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SUMMARY  25 

Bacterial communities are composed of distinct groups of potentially interacting lineages, each 26 

thought to occupy a distinct ecological niche. It remains unclear, however, how quickly niche 27 

preference evolves and whether more closely related lineages are more likely to share ecological 28 

niches. We addressed these questions by following the dynamics of two bloom-forming 29 

cyanobacterial genera over an 8-year time-course in Lake Champlain, Canada, using 16S 30 

amplicon sequencing and measurements of several environmental parameters. The two genera, 31 

Microcystis (M) and Dolichospermum (D), are frequently observed simultaneously during bloom 32 

events and thus have partially overlapping niches. However, the extent of their niche overlap is 33 

debated, and it is also unclear to what extent niche partitioning occurs among strains within each 34 

genus. To identify strains within each genus, we applied minimum entropy decomposition 35 

(MED) to 16S rRNA gene sequences. We confirmed that at a genus level, M and D have different 36 

preferences for nitrogen and phosphorus concentrations. Within each genus, we also identified 37 

strains differentially associated with temperature, precipitation, and concentrations of nutrients 38 

and toxins. In general, niche similarity between strains (as measured by co-occurrence over time) 39 

declined with genetic distance. This pattern is consistent with habitat filtering – in which closely-40 

related taxa are ecologically similar, and therefore tend to co-occur under similar environmental 41 

conditions. In contrast with this general pattern, similarity in certain niche dimensions (notably 42 

particulate nitrogen and phosphorus) did not decline linearly with genetic distance, and instead 43 

showed a complex polynomial relationship. This observation suggests the importance of 44 

processes other than habitat filtering – such as competition between closely-related taxa, or 45 

convergent trait evolution in distantly-related taxa – in shaping particular traits in microbial 46 

communities. 47 

 48 
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INTRODUCTION 49 

Microbial communities are composed of potentially diverse groups of lineages, which 50 

must be sufficiently similar to survive in the same habitat, yet sufficiently dissimilar to occupy 51 

distinct ecological niches and avoid competition. This tension between selection for common 52 

traits to survive in a common environment (habitat filtering) and selection for divergent traits to 53 

reduce competition (niche partitioning among closely-related species) was recognized by Darwin, 54 

and the relative impacts of the two processes on communities are still debated (Cavender-Bares et 55 

al., 2009). A pioneering study of microbial communities using phylogenetic marker genes found 56 

evidence for phylogenetic clustering, suggesting the importance of habitat filtering in selecting 57 

for closely-related taxa sharing specific traits allowing them to survive in a given habitat (Horner-58 

Devine and Bohannan, 2006). However, phylogenetic overdispersion (the opposite pattern as 59 

phylogenetic clustering) has also been observed, suggesting that competition between closely-60 

related taxa can lead to niche partitioning (Koeppel and Wu, 2014). Importantly, the power to 61 

detect phylogenetic overdispersion depends on the phylogenetic resolution (e.g. whether 62 

operational taxonomic units are defined at 97, 98 or 99% identity in a marker gene) (Koeppel and 63 

Wu, 2014). 64 

Beyond searching for phylogenetic patterns of clustering or overdispersion, explicitly 65 

considering the associations between microbial traits and niches can help understand the selective 66 

pressures shaping microbial communities on different evolutionary time scales. It is known that 67 

certain traits (e.g. salinity preference, methanogenesis) are relatively slow-evolving and thus 68 

restricted to only certain lineages, whereas other traits (e.g. phage resistance, organic phosphate 69 

utilization) can be acquired by a single point mutation or gene acquisition, thus evolving rapidly 70 

in response to ecological selection and competition (Martiny et al., 2015). Therefore, habitat 71 
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filtering might be stronger for slow-evolving traits, while niche partitioning will be more likely 72 

for fast-evolving traits.  73 

In this study, we use Hutchinson's definition of a fundamental niche as the set of abiotic 74 

conditions under which an organism can survive and reproduce, and a realized niche as the 75 

conditions under which it is actually observed in nature, accounting for both abiotic and biotic 76 

(e.g. competition, predation, cooperation) interactions (Hutchinson 1957). If two species have 77 

identical ecological niches, one should competitively exclude the other (Gause 1934; Tilman 78 

1982) unless competition is weak due to abundant resources. In practice, closely related taxa 79 

often compete for space and resources (Cavender-Bares et al., 2009), favouring specialization to 80 

reduce overlap in niche space. For example, coexisting (sympatric) taxa within the same genus 81 

tend to have different realized niches, experiencing different seasonal growth patterns or 82 

responding differently to environmental parameters (Gray et al., 2004; Jaspers and Overmann, 83 

2004; Hunt et al, 2008; Simek et al, 2010; Jezberra et al, 2011; Neuenschwander et al., 2015). 84 

