
available. Also, these loss magnitudes are likely specific for the chosen DCGAN, the stimulus
data set and the feature matching network and need to be redetermined when applying this
method for a different experiment.

The gradients of the linear model weights w are estimated as follows:

∂lΩ
∂w

= λpx
∂lpx
∂w

+ λf,m
∂lf,m
∂w

(5)

Remember that the reconstructed image G(z) is associated to w in the following way:

G(z) = G(‖wT sPCA‖2) (6)

sPCA is the BOLD signal represented by its principal components. Thus the gradients are es-
timated by backpropagating through the specific loss functions (mean absolute error for lpx, or
through the feature extraction network φL for lf,m), the generatorG and the norm. Implementation-
wise this backpropagation procedure relies on automatic differentiation techniques as imple-
mented in all common neural networks frameworks.

Feature matching networks Feature matching requires a universal set of image descriptors that
frequently occur in our chosen natural images pdata. To obtain these descriptors we trained a
variant of AlexNet (Krizhevsky et al., 2012), with one input channel and 5 × 5 kernels in the

7It is not advisable to use MSE between the whole feature matrices as across a convolutional neural network hierarchy
for any given image they tend to be sparse. Due to this when using MSE our reconstruction model frequently fell into a
local minimum of feature activations with the value 0, which equates blurry images without prominent edges or features.
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first (conv1) layer on the 64 × 64 grayscale ImageNet data described before. The model was
trained towards classifying the standard set of ImageNet categories. We used this network for
vim-1 and Generic Object Decoding, ignoring potential redundancy of features extracted
from the mask in the former. For the BRAINS data set we again trained an AlexNet architecture.
In this case we trained on all 40,000 examples of 36 handwritten digit and character classes from
(Van der Maaten, 2009) and (Schomaker and Vuurpijl, 2000) in order to obtain a universal set of
image descriptors for the handwriting domain.

Reconstruction variability One inherent disadvantage of training models with random compo-
nents, such as randomly initialized weights or stochastic gradient descent (e.g. neural networks)
is the variability of the results, due to different local minima the model will converge to. Further-
more, in the case of GANs small shifts in the predicted latent space can result in well-perceivable
changes in the generated image. We observed this behaviour, which resulted in the model finding
different ways to reconstruct certain images, reconstructing different features of images, or not
finding a recognizable reconstruction at all for an image that could be reconstructed in previous
models. This variability is demonstrated in Figure 8. We attempted to counteract these effects
when obtaining final reconstructions with a simple ensemble model: We averaged the predicted
z over 15 independent training runs, normalizing z to the unit hypersphere (see Section A.1 for
normalization details) again after this.

The feature matching networks, the natural images GAN and the predictive model for z have
all been implemented in the Chainer framework for neural networks (Tokui et al., 2015)8.

3 Results

Using the outlined methods and parameters we obtained a set of validation set reconstructions
for each data set, out of which we show examples of reconstructed images and failure cases in the
following. We proceeded with a quantitative behavioural evaluation of overall recognizability on
these sets.

3.1 Reconstruction examples

3.1.1 Sample reconstructions on BRAINS

Figure 5: Reconstruction examples for handwritten characters. Top row: Presented stimuli. Bottom
row: Reconstructions from BOLD activity.

Figure 5 demonstrates that the method can lead to accurate reconstructions when the DCGAN
is restricted to few handwritten characters classes. Despite a small training set of 290 BOLD im-
ages of V1 and V2, the correct handwritten character is reconstructed in 54% of the cases (de-
termined via human rating; chance level: 17%). Successful reconstructions demonstrate that
the model is also capable of reconstructing structural features such as position and curvature of
lines. When character classes could not be reconstructed frequently such structural similarities

8www.chainer.org; Chainer v1.24
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remained. As mentioned before, the underlying handwritten character DCGAN had difficulties
generating examples of B, and the reconstruction model also failed to reconstruct a B stimulus in
9 out of 12 cases.

3.1.2 Sample reconstructions on vim-1

Figure 6: Reconstruction of natural grayscale images (vim-1). Top row: Presented images. Bot-
tom row: Reconstructions from BOLD activity. Images in the identifiable category are reconstruction
examples correctly assigned in no less than 8 of the 10 behavioural comparisons.

