
Visual Representation of Experimental Protocols

James Scott-Brown∗ and Antonis Papachristodoulou

Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ,

UK

E-mail: james.scott-brown@eng.ox.ac.uk

Abstract

Using robots to automate laboratory tasks could increase throughput and repro-

ducibility, but requires experimental protocols to be specified in a computer-readable

format. We present a new user interface (Lists of Liquids) for specifying experi-

mental protocols by directly manipulating a diagram: rather than having to specify

individual liquid handling operations, the user can simply specify that particular lists

of liquids should be combined as either a Cartesian product or convolution, and the

system will plan a series of liquid handling steps to achieve this. This is intended to

provide a higher-level interface in order to make the creation of protocols faster and

less error prone.

Keywords

automation, reproducibility, protocols, diagrams

∗To whom correspondence should be addressed

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


1 Introduction

There have been various attempts at constructing formal languages for expressing experi-

mental protocols. These are intended to reduce ambiguity compared to natural language

and enable either a robot to automatically execute a protocol, or a computer to guide a hu-

man operator through a protocol. These include both textual interfaces (e.g. BioCoder (1 ),

PaR-PaR (2 ), Aquarium (3 ), Autoprotocol (4 ), Antha (5 ), and Symbolic Lab Language

(6 )) and graphical interfaces (e.g. BioBlocks (7 ), Wet Lab Accelerator (8 ), and proprietary

tools from robotic systems manufacturers).

However, these interfaces place the primary focus on the specific liquid handling steps

to be performed, rather than their intended results. We present here a graphical interface

that reverses this focus: the user expresses what they want to achieve at a high level, and

the system determines what movement of liquids between physical locations are necessary

to achieve this. The system can produce a range of outputs, including a diagram of the

specified operations, a description of the protocol in English, and an executable protocol in

various formats (including Autoprotocol-python and OpenTrons).

In contrast to previous tools, this is a single open-source application that provides one

interface that can be used to control a range of automation platforms.

The decision to make previous interfaces graphical was generally motivated by a desire

to avoid requiring users to be familiar with any programming language (7 , 8 ). However, the

graphical representation that we have chosen has the additional advantage of producing a

diagram with a structure reflecting the protocol’s structure, rather than just representing it

as a linear sequence of steps; this makes it easier to understand what a protocol is intended

to do or identify errors.

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


(a) (b)

Figure 1: Screenshot showing the List of Liquids interface. Left: a list of the containers,
pipettes, and resources required by the protocol, followed by a diagram showing the protocol’s
operations steps. A node labeled zip is highlighted in red, and a panel to the right shows
its details, including a list of its contents. Right: modal dialog for assigning liquids to
specific wells on a container. The cursor is hovering over one well, causing both it and the
corresponding entries in the list on the right (which list its contents at different stages of the
protocol) to be highlighted in yellow.

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


2 Diagrammatic representation of protocols

A protocol is represented by a list of required things (containers, pipettes, resources), and a

diagram showing how they are used.

• Containers are things that can contain liquids (or tip-racks, which contain dispos-

able tips for pipettes, rather than liquids). Some container types consist of a single

compartment (e.g. a trash container), whereas others consist of multiple wells (e.g. a

96-well plate).

• Pipettes are the pipettes used to physically transfer liquids between locations. To

export a protocol in OpenTrons format, the pipette used for each transfer must be

specified, but this is not necessary for all output formats.

• Resources are lists of liquids that are initially present (rather than being created as

a result of following the protocol), and can be regarded as inputs to the protocol. A

resource may consist of a single liquid (e.g. if it represents a buffer or reagent), or

multiple (e.g. if it represents a set of samples).

The diagram is a node-link representation of a Directed Acyclic Graph representing how

particular lists of liquids are created from other lists of liquids as the protocol is carried

out. In this diagram, the nodes represent lists of liquids, and the operations that act on

them. A resource is particular kind of list of liquid that may contain a single liquid (e.g. if

it represents a buffer), or multiple (e.g. if it represents a set of samples).

The volumes of liquid to be transferred are labeled on the corresponding arrows: this

may be a single volume (in which the same volume is taken of all liquids), a list of volumes of

the same length as the list of liquids, or, if a node represents a single liquid, a list of volumes

of any length.