Pairs of taxa with similar realized niches can be identified when they co-occur in repeated 85 

sampling over space and time, and such co-occurrence networks are readily inferred from deep 86 

amplicon sequencing datasets (Friedman and Alm, 2012). Typically, niches are considered as 87 

features of species. However, when niches are considered as collections of traits or environmental 88 

associations, the Hutchinsonian niche concept can be extended to taxonomic groupings more 89 

inclusive than species, even if the biological "reality" of such groups is doubtful. Here, we apply 90 

the niche concept to both fine-grained (i.e. sub-genus level) and coarse-grained (i.e. genus level) 91 

taxonomic units. We focus mainly on niche specialization within genera, showing that 92 

specialization is extensive and that lumping bacterial diversity at the genus level obscures finer-93 

scale niche preferences.  94 
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Cyanobacteria are widely and naturally present in freshwater ecosystems, and some 95 

lineages form blooms under appropriate conditions of temperature and nutrients (Konopka and 96 

Broke, 1978; Harke et al, 2016). Several studies have shown that different cyanobacterial genera 97 

can co-occur during blooms, thus sharing at least some dimensions of their realized niches (Pearl 98 

et al, 2001; Yamamoto, 2009). Nitrogen (N) and phosphorus (P) can both be limiting for bloom 99 

formation, and different cyanobacterial taxa apparently have different preferences for N and P 100 

concentrations (Dolman et al., 2012). For example, cyanobacteria capable of N-fixation (such as 101 

Dolichospermum) are associated with more efficient P-utilization at the community level, 102 

suggesting P-limitation when N-fixers are abundant (Andersson et al., 2015; Olli et al., 2015). 103 

Clearly, N and P utilization are ecologically important traits for cyanobacteria, and may be 104 

important for niche partitioning among closely-related strains. In the marine cyanobacterium 105 

Prochloroccocus, P uptake and metabolism appears to be relatively fast-evolving perhaps due to 106 

horizontal gene transfer of P-related genes (Coleman et al., 2010) while light preferences are 107 

slow-evolving, and temperature preferences are intermediate (Martiny et al., 2015). 108 

We investigated niche partitioning within and between Microcystis (M) and 109 

Dolichospermum (D), two genera of potentially toxigenic cyanobacteria that bloom nearly every 110 

year in a large eutrophic North American lake, Lake Champlain. In a previously described 8-year 111 

time-course analysis (2006 to 2013) spanning multiple bloom events, we used 16S amplicon 112 

sequencing to broadly survey changes in the lake microbial community over time, generally at 113 

the genus level (Tromas et al., 2017). Here, we use Minimum Entropy Decomposition of 114 

amplicon sequences (Eren et al., 2014) to identify sub-genus strains (MED nodes; here used 115 

interchangeably with "strains") within each of the two dominant cyanobacterial genera, M and D, 116 

at single nucleotide resolution (i.e. each MED node is an exact sequence variant, distinguishable 117 

from other variants that differ by at least one nucleotide substitution). MED discards low-entropy 118 
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nucleotide positions, which effectively filters out sequencing errors at the expense of possibly 119 

also removing true polymorphism at very low frequency. Therefore, although MED outputs exact 120 

sequences that are actually present in the sample (after denoising), it is possible the MED nodes 121 

contain finer-scale genetic variation which could be captured using additional marker genes or 122 

whole genome sequencing. A previous study demonstrated that oligotypes (similar to MED 123 

nodes) lacked the resolution to distinguish toxic and non-toxic Microcystis lineages, but could 124 

potentially be informative about other, more phylogenetically conserved niches such as eutrophic 125 

(nutrient-rich) vs. oligotrophic (nutrient-poor) lake preferences (Berry et al., 2017). Toxin 126 

production is thought to be fast-evolving because toxin biosynthesis genes are widely distributed 127 

across cyanobacterial genera, suggesting rapid gain and loss. While horizontal gene transfer is a 128 

likely explanation, transfer is probably more frequent among closely-related lineages because 129 

toxin gene trees are congruent with ribosomal phylogenies of distantly-related cyanobacteria 130 

genera (Rantala et al., 2004). 131 

We used a combination of genetic data (diversity of MED nodes) and matched 132 

environmental data (e.g. temperature, nutrient concentrations, precipitation) to address three 133 

specific questions. First, how similar are the niches of the two dominant cyanobacterial genera M 134 

and D? Second, how similar are the niches of strains within each genus? Third, how does niche 135 

similarity change with genetic relatedness? We confirm that M and D are broadly co-occuring 136 

during blooms, but have distinct nutrient preferences. We also identified niche partitioning at the 137 

sub-genus level, and observe a general decline in realized niche similarity with genetic distance, 138 

consistent with habitat filtering. However, certain niche dimensions (particulate nutrient 139 

concentrations) show a complex polynomial relationship with genetic distance, suggesting that a 140 

combination of habitat filtering and competitive interactions shapes the evolution of these traits. 141 

 142 
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MATERIALS AND METHODS 144 

