
HMM imputation methods for animal breeding 1 

 1 

 2 

 3 

Assessment of the performance of different hidden Markov models for imputation in animal 4 

breeding 5 

Andrew Whalen, Gregor Gorjanc, Roger Ros-Freixedes, and John M Hickey 6 

 7 

The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of 8 

Edinburgh, Midlothian, Scotland, UK 9 

 10 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/227157doi: bioRxiv preprint 

https://doi.org/10.1101/227157
http://creativecommons.org/licenses/by-nc-nd/4.0/


HMM imputation methods for animal breeding 2 

Abstract 11 

In this paper we review the performance of various hidden Markov model-based imputation 12 

methods in animal breeding populations. Traditionally, heuristic-based imputation methods have 13 

been used for imputation in large animal populations due to their computational efficiency, 14 

scalability, and accuracy. However, recent advances in the area of human genetics have 15 

increased the ability of probabilistic hidden Markov model methods to perform accurate phasing 16 

and imputation in large populations. These advances may enable these methods to be useful for 17 

routine use in large animal populations. To test this, we evaluate here the accuracy and 18 

computational cost of several methods in a series of simulated populations and a real animal 19 

population. We first tested single-step (diploid) imputation, which performs both phasing and 20 

imputation. Then we tested pre-phasing followed by haploid imputation. We tested four diploid 21 

imputation methods (fastPHASE, Beagle v4.0, IMPUTE2, and MaCH), three phasing methods, 22 

(SHAPEIT2, HAPI-UR, and Eagle2), and three haploid imputation methods (IMPUTE2, Beagle 23 

v4.1, and minimac3). We found that performing pre-phasing and haploid imputation was faster 24 

and more accurate than diploid imputation. In particular, we found that pre-phasing with Eagle2 25 

or HAPI-UR and imputing with minimac3 or IMPUTE2 gave the highest accuracies in both 26 

simulated and real data. 27 
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Introduction 28 

 In this paper we review and analyse the use of hidden Markov model (HMM) based 29 

imputation methods for animal breeding populations. Genotype imputation is a key aspect of 30 

many modern animal breeding programs and allows genetic information to be obtained on a 31 

large number of animals at a low cost. When imputation is applied to a breeding program, a 32 

small subset of individuals (e.g., sires) are genotyped at high density, and the remaining animals 33 

are genotyped at a lower density. Statistical regularities between shared chromosomal segments 34 

are used to fill in the untyped loci. Modern imputation methods fill in missing genotypes at a 35 

very high accuracy (e.g., Hickey et al., 2012; Sargolzaei et al., 2011), increasing the number of 36 

animals that can be genotyped for a fixed budget. The larger pool of genotyped animals increases 37 

the accuracy of genetic predictions on all animals (Daetwyler et al., 2008) and offers the 38 

potential to increase selection intensity. 39 

 Traditionally, heuristic imputation methods have dominated animal breeding (Hickey et al., 40 

2012; Sargolzaei et al., 2011; VanRaden et al., 2013). These heuristic methods use large 41 

chromosome segments shared between closely related animals to rapidly and accurately impute 42 

untyped or otherwise missing loci. In contrast, imputation methods used in human genetics have 43 

largely been based on the probabilistic HMM framework of Li and Stephens (2003). These 44 

probabilistic methods tend to have higher accuracy than heuristic methods in datasets where 45 

individuals are not closely related. However, these methods have come at too high of a 46 

computational cost for routine imputation in animal populations.  47 

  In the last few years, the speed of HMM methods has improved. They have been used to 48 

impute hundreds of thousands of individuals to hundreds of thousands of loci in reasonable 49 

computational time (Browning and Browning, 2016; Loh et al., 2016a). These improvements 50 
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have been driven by the widespread availability of large haplotype reference panels, and the 51 

emergence of a two-step imputation pipeline where observed genotypes are first phased and then 52 

untyped loci are imputed based on their phased haplotypes (Spiliopoulou et al., 2017). The 53 

improved scaling of HMMs may allow for their routine use in large animal breeding populations. 54 