Figure 6 contains reconstruction examples for natural grayscale stimuli from the vim-1 dataset.
At 1820 training examples it was the largest training data set we used. In reconstructions that
were sufficiently accurate to be identifiable in the behavioural tests, contrast differences appear
to be the most likely image feature preserved. Salient pattern information also remained intact.
In some reconstructions luminance information is lost, while structural features remain. A hori-
zontal contour line across the image appears to lead the model into generating a landscape image,
however not in every case.

3.1.3 Sample reconstructions on Generic Object Decoding

Figure 7: Reconstruction of natural grayscale images (Generic Object Decoding). Top row: Pre-
sented images. Bottom row: Reconstructions from BOLD activity. Images in the identifiable category
are reconstruction examples correctly assigned in no less than 8 of the 10 behavioural comparisons.

The Generic Object Decoding dataset has just 1200 training examples, but high SNR
due to long stimulation time. The stimuli are not masked, so overall more content needs to be
reconstructed per image. Reconstruction examples can be seen in Figure 7. Overall the recon-
structions again preserve salient contrasts, but turned out more blurry than the vim-1 recon-
structions. There are also more failure cases9.

3.1.4 Reconstruction variability

When using different model parameters and loss weights, and to a lesser extent across different
runs with the same parameters the model was often reconstructing the same images in different

9The influence of omitting the colour information contained in the original stimuli is unclear. Random generations
from a DCGAN trained with RGB information missed the structural detail obtained in the grayscale variant (data not
shown). When using this RGB DCGAN for reconstructing it was often possible to reconstruct the correct hue for an image
and its components. In terms of structure in most cases it was only capable of reconstructing salient blobs however.
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Figure 8: Reconstruction variability. Reconstructions vary when using different loss weights (λ) and
layers, and to a lesser extent when running the model with the same settings multiple times. This is
caused by the sensitivity of the z space and by different minima the model may find in the DCGAN.
The image shows variants of reconstructions from different parameter settings and hyperparameter
(layers, thresholds) choices when estimating the linear model with the same DCGAN.

ways (for identifiable reconstructions). We described the potential cause of this behaviour further
in Section 2.3 and demonstrate these effects in Figure 8. With the same parameter choices, using
the ensemble model counteracts leftover variability.

3.2 Behavioural evaluation

A number of successful reconstructions of natural images have reversed luminance information
or only slight or transformed structural similarity. Due to this, potential similarity measures such
as the structural similarity index can not be applied as the comparison task is too complex in the
natural images case. In order to obtain a quantitative measure of reconstruction similarity on
each data set we instead made use of human perceptual systems.

We conducted a behavioural perceptual study on Amazon Mechanical Turk10. The advan-
tages of this platform over common university subject pools for collecting human labeling and
uncomplex behavioural scientific data have been discussed and demonstrated (Mason and Suri,
2012). Workers were presented with one original image from the validation sets and had to chose
between the real and one randomly chosen different reconstruction taken from the same valida-
tion set. Each of these choices was one Human Intelligence Task (HIT) compensated with $ 0.01.
As a preventive measure against fake completions and bots, workers had to hold the Masters
status and have an approval rate of 95% or higher on the platform to qualify for our tasks. We re-
peated the procedure ten times for each of the validation set images in each data set, paired with
a different randomly chosen reconstruction from the set in every HIT. To prevent gaming the task
by memorizing the common reconstruction between two comparisons for the same image, it was
made sure that no worker individual saw any image-reconstruction pair twice. Note that due
to the nature of the system, it was also unlikely that any worker saw the full set of images of
any category, though this did occur in few batches. Every HIT was presented once, i.e. we did
not use the platform’s internal repetition mechanism for verification. Across all three validation
sets we presented 2420 of these comparisons in total (due to different validation set sizes 500 for
Generic Object Decoding, 1200 for vim-1 and 720 for BRAINS). These 2420 comparisons
were processed by 105 worker individuals in total.

Figure 9 shows worker performance for the validation images of the three data sets. The
number of correct decisions denotes the total number of correct decisions across all HITs (com-
parisons). As there were ten such HITs per reconstruction it is slightly skewed both by failure
and well-identifiable reconstructions, but is a better representation of overall undecidedness. The
number of correct decisions by image on the other hand applies a majority vote over the ten
decisions per image, representing the number of validation set images that could be correctly
identified.