 145 

Sampling, DNA extraction, purification and sequencing 146 

Open-water season samples (April to November) collected over 8 years (2006 to 2013) 147 

from the photic zone of Missisquoi Bay at two different sites (littoral and pelagic) of Lake 148 

Champlain, Quebec, Canada (45°02'45''N, 73°07'58''W) were filtered and extracted for DNA 149 

sequencing as described in Tromas et al., (2017).  150 

 151 

Sequence analysis 152 

A total of 7,949,602 sequences of the 16S rRNA gene V4 region were obtained from 150 153 

lake samples, with a median of 41,982 per sample as previously described (Tromas et al., 2017). 154 

These sequences were processed with the default parameters of the SmileTrain pipeline 155 

(https://github.com/almlab/SmileTrain/wiki) that includes reads quality filtering, chimera 156 

filtering, and merging using USEARCH (version 7.0.1090, http://www.drive5.com/usearch/, 157 

default parameter) (Edgar, 2010), Mothur (version 1.33.3) (Schloss et al., 2009), Biopython 158 

(version 2.7) and custom scripts. Minimum Entropy Decomposition (MED) was then applied to 159 

the filtered and merged reads to partition sequence reads into MED nodes (Eren et al., 2014). 160 

MED was performed using the following parameters –M noise filter set to 500 resulting in ~7% 161 

of reads filtered and 941 MED nodes (Data Sheet 2). Samples with less than 1000 reads were 162 

removed, yielding a final dataset of 135 samples. Finally, taxonomy was assigned using the 163 

assign_taxonomy.py QIIME script (default parameters), and a combination of GreenGenes and a 164 

freshwater-specific database (Freshwater database 2016 August 18 release; Newton et al., 2011), 165 

using TaxAss (https://github.com/McMahonLab/TaxAss, installation date: September 13th 2016; 166 

Rohwer et al., 2017). After assignment, nodes that belong to Eukaryotes but still present in the 167 
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database (Cryptophyta, Streptophyta, Chlorophyta and Stramenopiles orders) were removed, 168 

leading to a total of 891 nodes. 169 

 170 

Diversity analysis 171 

 Comparing changes in the diversity of M strains to the diversity of D strains was 172 

performed using betta (Willis et al., 2017). betta accounts for strains that are present in the 173 

environment but not observed in the samples due to incomplete sampling. The number of 174 

unobserved strains is estimated based on the number of strains that are observed and their 175 

abundances. The total strain diversity was estimated using breakaway (R package v4)which 176 

accounts for ecological interactions between strains (Willis and Bunge, 2015).  177 

 178 

Conditionally rare taxa analysis 179 

We investigated the temporal dynamics of M and D nodes by measuring the composition for each 180 

genus in conditionally rare taxa. The matrix of node absolute abundances was used as input for 181 

the R script CRT_Functions_v1.1.R (Shade et al., 2014; 182 

https://github.com/ShadeLab/ConditionallyRareTaxa) using the default parameters. Conditionally 183 

rare taxa are defined as usually-rare taxa that occasionally become very abundant, without 184 

showing rhythmic or seasonal patterns.  185 

 186 

Node–environment relationships analysis  187 

To investigate node–environment relationships, we used an environmental data matrix that 188 

included: particulate phosphorus in µg/ L (PP, the difference between TP and DP), particulate 189 

nitrogen in mg/ L (PN, the difference between TN and DN), total dissolved phosphorus in µg/ L 190 

(DP), total dissolved nitrogen in mg/ L (DN), 1-week-cumulative precipitation in mm and 1-191 
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week-average air temperature in Celsius. Total nutrients were measured directly from collected 192 

lake water and the dissolved nutrients were measured in filtered water (Glass microfiber Filters 193 

grade GF/F, 0.7 microns). The detailed measurements of each environment variable are described 194 

in Tromas et al (2017). In this previous study, we showed that these environmental variables, 195 

over the 8 years, were not correlated with one another. 196 

 197 

Response to abiotic factors 198 

To analyze the response of each node to abiotic environmental data, we used a Latent 199 

Variable Model (LVM) framework, which combines Generalized Linear Models with Bayesian 200 

Markov Chain Monte Carlo (MCMC) methods (boral package in R; Hui 2015, Warton et al. 201 

2015). LVM is a model-based approach for analyzing multivariate data (e.g. numerous taxa 202 

within the response matrix) that partitions the different drivers of taxa co-occurrence patterns into 203 

two components: the first is a regression component, which models the taxon-specific 204 

environmental responses, and the second is a latent variable component, which is used to identify 205 

residual patterns of co-occurrence resulting from unmeasured factors and/or biotic interactions 206 

(Letten et al. 2015). In this study, we used LVMs to examine how taxa co-respond to abiotic 207 

gradients, and used these co-responses as a proxy for niche similarity. To do so, we extracted the 208 

environmental correlation matrix from the regression model, which, for any two taxa, 209 

corresponds to the correlation between their fitted values (xiβj). In particular, for each node we 210 

calculated the predicted probability of mean abundance for each site on linear and nonlinear  (i.e. 211 