However, given the lack of appropriate public domain haplotype reference panels for many 55 

animal populations, smaller population sizes, and sparser marker density, it is not clear that the 56 

advances in HMMs will be realized for animal imputation. Furthermore, there are a number of 57 

competing HMM imputation methods and it is not clear which is most suited for routine use in 58 

animal breeding.  59 

 In this paper we provide a high-level review of several imputation methods and study their 60 

performance on simulated and real data. We grouped comparisons based on single-step (diploid) 61 

imputation methods and a two-step combination of pre-phasing and haploid imputation methods. 62 

Specifically, for diploid imputation we test fastPHASE (Scheet and Stephens, 2006), Beagle v4.0 63 

(Browning and Browning, 2007), IMPUTE2 (Howie et al., 2009), and MaCH (Li et al., 2010). 64 

For pre-phasing we test SHAPEIT2 (Delaneau et al., 2012), HAPI-UR (Williams et al., 2012), 65 

and Eagle2 (Loh et al., 2016b), followed by haploid imputation with IMPUTE2 (Howie et al., 66 

2009), Beagle v4.1 (Browning and Browning, 2016), or minimac3 (Das et al., 2016). We first 67 

review these methods and then evaluate the performance of these methods on simulated and real 68 

data.  69 

Hidden Markov Models 70 

All of the methods considered are based on Li and Stephens’ (2003) HMM framework. 71 

Under this framework an individual’s genotype is considered to be a mosaic of haplotypes from 72 

a haplotype reference panel H={h1…hK}. The methods calculate the probability that the 73 
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individual has the pair of haplotypes, hj and hk at a locus i given the observed genotype (gi), 74 

p(hij,hik|gi). To account for linkage between adjacent loci, the methods evaluate the probability of 75 

a haplotype based on its fit to the observed genotypes at the loci and its similarity to the 76 

haplotypes inferred at nearby loci:  77 

p(hij,hik| g) = p(hij,hik|gi)p(hij,hik|hi-1,hi+1)p(hi-1|g-i)p(hi+1|g+i).    (1) 78 

The term p(hij,hik|gi) measures the fit between the pair of haplotypes and the observed genotype 79 

at a locus. The term p(hij,hik|hi-1,hi+1) captures transitions between haplotypes given the 80 

haplotypes at neighbouring loci. The terms p(hi-1|g-i) and p(hi+1|g+i) measure the fit between 81 

haplotypes and observed genotypes at the remaining loci. These probabilities can be calculated 82 

using the standard forward-backward algorithm (Rabiner, 1989). 83 

 Traditionally, methods that rely on the Li and Stephens framework scale linearly with 84 

both the number of individuals and the number of loci and quadratically with the number of 85 

reference haplotypes. The quadratic scaling is due to phase uncertainty at heterozygous loci, 86 

requiring the methods to model haplotypes assigned on both chromosomes simultaneously. The 87 

quadratic scaling quickly leads to intractable computational costs even for small reference 88 

panels, but can be avoided if the low-density individuals are pre-phased, which allows 89 

haplotypes to be considered independently. Haploid imputation, imputation with pre-phased 90 

haplotypes, therefore scales linearly with the number of individuals, number of loci, and number 91 

of reference haplotypes. 92 

 In this paper we consider two classes of HMMs. In the first class, diploid imputation 93 

methods perform phasing and imputation simultaneously, resulting in quadratic scaling with the 94 

reference panel size. To mitigate this issue, each of the evaluated methods, fastPHASE, Beagle 95 

v4.0, IMPUTE2, and MACH, employ their own strategy to reduce the effective number of 96 
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reference haplotypes while maintaining high accuracy. In contrast, two-step imputation methods 97 