10www.mturk.com
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Figure 9: Correctly identified reconstructions in pairwise behavioural test. Mechanical Turk workers
were presented with an original image and had to chose its reconstruction out of two. The error bars
show the standard deviation, estimated via non-parametric bootstrapping.

All results were significantly different from random choices with p � 0.01 based on a bino-
mial test (see (Salzberg, 1997)). Although the BRAINS dataset model reconstructed the correct
character class in a mere 54% of the validation set images, structural resemblance between the
original characters and their reconstructions were still strong enough for 71.1% and 72.2% correct
identifications based on overall and per-image decisions respectively. From the set of vim-1 im-
ages workers correctly assigned 70% of the reconstructions, applying the majority vote per image.
As for the overall number of correct decisions only 66.4% were correct, indicating that many re-
constructions were still too crude to not be confused with a different random one. The Generic
Object Decoding natural images stimulus set performed similar at 66.2% correct overall, and
72% if grouped by image. The errors shown in Figure 9 were estimated with non-parametric
bootstrapping on the behavioural results, drawing 100,000 samples. Overall right decisions had
standard deviations of 2.9%, 2% and 2.8% for the data sets BRAINS, vim-1, Generic Object
Decoding. The majority vote per image-metric was estimated to have a standard deviation of
5.3%, 4.2% and 6.3% respectively.
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Figure 10: Histogram of number of correct decisions across validation set images Shows how often
a reconstruction was correctly assigned to the original image, out of 10 comparisons. The red line
indicates the majority vote threshold in the correct by image metric.

Figure 10 shows how often individual images and their reconstructions were matched in the
10 pairwise comparisons per image. If at least 8 correct comparisons out of 10 means that an
image was identifiable (see images of reconstructions), then 55.6% of the images in BRAINS,
43.3% in vim-1 and 38% in Generic Object Decoding fell into this category.

3.3 Interpretability of the latent space in relation to brain representations

The fact that recognizable features of stimulus images could be reconstructed with a simple lin-
ear model indicates that the latent space represents properties that are also represented in brain
activity. However the exact structure of the learned latent space is unknown, and most neural
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networks literature shows a selection of subjectively meaningful directions, but no overall anal-
ysis of properties.

In the following we follow a different, novel route for investigating what the latent space has
learned. In research about natural image statistics the distributions of image gradient magnitudes
in different images have been empirically (Simoncelli (1999)) and theoretically (Geusebroek and
Smeulders (2002)) shown to follow Weibull distributions. These distributions are characteristic
for different types of natural images. There are two parameters determining this distribution,
shape (γ) and scale (β) (see Equation 7). For natural images γ and β are strongly correlated.
Intuitively an increased β parameter means that a histogram of gradient strengths of an image
would be shifted towards the right, which means that an image has more high contrast edges
(see examples in Figure 11).

f(x|β, γ) =

{
γβ−γxγ−1 exp (−( xβ )γ) if x > 0

0 otherwise
(7)

The shape and scale parameters have been shown to be strongly correlated with brain ac-
tivity as measured in electroencephalography (EEG) (Scholte et al. (2009), demonstrating 71%
explained variance of the early grand-average ERP signal). We used 3x3 vertical and horizon-
tal Sobel operators to determine the gradient magnitudes x for each original and reconstructed
image in the data set vim-1. Then we modeled the probability density function of the image
gradient distribution with the 2-parameter Weibull distribution, determining the shape and scale
parameters via maximum-likelihood estimation. We then proceeded to compute the Pearson cor-
relation between the shape and scale parameters of an image (original or reconstructed) against
each estimated latent dimension.

0.5 0.0 0.5

0.4

0.0

0.4

z correlated w.
stimulus  and 

0.5 0.0 0.5

z correlated w.
reconstruction  and 

Figure 11: Latent space and Weibull image statistics Left: Example images from vim-1 for increasing
β (row-wise from top left image to bottom right image). Right: Pearson correlation between each
of the 50 dimensions of z and the shape and scale parameters that describe the distribution of edge
magnitudes. Given for original images and for reconstructed images.

It turned out that several of the latent space dimensions estimated by our linear model show
moderately high positive and negative correlations (up to 0.6) with these two natural image
statistics descriptors (see Figure 11, right panel). The earlier findings show that these parame-
ters can be linearly associated with EEG brain activity, and in Figure 12 we also see this property
for our fMRI data, were primarily voxels in V1, V2 and V4 are correlated with the image statistics
parameters in the vim-1 dataset.