Y ~ X + X2) response scales, providing a vector of fitted values. Correlations among the fitted 212 

responses of any two taxa were then calculated based upon these vectors (correlating the vector 213 

of taxon A with the vector of taxon B, for instance).  214 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2018. ; https://doi.org/10.1101/226860doi: bioRxiv preprint 

https://doi.org/10.1101/226860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

We first tested LVMs using a response matrix of two columns, corresponding to the 215 

relative abundances of the D and M genera, relative to the rest of the bacterial community. For 216 

these models, D and M abundances were normalized by the total counts of all bacteria using the 217 

centered log ratio to correct for data compositionality (clr-inter genus) (Aitchison, 1986; Paliy 218 

and Shankar, 2016) using a a zero-replacement procedure as suggested in Gloor and Reid (2016). 219 

To then examine dynamics within these genera, we ran separate LVMs for D and M nodes (i.e. 220 

response matrix consisted of the D and M nodes, respectively). For this second set of LVMs, 221 

node abundances were normalized by the total counts of D and M, respectively, to obtain an 222 

intra-genus relative abundance (clr-intra genus) for each node. Environmental variables were 223 

standardized to mean zero and unit variance to reduce the correlation between the linear (X) and 224 

nonlinear (X2) fit, which also simplified model interpretation and stabilized MCMC sampling. As 225 

most of the D nodes were conditionally rare, we included only the D nodes that were present in at 226 

least 70% of samples, to avoid overfitting based on too little data. To complement this 227 

multivariate LVM analysis and help visualize the univariate response of each genus and node to 228 

the suite of environmental variables, we also tested linear (degree-1 polynomial) and nonlinear 229 

(degree-2 polynomial) relationships between each response and explanatory variable. We used 230 

AIC to find the single best-fit model (either linear or nonlinear) for each relationship and plotted 231 

the best-fit model. 232 

Lastly, to test whether co-responses or niche separations were stronger for more closely or 233 

distantly related nodes, we extracted the correlations between fitted responses of any two nodes 234 

from the environmental correlation matrix of each best-fit LVM and examined the relationship 235 

between each significant correlation and the pairwise genetic distances of the two respective taxa 236 

(percent identity in the V4 region of the 16S gene). Here, significant positive correlations 237 

represent co-response between any two taxa whereas significant negative correlations represent 238 
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the degree of niche separation.  The genetic distance between nodes was measured within each 239 

genus M and D using the software MEGA (version 7.0.18) using the p-distance (the proportion of 240 

nucleotide sites at which two sequences differ), calculated by dividing the number of sites with 241 

nucleotide differences by the total number of sites compared (excluding sites with gaps). R code 242 

to reproduce these analyses and relevant figures is provided in Data Sheet 3. 243 

Co-occurrence analysis 244 

Co-occurrences between Microcystis or Dolichospermum and other taxa were calculated 245 

with SparCC (Friedman and Alm, 2012), with 20 iterations to estimate the median correlation of 246 

each pair of MED nodes, and 500 bootstraps to assess the statistical significance. Correlations 247 

were then filtered for statistical significance (P < 0.01) and correlations with R > ±0.6, were 248 

selected to build networks using Cytoscape (version 3.1.0). 249 

 250 

RESULTS  251 
 252 

Do Microcystis and Dolichospermum co-occur temporally? 253 

We have previously shown that M and D were the two most dominant bloom forming 254 

cyanobacteria in Lake Champlain’s Missisquoi Bay (Tromas et al., 2017). Both genera were 255 

present every year at both littoral and pelagic sampling sites, between 2006 and 2013, with a 256 

relative abundance of at least 15% on average during summer (max=24.8%), with the exception 257 

of summer 2007 (0.7%) when no substantial blooms occurred (Figure 1). D was generally the 258 

most dominant genus except for 2009 and 2010 when M dominated (Figure S1). D and M were 259 

both present every year, (Figure S1) suggesting that they share similar physico-temporal niche 260 

during a bloom, although other aspects of their niches likely differ. For example, D can fix 261 

nitrogen but M cannot (Hajdu et al., 2007).  262 
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 263 

Figure 1. Temporal dynamics of the two dominant cyanobacterial genera over an eight-year 264 

time course in littoral (A) and pelagic (B) sampling sites. Relative abundance of Microcystis is 265 

shown in solid red, Dolichospermum in dashed green and the other members of the bacterial 266 

community in dashed light violet. The time scale (x-axis) is in units of years. 267 

 268 
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Are Microcystis and Dolichospermum equally diverse and dynamic? 270 

To explore the temporal dynamics of the finer-scale taxa within each genus, we partitioned each 271 

genus into MED nodes, which we call "strains" (Methods). We obtained 25 D strains and 6 M 272 

strains, and after accounting for low-abundance strains that may be missing from the samples 273 

using Breakaway (Methods), we conclude that diversity is significantly lower within M than 274 

within D (P<0.001). The difference in the number of nodes is unlikely to be an artefact of 275 

sequencing depth, because there is no correlation between the number of sequence reads and the 276 

number of nodes per genus (Figure S2). D thus appears to be more diverse than M.  277 