treat phasing and imputation as separate problems. Individuals are first phased and then imputed 98 

using a haploid HMM which scales linearly with the number of reference haplotypes. Phasing 99 

methods may have either quadratic, super-linear, or linear dependence on the number of 100 

reference haplotypes. A number of tricks are deployed to increase phasing speed and accuracy 101 

that would not be applicable if the phasing methods also needed to handle genotype uncertainty 102 

at untyped loci. 103 

 Intuitively, we might expect that the diploid imputation methods will have higher 104 

accuracy (at a higher computational cost) than separately performing phasing and imputation 105 

because they automatically handle phase uncertainty. This is not necessarily the case if most 106 

errors in imputation stem from the inability to find appropriate reference haplotypes that would 107 

explain observed genotypes.  By performing pre-phasing and then imputation, it may be possible 108 

to consider a much larger number of reference haplotypes and thereby increase accuracy by 109 

finding a more appropriate set of reference haplotypes which offset accuracy losses due to 110 

phasing errors.  111 

Below we review methods for diploid imputation, haploid imputation, and phasing. 112 

Diploid imputation 113 

All four diploid imputation methods utilize a haplotype state-space reduction technique to 114 

alleviate the impact of modelling a large number of haplotype reference panels. IMPUTE2 and 115 

MaCH use subsampling, where the haplotypes considered in each iteration are a sample of the 116 

total haplotype pool. fastPHASE and Beagle v4.0 use haplotype clustering, where the overall 117 

number of haplotypes is collapsed into a smaller number of “ancestral” haplotypes. 118 
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In the case of IMPUTE2 and MaCH, each method is run over a series of iterations, and at 119 

each iteration a subset of the haplotype reference panel is used to phase and impute individual’s 120 

genotypes. In MaCH, the subset is selected randomly. In IMPUTE2, the subset is selected to be 121 

made up of haplotypes that are “nearby” the currently estimated haplotype for the individual. If 122 

these methods are run without an external reference panel, a reference panel is built up from the 123 

current phasing of high-density individuals. At each iteration, a new subset of the reference panel 124 

is selected for each individual, individuals are imputed and phased based on that subuset, and 125 

then a reference panel is re-computed from the currently inferred haplotypes. The methods are 126 

run for a small number of iterations (e.g., 20) and the imputation results are averaged across 127 

iterations. There is a potential danger in applying these methods in populations of many closely 128 

related individuals, due to the potential for feedback between the phasing of closely related 129 

relatives (Nettelblad, 2013). 130 

In contrast, in fastPHASE and Beagle v4.0 individuals are imputed based on a set of 131 

estimated “ancestral” haplotypes. In fastPHASE, an expectation-maximisation (EM) algorithm is 132 

used to infer a small number of ancestral haplotypes from the data (e.g., 30) and then iterates 133 

between estimating the haplotypes of each individual as a mosaic of ancestral haplotypes, and 134 

estimating the ancestral haplotypes based on the haplotype assignments of each individual. 135 

Beagle v4.0 uses a similar approach as fastPHASE, but instead of using a fixed number of 136 

ancestral haplotypes, it infers the number of ancestral haplotypes at each marker and models the 137 

transition between ancestral states at adjacent markers in the form of a directed acyclic graph.  138 

Haploid imputation 139 

In contrast to the four diploid methods, haploid methods do not need to use a state-space 140 

reduction technique to handle moderate numbers of haplotypes, because they consider each 141 
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phased chromosome independently and scale linearly with the number of haplotypes in the 142 

reference panels. However, with the recent focus of imputing large bio-bank size human 143 

populations (over 100,000 individuals) to whole genome sequence level data, many of the 144 

current haploid methods utilize techniques to reduce the computational burden when analyzing 145 

large numbers of individuals at a large number of markers. 146 

 The haploid HMM used by Impute2 is a straightforward extension of the diploid method 147 

