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Abstract 
 
Summary: Whole genome sequencing (WGS) has become a mainstay in 
biomedical research. The continually decreasing cost of sequencing has resulted in 
a data deluge that underlines the need for easy-to-use bioinformatics pipelines that 
can mine meaningful information from WGS data. SNPTB is one such pipeline that 
analyzes WGS data originating from in vitro or clinical samples of Mycobacterium 
tuberculosis and outputs high-confidence single nucleotide polymorphisms in the 
bacterial genome. The name of the mutated gene and the functional consequence 
of the mutation on the gene product is also determined. SNPTB utilizes open source 
software for WGS data analyses and is written primarily for biologists with minimal 
computational skills. 
Availability and implementation: SNPTB is a python package and is available 
from https://github.com/aditi9783/SNPTB 
Contact: ag1349@njms.rutgers.edu 
Supplementary information: Tutorial for SNPTB is available at 
https://github.com/aditi9783/SNPTB/blob/master/docs/SNPTB_tutorial.md 
 
 
 
Introduction 
 
Whole-genome sequencing (WGS) has become an integral part of basic and 
translational research on Mycobacterium tuberculosis, spanning topics ranging from 
pathogen evolution, epidemiology, and the emergence of drug resistance to TB 
latency and vaccine development1-6. Publicly accessible databases contain WGS 
data from thousands of clinical isolates of M. tuberculosis2,7,8. Phenotypic data such 
as drug susceptibility testing accompanies the WGS for several of these isolates, 
highlighting the usefulness of this data resource to the scientific community. In 
particular, identifying single nucleotide polymorphisms (SNPs) in WGS allows 
determining the functional significance of these mutations, such as their role in the 
emergence of drug resistance and adaptation to a new environment. In the absence 
of an open-source and stand-alone computational tool for easy analyses of WGS 
data, the data accumulation will continue to outpace extraction of meaningful 
information from sequencing data. 
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SNPTB is a bioinformatics pipeline that combines widely used open-source 
software for WGS data quality control, read mapping to the M. tuberculosis 
reference genome, and SNP calling into a single python package. The input to the 
pipeline is the sequencing data in the fastq format (as is output by technologies 
such as Illumina) and it outputs high-confidence SNP calls. SNPTB has additional 
scripts for data organization and management as well as downstream analyses to 
identify the gene(s) (or the intergenic region) that harbor the mutations and to 
determine if the SNP(s) in a protein-coding gene is a synonymous or a non-
synonymous mutation. This pipeline is written for biologists with some exposure to 
the UNIX operating system. 
 
 
Implementation 
 
SNPTB is a python package for analyzing WGS data in the fastq format. The steps 
in the SNPTB pipeline are: i) data organization, ii) quality control, iii) read mapping, 
iv) SNP calling, and v) SNP annotation (Figure 1). In the data organization step, a 
python script creates a new folder for each sample (prefix in the fastq filenames 
serves as the sample name) and moves the associated fastq files into that folder. 
The subsequent quality control and read mapping steps create subfolders ‘qc’ and 
‘mapped’ within each sample’s directory. 
 
During library preparation for Illumina sequencing, short sequences called 
‘adapters’ are ligated to the DNA fragments. SNPTB uses open-source software 
Trimmomatic (version 0.36) to remove these adapter sequences from the reads 
output by the Illumina sequencers and to perform quality control analysis9. Reads 
shorter than 20 nucleotides are dropped. Trimmomatic also trims low-quality ends of 
the reads and clips a read if the average quality score in a window of four 
nucleotides falls below 20. FastQC then assess the quality of the filtered high-
quality reads10. The final filtered reads, the FastQC output, and the overview of the 
adapter trimming and quality control analyses are saved in the folder ‘qc’. 
 
The high-quality filtered reads are then mapped to the M. tuberculosis H37Rv 
reference genome (NCBI Accession AL123456.3) using the open-source read 
aligner software Bowtie 2 (version 2.2.6)11. The pipeline also outputs average depth 
(number of reads at each genome position) for each sample as well as the percent 
of the genome mapped by at least 5, 10 or 20 reads. High confidence SNPs in the 
mapped reads (probability that a SNP call is incorrect <1e-20) are identified using 
open-source software SAMtools (version 1.2) and BCFtools (version 1.2)12,13. The 
SNP calls are made relative to the M. tuberculosis reference genome and are 
further annotated to determine the location of the SNP (gene name or intergenic 
region) as well as the functional consequence of the mutation (synonymous or non-
synonymous if the mutation lies in a protein-coding gene). The pipeline can also 
identify SNPs relative to another M. tuberculosis WGS sample instead of the 
reference genome. 
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Discussion 
 
While the cost of sequencing is decreasing, the high cost of computational analysis 
of WGS data and long turnaround time remains a challenge for biology laboratories 
that routinely generate appreciable amounts of sequencing data. Several open-
source software for WGS data analyses exist, but they present a steep learning 
curve to bench biologists with limited computational experience. The goal of SNPTB 
is to facilitate bench biologist’s access to computational software for SNP calling, 
which is one of the most common and straightforward analyses of WGS data. The 
python package comes with an example dataset and a step-by-step tutorial to utilize 
SNPTB for SNP calling and SNP annotation in M. tuberculosis genomes.  
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Figure 1. The 
SNPTB pipeline 
for WGS data 
analyses. Main 
steps in the 
pipeline are shown 
along with 
corresponding 
directory structure. 
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