4 Discussion

We presented a new approach for reconstructing static visual stimuli with natural image charac-
teristics from brain activity. We conducted a behavioural study indicating that the reconstructions
this method achieves are sufficient for linking an original image to its reconstruction, even in the
virtually infinite domain of natural images. Using a DCGAN generator as a pretrained natural
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Figure 12: Correlations between vim-1 S1 data and image statistics Histogram of significant voxel-
wise correlations (p < 0.01) between voxel activity and Weibull statistics on S1 from the vim-1 training
set. β is shown at the top and γ at the bottom.

image prior assures that the reconstruction results employ natural image statistics, preventing
noisy images. An advantage of our method is that it does not require end-to-end training of a
high number of complex neural network layers on usually limited neuroimaging data, using a
pretrained DCGAN as a black box instead. Also, as the generative model is trained separately
on a large separate data set there is less danger of overfitting it on the variance in the stimulus
distribution.

The current research in the area of reconstruction, including this study, should be seen as
purely explorative as the experimental requirements are high: Subjects must be highly attentive
and cooperative as they need to passively view thousands of images (of which a part needs to be
frequently repeated to get a cleaner signal for the actual reconstruction) and multiple sessions are
needed to acquire sufficient training data. Alignment across sessions is merely a partly-solved
problem. The state of research is far away from single-shot reconstruction systems.

In the constrained domain of handwritten characters the correct character class could not be
reconstructed in all cases, but the accuracy was still well above chance level. The method could
furthermore reconstruct sufficient structural detail so that the right reconstruction could often
still be identified in the behavioural test, even when the reconstructed character was incorrect. In
this simpler, restricted domain the model showed good performance with a very limited amount
of training data. However the DCGAN had difficulties generating one of the six characters. Nev-
ertheless results indicate that the method can be applied for reconstructing stimuli from such a
limited domain, if made sure that all potential stimulus manifestations occur in the reconstruc-
tion model. In the handwritten characters dataset, in several cases not just the class but virtually
all structural features were preserved.

As for any current reconstruction method, reliability of using them as a measuring tool is
unclear. What we perceive as noise in the reconstruction may be a true prediction by a model
reacting to sudden changes in visual activity. Similarly, clearly visible image properties may
just be noise in the model or the data recording. One danger of the restriction to photorealistic
reconstructions in our work is that an observer may be more likely to trust the reconstructions.
Determining the reliability of a reconstruction with attention or SNR measurements may be one
avenue for research that the subfield would benefit from as a whole.

In Figure 3 we demonstrated on training set examples that the DCGAN captured much of the
variety of the vim-1 natural grayscale image set. While we can state that our results present a
step forward over previous models, the reconstruction quality and generalization performance
on the validation set certainly leave much to be desired. It is possible that generalization perfor-
mance could increase by merely adding much more training data. Although both our natural im-
age data sets contained less than 2000 training images (an insufficient amount for many machine
learning methods), due to the difficulties of neuroimaging experiments vim-1 and Generic
Object Decoding are already considered large experimental data sets within the community.
Yet for reconstruction studies such as ours, massive amounts of high-SNR visual system data
from single subjects may be necessary. Another related antagonist of the generalization capabil-
ities of our approach is the noisy nature of neuroimaging data which does not agree with the
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sensitivity of the latent space. Subtle changes in z induced by noise in the brain data are capable
of strongly changing the features of the reconstructed image. It is unclear whether this problem
would remain in an experiment with much larger amounts of data with high quality.

Also, we achieved our results with a linear regression model. This linear relation promises
interpretability of the relations between the latent space and brain representations, when the re-
construction model is powerful enough and sufficient care is applied. The fact that we could
achieve our results with a basic linear model also means that any more advanced regression
model iteratively trained with a complex image loss function could further improve over our re-
sults. The latent space z of DCGANs has been shown to be capable of learning structural features
of the target domain faces in the original publication (Radford et al., 2015). While this motivated
our model choice, it is unclear to which extent this applies to our natural images GANs. Also,
until there is further investigation it should not be assumed that standard DCGANs learn a well-
structured latent space.

Our loss function involves pixel luminance as well as edge and basic pattern information. We
did not penalize the model on higher-order semantic information, e.g. by using the actual classi-
fications or higher convolutional and fully-connected layers from our feature matching network.
The set of training classes of a convolutional neural network is always restricted to a specific sub-
set. Our reconstructions would thus remain restricted to a predefined set of classes and could not
be called arbitrary. Yet finding a valid method of adding a semantic penalty to the results could
be another way of strongly improving over our results.