 We then examined whether nodes within the M and D genera followed the same temporal 278 

dynamics. We observed that 15/25 D nodes were conditionally rare, meaning that they are 279 

usually rare but occasionally become relatively abundant, without following any apparent rhythm 280 

(Table 1).  281 

 282 

 Number of 
conditionally 
rare nodes 

Number of 
total nodes 

Proportion 
conditional rare 
/ total nodes 
 

Fisher's 
Exact Test 
P-value 

Whole bacterial community 95 891 0.10  

Dolichospermum 15 25 0.60 P < 0.001 

Microcystis 1 6 0.16 P > 0.1 

 283 

Table 1. Conditionally rarity analysis. We compared the proportion of conditionally rare M or D 284 

MED nodes to the proportion expected among MED nodes in the entire lake bacterial community 285 

using Fisher's exact test.  286 

 287 
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The proportion of rare D nodes was significantly higher than what is observed in other nodes in 288 

the lake community (Fisher's exact test, P < 0.001). Several conditionally rare D nodes seemed to 289 

dominate several times without showing seasonal patterns (Figure S3). Furthermore, we noticed a 290 

shift in node composition after 2011, where node D5505 decreased while D2282 increased in 291 

relative abundance. In contrast, we only found one conditionally rare M node. However, only two 292 

M nodes (M5732 and M5733) were consistently dominant over time (Figure S4). Similarly, only 293 

two D nodes, but not always the same two, dominated at any given time (Figure S3). Overall, 294 

these results suggest that D is more genetically diverse, and that this genetic diversity varies over 295 

time. In contrast, M is less diverse and more stable over time. 296 

 297 

Do Microcystis and Dolichospermum share the same realized niche within the community? 298 

To investigate the niche separation between D and M, we analyzed their relationships with 299 

several environmental conditions measured at the time of sampling (temperature, nutrient 300 

concentrations, precipitation and toxin concentrations). We observed that these two 301 

cyanobacterial genera have different responses to nutrients (Figure S5) as previously observed 302 

(Anderson et al 2015; Harke et al., 2016). M relative abundance was positively correlated with 303 

DP (Figure S5; R2=7%), in agreement with previous observations (Homma et al., 2008). In 304 

contrast, D was not significantly correlated with DP, and instead was positively correlated with 305 

PP and PN (Figure S5). D also responded negatively to dissolved nitrogen, in agreement with 306 

previous studies demonstrating that Nostocales (the Order containing Dolichospermum) are 307 

favoured under conditions of low dissolved inorganic nitrogen, due to their ability to utilize 308 

atmospheric nitrogen for growth (Suikkanen et al., 2013; Andersson et al., 2015). Overall, these 309 

results confirmed that M and D share a spatio-temporal niche during a bloom, but have distinct 310 

nutrient preferences.  311 
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How similar are the niches of strains within a genus? 312 

Numerous studies have focused on environmental conditions that favour cyanobacterial blooms, 313 

but few studies have examined how different cyanobacterial strains might respond differently to 314 

environmental conditions due to niche partitioning. We observed that D and M strains, within 315 

each genus, appear to have qualitatively different dynamics (Figure S3, S4). To test whether these 316 

different dynamics were due to niche partitioning, we first analyzed how the different strains 317 

within each genus were related to environmental variables, and then used Latent Variable Models 318 

(LVMs) to determine the co-responses (niche similarity) as well as niche separation between 319 

strains.  320 

 We found that nearly all (19/20) of the significant relationships between strain relative 321 

abundances (within each genus) and environmental conditions were linear (Figure 2; Table S2). 322 

D nodes D2282 (red) and D5630 (green) showed opposite responses to nutrients (PP and PN) and 323 

precipitation (Figure 2A). The LVMs confirmed a significant niche separation for these niche 324 

dimensions (Figure S6). In contrast, nodes D2424 and D5630 both displayed a similar negative 325 

relationship (Figure 2A), resulting in a significant co-response (niche similarity) to DN (Figure 326 

S6). Within the M genus, we observed several nodes with similar responses to PP, PN and DP 327 

(Figure 2B), and significant co-responses between nodes were detected for these niches (Figure 328 

S7). We also found significant niche separations for DN (involving M5732, M5733 and M5738) 329 

and temperature (involving M5734 and M5738) (Figure S7). Overall, the LVM analysis showed 330 

that niche separation occurs among nodes within a genus (Figure S8). In D, niche separation 331 

occurred mainly in the niche dimensions of particulate nutrients (PP and PN) and precipitation 332 