implemented in the same program. It uses a subset of haplotypes (based on their similarity to the 148 

individual’s current phasing) to impute individuals. Minimac3 uses a similar technique, but 149 

instead of subsetting the reference panel it uses a loss-less haplotype compression technique that 150 

combines haplotypes that are identical in a region and updates the likelihood of those haplotypes 151 

simultaneously. This update is particularly useful for whole genome sequence data where there 152 

may be limited haplotype variation over long windows. Beagle v4.1 moves away from the graph-153 

based haplotype model in Beagle v4.0 and uses a more traditional Li and Stephens model. To 154 

reduce computational burden, Beagle v4.1 aggregates adjacent loci together into strings and 155 

performs updates based on strings instead of individual markers. In addition it only updates the 156 

haplotype probabilities at genotyped loci and linearly interpolates the haplotype probabilities at 157 

untyped loci.   158 

Pre-phasing methods 159 

 Just as with diploid imputation, HMM-based phasing methods naively scale quadratically 160 

with the number of haplotypes in the reference panel. However, this quadratic scaling can be 161 

avoided by a state-space reduction technique of splitting the chromosomes into small windows, 162 

and assuming that linkage information decays quickly across the window boundaries. Both 163 
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SHAPEIT2 and HAPI-UR utilize a window-based approach, whereas Eagle2 manages the 164 

quadratic dependence by performing a limited beam search through the haplotype space. 165 

 SHAPEIT2 operates by splitting the chromosome into small haplotype windows, each 166 

containing three heterozygous loci. For each window, there are 23=8 possible ways to phase it, 167 

and there are 26=64 possible transitions between windows. SHAPEIT2 evaluates the probability 168 

of each of the 8 possible haplotypes and 64 transitions based on a haplotype reference panel, and 169 

then phases individuals by sampling haplotypes based on their posterior probabilities. The 170 

probability of a haplotype in a given window, and transition between windows can be evaluated 171 

in a time that scales linearly with the number of reference haplotypes. As in IMPUTE2, 172 

SHAPEIT2 subsets the haplotype reference panel by selecting haplotypes that are nearby the 173 

current haplotypes of the individual.  174 

The window splitting approach may lead to reduced accuracy in animal breeding 175 

populations, where individuals are expected to share long chromosome segments. In SHAPEIT2 176 

only the between-window transmission probabilities are modeled, and not the probabilities of the 177 

underlying reference haplotypes. This means that haplotype assignment information from a given 178 

window is only used to update the next window and is ignored for further windows. This 179 

approach limits the amount of long range haplotype information (covering more than 3 180 

heterozygous loci) that can be exploited. One solution to this is to increase the size of the 181 

windows.   182 

 HAPI-UR takes a similar approach to SHAPEIT2 in reducing the large state-space, but 183 

uses a series of growing windows which allow it to exploit longer shared chromosomal 184 

segments. In order to process large windows, HAPI-UR takes advantage of a number of 185 

computational tricks to drastically reduce computation time. Unlike most methods that assume a 186 
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small error rate for observed genotypes (to cover genotyping errors, errors in the reference panel, 187 

and mutations from the ancestral state), HAPI-UR sets the probability of all reference haplotypes 188 

that disagree with the observed haplotype to 0. This allows the evaluation of which haplotypes fit 189 

an individual’s chromosome to be re-formulated as a bit-wise set-intersection operation. In 190 

addition to this, HAPI-UR uses a structured representation of the reference haplotypes that 191 

allows for fast lookups of matching haplotypes, and for each individual creates individual 192 

specific diploid HMM, which ignores all haplotypes that disagree with homozygote sites. Instead 193 

of using a fixed window size, HAPI-UR uses dynamic windows which start small (4 markers) 194 

and grows to a user specified maximum (e.g. 64 markers) allowing the method to capture longer 195 

chromosome segments.  196 

 Eagle2 takes a different approach to phasing individuals by not using a window-based 197 