A pair of lists of liquids can be combined in two logical ways: given two lists x and

y, the Cartesian product (cross) independently combines every element of x with every

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


element of y, whereas the convolution operation (zip) combines each element of x with

only the corresponding element of y. If one of the lists consists of only one element, then

it is combined with each element of the other list. The operation of combining the lists is

represented by a node, labeled as either zip or cross. As an example, a zip operation can

be used to combining pairs of PCR primers, and a cross operation can be used to combine

each of the resulting mixtures with each of several samples.

The diagram visually distinguishes between different ways in which things can be com-

bined (Figure 2): a solid arrow indicates that the corresponding liquids remained in the same

wells, rather than being transferred to new wells. When two liquids are combined, the first

could be added to the second (dashed arrow from first, solid arrow from second), the second

could be added to the first (dashed arrow from second, solid arrow from first), or both could

be added to a new, empty, container (dashed arrows from both).

3 Interface for editing

The graphical interface is implemented as a web-application, providing cross-platform sup-

port. The back-end is written in Python using the Flask framework (9 ); the front-end is

written in JavaScript using the D3.js library (10 , 11 ) and cola.js (12 ) for network layout.

Once a user has logged in they are able to create a new protocol or edit a protocol that they

have previously created.

Defining a reference: Containers, pipettes, and resources can be added by clicking on

the ‘add’ link under the appropriate list. Containers and pipettes can be added at any time:

before adding resources, as the diagram is being drawn, or after all operations have been

added.

Adding a resource node: When a resource is added, a corresponding node will be

added to the diagram. Additional nodes can be created by dragging the name of the resource

from the list of resources and dropping it on the diagram.

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


a b a b

a b a b

Add a to b Add b to a

Add a to empty container,
then add b

Add b to empty container,
then add a

Buffer Samples

Buffer

Buffer

Buffer

Buffer

Buffer

cross

cross

cross

cross

cross

cross

180 μL 20 μL

180 μL 20 μL

180 μL 20 μL

180 μL 20 μL

180 μL 20 μL

180 μL 20 μL

BufferEnzyme

dNTP

primer 1

primer 2

aliquot (×6) DNA

water

cross

cross

cross

cross

zip

zip

21 μL 17.5 μL

17.5 μL1 μL

14 μL1 μL

14 μL1 μL

12 μL

1,2,3,4,5.5,5 μL1 μL

1 μL 12,11,10,9,7.5,8 μL

(a)

(c)

(b)

(d) binding buffer

wash buffer

elution buffer

samples

cross

aliquot cross

aliquot cross

pool

Wait 1 hr

Wait 5 min

5 μL 5 μL

50 μL 50 μL

50 μL 20 μL

20 μL

Figure 2: Different arrow styles corresponding to 4 ways of mixing (a), and diagrams for
3 example protocols, representing serial dilution (b), setting up for a PCR run (c), and a
SequalPrep extraction (d).

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


Deleting a node: Any node can be deleted by right-clicking on it, and selecting ‘Delete’

from the context-menu. An exception is the final node corresponding to a resource, which

cannot be deleted.

Adding or deleting an operation: The user can click on a node and drag onto another

to indicate that they should be combined in a new location; this creates nodes corresponding

to the combination operation and the resulting object. If the shift key is held down when

the mouse is released, this will be interpreted as meaning that the node that was dragged

from should be added to the node that was dragged to, rather than both being transferred

to new wells. Right-clicking on the node representing the operation opens a context menu

that allows the combination type to be changed between zip and cross.

The context menu can also be used to add nodes representing operations that act on only

one node, such as performing an operation other than liquid-handling (e.g. thermocycling)

or transfering something from one location to another without combining with anything else

(taking an aliquot, spreading onto agar, or picking colonies). Some operations act on entire

containers, rather than particular wells: this is indicated by a rectangle surrounding the

node representing the process. Dragging between two nodes representing operations of the

same type acting on lists of liquids located in the same container merges them: they are

moved into the same rectangle, and changing the options of one in the panel updates the

other. When reading the diagram the nodes should be interpreted as representing the list of

liquid resulting from performing the corresponding operation on the inpur list of liquids.

Editing an operation: Clicking on a node selects it, highlights it, and displays its

details in an information panel through which they can be edited. For nodes representing

a list of liquids, this displays the contents of each element of the list, which cannot be

directly edited. For processing operations, this allows the relevant parameters to be edited

(e.g. temperatures and durations for thermo-cycling).