(Figure S6), whereas in M niche separation occurred mainly according to temperature and DN 333 

preferences (Figure S7).  334 

 335 
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Figure 2. Niche partitioning at the 336 

sub-genus level. Best-fit polynomial 337 

models of the response of 338 

Dolichospermum (A) and Microcystis 339 

(B) nodes to abiotic factors. The 340 

relative abundance of each MED node 341 

(strain) was computed relative to the 342 

total number of reads within each genus 343 

using the centered-log ratio (clr) 344 

transform. Significant relationships are 345 

shown by solid lines and coloured 346 

confidence intervals. In most cases, the 347 

degree-1 polynomial (linear model) 348 

provided the best-fit (see Table S1 for 349 

details). For D, only the dominant 350 

nodes (observed in at least 70% of 351 

samples) are shown. 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 
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How do niche preferences vary with genetic distance? 362 

When two taxa share the same realized niche (i.e. where they are actually able to survive in the 363 

wild, including biotic and abiotic niches), they are more likely to be observed together, and thus 364 

to be correlated in survey data. We therefore used co-occurrence patterns between pairs of D or 365 

M nodes as a proxy for similarity in their realized niches, and asked if more genetically similar 366 

nodes are more likely to have similar realized niches. Indeed, we found that pairwise SparCC 367 

correlation coefficients between nodes tends to decline with genetic distance (Figure 3).  368 

 369 

Figure 3. Co-occurrence of strains declines with their pairwise genetic distance. Relationship 370 

between co-occurrence (significant SparCC correlation, P < 0.05) and genetic distance (p 371 

distance) between Dolichospermum (A) and Microcystis (B) nodes. Blue diamonds represents the 372 

mean SparCC correlation for each distance. Boxplots show the median (horizontal line), the 25th 373 

and 75th percentile (enclosed in box) and 95% confidence intervals (whiskers). The discreteness 374 

observed in the x-axis is due to the discrete number of substitutions in the 16S rRNA gene 375 

sequence (e.g. exactly 1, 2, 3,... nucleotide differences between pairs). 376 

 377 

This pattern was significant within both D (linear regression, F(1,279) = 28.3, P < 0.001, adjusted 378 

R2 = 8.9%) and M (linear regression, F(1,13) = 7.9, P < 0.05, adjusted R2 = 33.0%). The higher 379 

R2 observed for M might be explained by its more limited genetic diversity (maximum pairwise 380 
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genetic distance ~0.01) compared to D (maximum distance ~0.05). There appears to be a rapid 381 

decline in niche similarity as genetic distance goes from 0 to ~0.01 (adjusted R2 = 23.0% in D 382 

when considering only this distance range) followed by a flatter relationship for genetic distance 383 

>0.01. 384 

 Ecologically distinct lineages are expected to be associated with distinct surrounding 385 

communities, due to a combination of direct microbe-microbe (biotic) interactions and shared 386 

preferences for abiotic conditions (Cohan and Koeppel, 2008). We therefore analyzed the co-387 

occurrence patterns between each D or M node and other bacterial taxa in the lake community. 388 

We identified non-cyanobacterial MED nodes that co-occurred with each D and M node and 389 

found that M nodes were generally more connected with other members of the bacterial 390 

community (Figure S9). We also found that relatively few taxa (4 out of 26; Table S5) are 391 

significantly correlated with both M and D, suggesting that M and D strains co-occur with distinct 392 

sets of other bacteria, and thus have distinct realized niches.  393 

 We further investigated whether more closely-related M or D nodes have more similar 394 

correlations with potentially interacting community members. We focused on members of the 395 

Cytophagaceae family (MED nodes 3667, 5983, and 5984), which are potential predators of 396 

cyanobacteria (Rashidan and Bird, 2001), members of the Rhizobiales order (nodes 4737, 3705, 397 

and 3726), which are potential N-fixers that could provide nitrogen for non-N-fixing Microcystis 398 

(Louati et al., 2015), and all the taxa that co-occurred with both D and M nodes (nodes 1061, 399 

4674, 7272, and 4756). For each pair of D or M nodes, we correlated their genetic distance (as in 400 

Figure 3) with the absolute difference in the correlations (r) with each potentially interacting 401 

community member (Figure S11). We found that closely-related D nodes tend to have more 402 

similar correlations with Cytophagaceae node 3667, whereas more distantly-related D nodes 403 

have more different correlations with node 3667 (Correlation between |Δr| and genetic distance, 404 
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adjusted-R2=0.059, P < 0.001). Similar but not statistically significant patterns were observed for 405 

several M nodes. It is difficult to generalize from these results, but at least in some cases, more 406 

phylogenetically similar strains may share conserved interactions with other community 407 

members.  408 

 409 

 Finally, we asked whether the decline in niche similarity with genetic distance (Figure 3) 410 

was a common feature of all niche dimensions, or if different abiotic parameters showed different 411 

patterns. We considered all significant models, both linear and non-linear as shown in Figure 4 412 

(for D) and Figure S10 (for M). We found a negative linear relationship between DN niche 413 

similarity and genetic distance (adjusted R2=25%, P = 0.0791). Qualitatively, most other niche 414 

dimensions showed a similar pattern for D (Figure 4), and among M nodes we found a significant 415 

negative linear relationship between the correlated fitted response to microcystin concentrations 416 

and genetic distance (Figure S10). However, we also identified non-linear relationships between 417 