Our natural image GAN is set up to approximate the distribution of all natural grayscale im-
ages. This is still a constraint on the set of images that can be reconstructed. It will not be possible
to reconstruct non-natural image types, such as handwritten characters or comic scenes; unless
the generative model can been trained to generate images with non-natural statistics as well. A
GAN trained on a specific image database such as ImageNet or MS COCO will reflect their po-
tentially unbalanced selection of categories (e.g. dog breeds), which presents another bias. In the
current development state GANs can also fall into local minima where generated images show
low variety. The generator can often fool the discriminator by learning a limited set of image
types (modes of the image distribution) perfectly. This problem is known as mode collapse, and
considered one of the more important issues to solve by the deep generative modeling commu-
nity. One frequently explored remedy is providing binary categorical information along with z in
a semi-supervised fashion. However, as mentioned before, such a discrete set of categories would
present a severe limitation contradictory to our aim of reconstructing arbitrary images. A recent
theoretical investigation into the training dynamics leading to mode collapse (along with a pro-
posed solution) can be found in (Kodali et al., 2017). The recent (Bang and Shim, 2018) proposes
a solution that does not suffer from image quality loss. There are other recent ideas addressing
the problem with unsupervised methods (Unterthiner et al., 2017). If mode collapse remains un-
solved, it is a potential limitation for using GANs as a prior for perception reconstruction as the
model would never learn to reconstruct the complete space of possible images sufficiently. How-
ever as demonstrated in Figure 3 the DCGAN chosen here appears to have learned plenty of the
necessary variability.

In conclusion we believe that our method and results present a promising foundation for fu-
ture extensions. As generative modeling is one topic explored extensively in the machine learn-
ing community at the moment, many drawbacks may be solved in the near future. We believe
reconstruction of arbitrary visual stimuli during perception, imagination and even dreaming is
still a largely under-explored territory of neuroimaging research and will continue to strongly
benefit from new advances in the machine learning community.
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Paul Zhutovsky for discussions.

An example implementation of the method presented here is available on the public GitHub
profile of the group: github.com/artcogsys/ganrecon .

References

Bang, D. and Shim, H. (2018). MGGAN: Solving mode collapse using manifold guided training.
arXiv preprint arXiv:1804.04391.

Chang, L. and Tsao, D. Y. (2017). The code for facial identity in the primate brain. Cell,
169(6):1013–1028.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. (2017). A downsampled variant of ImageNet as an
alternative to the CIFAR datasets. arXiv preprint arXiv:1707.08819.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network
learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289.

Creswell, A. P. N., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A.
(2017). Generative adversarial networks: An overview. arXiv preprint arXiv: 1710.07035.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2009, pages 248–255.

Du, C., Du, C., and He, H. (2017). Sharing deep generative representation for perceived image
reconstruction from human brain activity. In International Joint Conference on Neural Networks
(IJCNN) 2017, pages 1049–1056.

Geusebroek, J. M. and Smeulders, A. W. M. (2002). A physical explanation for natural image
statistics. In International Workshop on Texture Analysis and Synthesis, pages 47–52.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing
Systems (NIPS) 2014, pages 2672–2680.
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A Supplemental information

A.1 Training of the deep convolutional GAN

A.1.1 DCGAN architecture

The generator network consists of one linear and four deconvolutional layers, each followed by
batch normalization and rectified linear activation functions (ReLUs). The linear layer takes z
and maps it to the first deconvolutional layer that expects 512 feature channels. The generator
then maps to 256, 128, 64 and 1 feature channels across the deconvolutional layers. Kernel sizes
are 4 × 4 and stride is 2 in every deconvolutional layer. The pixel output of the generator is
scaled between [−1, 1] by applying tanh to the output values as a final step. Numerical
instabilities required additional clipping of the generated pixel values at [−1, 1].
A feature matching loss, using the first discriminator layer, was also added to the generator loss
term. This is a common trick: The distance between the desired image feature statistics for real
images and the feature statistics for fake images should be minimized. For the vim-1 DCGAN
we manually apply the circular mask used for creating the stimuli at the end of training in order
to let the training process focus on the visible area. The discriminator network consists of 4
convolutional layers, followed by batch normalization and exponential linear activations (ELUs,
(Clevert et al., 2015)). Before the image enters the discriminator handicap Gaussian noise with a
standard deviation of 0.15 is added to the input images. This (instance noise) is another
common trick, inhibiting discriminator performance to allow the generator to catch up. Except
in the initial layer (which had 3x3 kernels) all layers use kernel sizes of 4x4 and a stride of 2. The
layers map from 1 to 32, then 64, 128 up to 256 feature channels, and are followed by a linear
layer mapping all final activations to a single value reflecting the discriminator decision.