Editing link details: Clicking on an edge (or its arrowhead, which provides a larger

target) selects it and displays its details in the side panel. It is also possible to change the

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


parent of an edge by right-clicking, selecting ‘Change parent’ form the context menu, and

then clicking on the node that should become the parent.

Copying part of a diagram: after clicking on the ‘select nodes to copy’ button, clicking

on a node toggles whether it is selected, and multiple nodes can be selected. Clicking on the

‘Copy’ button then copies each of these nodes, and every link that is incident to one of these

nodes. This makes it easy to specify that part of a protocol should be repeated, for example

with both experimental samples and controls.

Assigning to containers and wells: The information panel that opens when a node

is clicked allows the corresponding container to be selected from a list populated with all the

containers that have been defined.

Once a node has been assigned to a container, the specific wells in which it will be located

can be set by either clicking on “Show or set well locations” in the information panel for that

node, or “Well locations” beside the name of the container in the list of containers. Either

of these will open a model window showing the container’s wells on the left, and a list of

liquids assigned to the container on the right. Lists of liquids corresponding to a node are

grouped together and assigned the same colour; the constituent liquids are displayed as a

numbered list, and their components listed.

A single numbered liquid can be dragged from the list and dropped onto a well. Alter-

natively, a coloured bar can be dragged to simultaneously assign the entire list of liquids

corresponding to a node. In the latter case, clicking on the appropriate icon determines

whether these will be placed in a row, column, or rectangle.

Exporting protocols: Above the diagram are a series of links to download the protocol

in various formats. If details required to convert the protocol into the desired format are

missing (e.g. if a transfer does not have a pipette specified) then a modal dialog will appear

listing the errors, and the corresponding parts of the diagram will be highlighted.

The source code, and link to a demo, is available at https://github.com/jamesscottbrown/

list-of-liquids.

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


Acknowledgement

J.S-B acknowledges funding through the EPSRC & BBSRC Centre for Doctoral Training

in Synthetic Biology (EP/L016494/1), and from Dstl. AP acknowledges funding from the

EPSRC (EP/M002454/1).

References

1. Ananthanarayanan, V., and Thies, W. (2010) BioCoder: A programming language for

standardizing and automating biology protocols. J. Biol. Eng. 4, 13.

2. Linshiz, G., Stawski, N., Goyal, G., Bi, C., Poust, S., Sharma, M., Mutalik, V.,

Keasling, J. D., and Hillson, N. J. (2014) PR-PR: Cross-Platform Laboratory Automa-

tion System. ACS Synth. Biol 3, 515–524.

3. Klavins, E. Aquarium. http://klavinslab.org/aquarium.html, 2016; [Online; ac-

cessed 06-Nov-2017].

4. Transcriptic, Autoprotocol. http://autoprotocol.org, 2016; [Online; accessed 06-Nov-

2017].

5. Synthace, Antha. http://www.antha-lang.org, 2017; [Online; accessed 06-Nov-2017].

6. Lab, E. C. How It Works. http://emeraldcloudlab.com/how-it-works, 2017; [Online;

accessed 06-Nov-2017].

7. Gupta, V., Irimia, J., Pau, I., and Rodŕıguez-Patón, A. (2017) BioBlocks: Programming

Protocols in Biology Made Easier. ACS Synth. Biol

8. Bates, M., Berliner, A. J., Lachoff, J., Jaschke, P. R., and Groban, E. S. (2017) Wet

Lab Accelerator: A Web-Based Application Democratizing Laboratory Automation for

Synthetic Biology. ACS Synth. Biol 6, 167–171.

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852


9. Ronacher, A. Flask (A Python Microframework). http://flask.pocoo.org/, [Online;

accessed 06-Nov-2017].

10. Bostock, M., Ogievetsky, V., and Heer, J. (2011) D3: Data-Driven Documents. IEEE

Transactions on Visualization and Computer Graphics 17, 2301.

11. Bostock, M. D3.js - Data-Driven Documents. http://d3js.org/.

12. Dwyer, T. cola.js: Constraint-Based Layout in the Browser. http://marvl.infotech.

monash.edu/webcola/, [Online; accessed 06-Nov-2017].

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/226852doi: bioRxiv preprint 

https://doi.org/10.1101/226852