D niche similarity and genetic distance for PP (adjusted R2=69%, P = 0.0184) and PN (adjusted 418 

R2=63%,  P= 0.0280). For these niche dimensions, the correlation of fitted responses declines 419 

from genetic distances of 0 to ~0.01, then rises to another peak around ~0.03 before declining 420 

again (Figure 4). While these non-linear models provided significantly better fits to the data 421 

compared to linear models, we cannot exclude the possibility that the fits were driven by a few 422 

outlying points particular to our data set. Replicating these findings in additional data sets (e.g. 423 

from different lakes, over different time scales) is therefore essential. 424 
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 425 

Figure 4. The relationship between genetic distance and the co-response (niche similarity) 426 

for Dolichospermum. LVMs were used to identify correlations between the responses of MED 427 

nodes to each measured environmental parameter (separate panels). Positive correlations of fitted 428 

responses indicate similar niches; negative correlations indicate different niche preferences. 429 

Genetic distances were computed using the p-distance. Separate model fits were tested with the 430 

Akaike information criterion (AIC) for the relationship between each niche dimension and 431 

genetic distance. See Table S4 for details of model fits. Significant model fits are shown with 432 

thick solid lines; non-significant fits are shown with dashed lines. 433 

 434 

  435 
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Discussion 436 

Overall, our results show how Microcystis and Dolichospermum can achieve similar levels of 437 

dominance during cyanobacterial blooms by partitioning niche space within and between genera. 438 

Over eight years of sampling, we observed that Dolichospermum and Microcystis generally co-439 

occurred during blooms, suggesting a broadly similar physico-temporal niche (Figure 1; Figure 440 

S1). However, we confirmed that D was associated with lower concentrations of dissolved 441 

nitrogen, consistent with its known ability to fix nitrogen (Harke et al., 2016, Andersson et al., 442 

2015) while M was associated with higher concentrations of dissolved phosphorus (Figure S5). 443 

These genus-level traits could mask niche differentiation among strains within each genus. 444 

 To dissect niche preferences at finer taxonomic resolution, below the genus level, we used 445 

minimum entropy decomposition (MED), allowing single-nucleotide resolution of 16S amplicon 446 

sequences, i.e. each MED node is an exact sequence variant. Finer taxonomic resolution has been 447 

shown to increase the power to correctly identify phylogenetic overdispersion, a signature of 448 

competitive interactions being more important than habitat filtering (Koeppel and Wu, 2014). 449 

However, even at high resolution, the 16S marker gene may be too slow-evolving to be a good 450 

marker for fast-evolving traits, such as toxin production (Berry et al., 2017) – a trait which likely 451 

evolves rapidly by horizontal gene transfer (Moffit and Neilan, 2004).  452 

 Despite these limitations, MED analysis provided additional insights into the distinct 453 

niches of M and D. Dolichospermum diversity was higher and most of the MED nodes (strains) 454 

were conditionally rare, some of them being bloom-associated in some years but not in others 455 

(e.g D2282, Figure S3). Microcystis nodes, on the other hand, were less diverse but more 456 

consistently bloom-associated (nodes M5732 and M5733; Figure S4) and more correlated with 457 

other taxa (Figure S9), suggesting that the two dominant bloom-forming genera might use 458 
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different ecological strategies, beyond what is already known about nitrogen and phosphorus 459 

utilization.  460 

 Examining niche partitioning below the genus level also allowed us to detect patterns not 461 

evident at the genus level. For example, Dolichospermum is associated with higher 462 

concentrations of PP and PN at the genus level (Figure S5), but contains a strain (D5630) that 463 

shows the opposite pattern (Figure 2, Figure S6). Within Microcystis, niche partitioning occurred 464 

mainly for temperature and DN, and the two most dominant M nodes had a significant niche 465 

separation for DN (Figure 2; Figure S7). It is known that Microcystis does not fix atmospheric 466 

nitrogen, but is able to use refractory N-containing compounds such as urea or amino acids 467 

(Moisander et al., 2009; Dai et al., 2009), and DN is likely needed for toxin production 468 

(Monchamp et al., 2014). Therefore, different M strains could specialize in their preference for 469 

different forms of nitrogen.  470 

 The relative importance of habitat filtering and competition in shaping microbial 471 

communities is widely debated, and distinguishing between the two processes can be technically 472 

challenging (Koeppel and Wu, 2014; Cadotte and Tucker 2017). Consistent with a general effect 473 

of habitat filtering in selecting for genetically similar cyanobacteria under similar conditions, we 474 

found a negative relationship between MED node co-occurrence and pairwise genetic distance 475 