A.1.2 Training parameters

The latent variable z ∈ [−1, 1]50 is randomly drawn from a uniform distribution and restricted to
a unit hypersphere by normalizing it, in order to embed it in a continuous bounded space
without borders. This step facilitates the prediction of z in an otherwise unbounded solution to
the regression problem. For optimizing the weights of the DCGAN we used the Adam
optimizer (Kingma and Ba, 2014) with default parameters (α = 0.001, β1 = 0.9, β2 = 0.999,
ε = 10−8). The learning rate was 10−4 for all networks. We applied gradient clipping with a
threshold of 10.

A.1.3 Training data sets for the three stimulus spaces

The DCGANs for natural images were trained on a downsampled 64 × 64 variant of ImageNet
(made available with (Chrabaszcz et al., 2017)) together with the Microsoft COCO dataset11. The
image size of MS COCO was decreased to 64 × 64 and center-cropped, and images for which
this was not possible due to aspect ratio were removed from the training set. Before entering
training all images were converted to gray scale and contrast-enhanced, similar to the
transformation described in (Kay et al., 2008) (remapping the pixel values to a new range and
saturating the bottom and top 1% of the pixel values). The image value range entering training
was [−1, 1]. For the vim-1 GAN, again the circular mask was applied. This resulted in
approximately 1.500.000 gray scale natural images used for training in total. Note that DCGAN
training would usually also work with a lower amount of training data.
The DCGAN on handwritten characters was trained on (in total) 15.000 examples of B, R, A, I, N
and S characters from (Van der Maaten, 2009) and (Schomaker and Vuurpijl, 2000). As the
experiment on the BRAINS dataset should focus on a restricted stimulus domain its DCGAN
does not require more expressive power.

11www.mscoco.org, described in (Lin et al., 2014) (last access March 2017)
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A.2 Details on hyperalignment

The common representational space (Haxby et al., 2011) was built using a similar procedure as
in (Güçlü and van Gerven, 2015). For each ROI the initial representational space was the data of
the subject with the most voxels in this ROI. The representational space was estimated on the
training data, and applied on the validation data, projected separately for each subject. The final
functional data in the common representational space was then acquired by taking the average
over these individual subject projections.

A.2.1 Number of voxels per ROI in BRAINS

The two-repetition averaged data from the training and validation set was used for the
projection for this data set. It was estimated on the concatenated V1 and V2 data without further
separation.

Table 1: Number of voxels for each subject in the BRAINS data set, which is restricted to V1 and V2.
The boldly printed number shows the common representational space dimension.

S1 S2 S3

V1 + V2 1588 2784 2420

A.2.2 Number of voxels per ROI in vim-1

The original single trial recordings for train and test were used for hyperalignment. These are
not publicly available, but could be acquired via personal communication. Due to the large
number of voxels, the hyperalignment was done separately for every ROI.

Table 2: Number of voxels for each subject in the vim-1 data set. The boldly printed number indicates
the respective common representational space dimension for this ROI.

V1 V2 V3 V3A V3B V4 LatOcc Other

S1 2858 4531 3914 929 617 2894 1738 34064
S2 3281 4381 3649 1156 1056 2120 774 37460
S3 2818 4157 3142 946 924 1691 1044 36987

A.2.3 Number of voxels per ROI in Generic Object Decoding

As the voxel dimension was relatively small, as in the BRAINS data set we estimated the
common representational space at the same time on all voxels. The available ROIs in this data
set were V1, V2, V3, V4, LOC, FFA and PPA. The original single trial data was used for all steps.

Table 3: Number of voxels for each subject in the Generic Object Decoding data set. The boldly
printed number indicates the common representational space dimension.

S1 S2 S3 S4 S5

All ROIs 4466 4404 4643 4133 4370
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