(Figure 3). This result is in agreement with an early study showing the importance of habitat 476 

filtering in microbial communities (Horner-Devine and Bohannan, 2006) and is also consistent 477 

with what was observed by Silverman et al (2017) using human microbiome data. Here we 478 

considered co-occurrence as a proxy for shared realized niches, including both biotic and abiotic 479 

factors.  480 

 Consistent with the general importance of habitat filtering in shaping cyanobacterial 481 

communities, we observed that closely-related strains tended to have similar co-responses to 482 
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several measured abiotic environmental parameters. For example, we found negative linear 483 

relationships between niche similarity and Dolichospermum genetic distance for most niche 484 

dimensions, particularly DN (Figure 4). This observation is in agreement with a previous study 485 

that showed that bacterial and fungal responses to N fertilization tend to be more similar among 486 

close relatives, with a decline in similarity between genetic distances of 0 and 0.05 (Martiny et 487 

al., 2015; Amend et al., 2016). In Microcystis, we found that more genetically similar strains 488 

tended to be observed at more similar concentrations of the toxin microcystin (Figure S10). 489 

Although 16S is a poor marker for microcystin production (Berry et al., 2017), our results 490 

suggest that phylogenetic relatedness is nevertheless somewhat predictive of microcystin 491 

concentrations. This means that microcystin production or tolerance is more likely to be shared 492 

by close relatives. 493 

 In contrast to the general pattern of declining niche similarity with genetic distance, PN 494 

and PP both had non-linear relationships with genetic distance in Dolichospermum (Figure 4). 495 

After an initial decline in co-responses to PN and PP to a genetic distance of ~0.01, co-response 496 

rose to another peak at ~0.03 before declining again. This response is consistent with near-497 

identical MED nodes sharing the same preferences for PN and PP concentrations, and that 498 

competition between close-relatives (up to genetic distance of ~0.01) imposes divergent selection 499 

for distinct niche preferences. The similarity in PN and PP niches for more distant relatives 500 

(distance ~0.03) can be explained if distant relatives have diverged to reduce competition in other 501 

niche dimensions, allowing them to converge in PN and PP preferences. It is unclear why this 502 

non-linear relationship is observed for PN and PP, but not for other niche dimensions. One 503 

possibility is that P uptake and metabolism genes are easily acquired by horizontal gene transfer, 504 

as observed in marine cyanobacteria (Coleman et al., 2010) and may thus be more rapidly 505 

evolving, resulting in non-linear relationship with phylogenetic distance. Yet it is unclear why the 506 
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non-linear pattern is observed for particulate but not dissolved N and P. Particulate nutrients 507 

could be a marker for biomass (e.g. bloom density), but it is equally unclear how rapidly "bloom 508 

preference" would be expected to evolve. The same non-linear pattern might be expected for 509 

microcystin, due to frequent gain/loss of the underlying biosynthetic genes. However, we observe 510 

a linear relationship (Figure S10) between microcystin concentrations and genetic distance 511 

among Microcystis strains – but only in a very narrow range of genetic distance (99-100% 512 

identity). Therefore, non-linear relationships could become apparent among more distantly 513 

related strains (e.g. 95-99% identity).  514 

 To investigate how biotic niches change over evolutionary time, we studied how 515 

cyanobacterial interactions (SparCC correlations) with non-cyanobacterial community members 516 

varied with genetic distance among cyanobacteria. We found that genetically similar 517 

Dolichospermum strains tended to have similar interactions with a strain of Cytophagaceae, a 518 

potential cyanobacterial predator, whereas more distantly related Dolichospermum strains 519 

diverged in terms of their interactions (Figure S11). We limited our analyses to only the most 520 

common interacting partners (common to M and D) or those previously suspected to interact with 521 

cyanobacteria via predation or cross-feeding. Future studies could expand on these analyses in a 522 

more comprehensive fashion to quantify how biotic interactions evolve over different time scales 523 

and in different lineages. 524 

 Overall, our results show how different traits may have different relationships with 525 

genetic distance, highlighting the importance of considering each niche dimension separately, 526 

because adaptation to different niche dimensions can occur at dramatically different rates 527 

(Martiny et al., 2015). Our results also suggest that the same trait could evolve at different rates 528 

in different cyanobacterial lineages. For example, temperature adaptation evolves at an 529 

intermediate rate in Prochloroccocus (Martiny et al., 2015) and perhaps at a slower rate in 530 
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hotspring Synechococcus (Becraft et al., 2011; Becraft et al., 2015). Using our comparative 531 

framework of two broadly sympatric genera, we identify a general decline in ecological similarity 532 

with genetic distance – although certain traits (e.g. PN and PP in Dolichospermum but not in 533 

Microcystis) go against this trend. A future challenge in microbial ecology and evolution will be 534 

to determine which traits are generally fast- or slow-evolving, and most interestingly, which 535 

lineages provide exceptions. For example, particularly rapid evolution of a generally slow-536 

evolving trait in a particular lineage could provide evidence for an unusual genetic architecture or 537 

strong selective pressure on that particular trait in that particular lineage.  538 
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