haplotype representation. Instead Eagle2 uses a highly efficient reference haplotype storage 198 

method based on the positional Burrows-Wheeler Transform (Durbin, 2014) to allow for looking 199 

up consistent haplotype pairs in constant time. Instead of employing a full HMM to evaluate all 200 

possible haplotypes, Eagle2 employs a beam search to search through only the most promising 201 

paths through the space of all possible haplotype pairs. At each heterozygous locus, these paths 202 

branch into two possible sub-paths based on the two phasing options. Low probability paths are 203 

pruned or merged to keep the overall number of paths small. To decrease the impact that errors 204 

in one part of the genome have on subsequent paths, haplotypes are called after 20 markers 205 

allowing for the back-propagation of relevant genetic information while decreasing the potential 206 

impact of genotyping errors. Absence of approximate window-based haplotype representation 207 

makes Eagle2 particularly appealing for animal populations, where a large number of close 208 

relatives share long chromosome segments.   209 
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Materials and Methods 210 

 We evaluated the performance of the four diploid imputation methods, fastPHASE, 211 

Beagle v4.0, IMPUTE2, and MaCH and the three phasing methods, SHAPEIT2, HAPI-UR, and 212 

Eagle2 followed by three haploid imputation methods, IMPUTE2, Beagle v4.1, and minimac3 on 213 

a series of simulated datasets and a real dataset.  214 

The simulated dataset modelled a cattle population. The population consisted of 5 215 

generations of 2,000 animals, genotyped on a single chromosome. Each generation was produced 216 

by selecting 100 sires from the previous generation based on their true breeding values and 217 

randomly mating them with 1,000 dams. The initial set of haplotypes was sampled using a 218 

Markovian Coalescent Simulator (Chen et al., 2009) assuming a single 100-cM long 219 

chromosome simulated using a per site mutation rate of 2.5�×�10−8, and an effective population 220 

size (Ne) that changed over time. Based on estimates for the Holstein cattle population (Villa-221 

Angulo et al., 2009), the Ne was set to 100 in the final generation of simulation and to 1256, 222 

4350, and 43 500 at 1000, 10 000, and 100 000 generations ago, with linear changes in between. 223 

The simulation of breeding values and progeny’s haplotypes were performed using AlphaSim 224 

(Faux et al., 2016).  225 

 In the baseline scenario, a single chromosome was genotyped either with a high-density 226 

array of 1,000 SNP (allele frequency greater than 0.01) or with a low-density array of 200 SNP, 227 

evenly spaced across the high-density array. All of the sires and 100 dams were genotyped at 228 

high density. The remaining animals were genotyped at low density. To test the robustness of 229 

each method we independently modified the baseline scenario by varying: 230 

• the number of SNP in the low-density array from 5 to 400,  231 

• the number of individuals in the population from 200 to 10,000, and 232 
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• the number of genotyped dams from 0 to 500.  233 

• We also considered the case when the first two generations were genotyped on a different 234 

high-density array from the next two generations, with either 25, 50, or 75% of SNP 235 

overlapping between the two high-density arrays. 236 

 To compare the methods on a real data set, we performed imputation on 56,607 237 

individuals from a commercial pig breeding program. These animals were genotyped either with 238 

a high-density array of 60,000 SNP or 80,000 SNP or a low-density array of 15,000 SNP. To 239 

estimate imputation accuracy, we selected 500 high-density animals (typed at 60,000 SNPs) and 240 

masked them to mimic the pattern of missingness found in the SNP of 500 low-density animals. 241 

We restricted imputation to chromosome 1.  242 

Accuracy was measured with the correlation between animals’ imputed genotypes and 243 

their true genotypes for each animal separately and averaged over all animals. We did not assess 244 

phase accuracy independent of the resulting imputation accuracy.  245 

 For the simulated datasets, each method was given 8GB of memory and 24 hours to run. 246 

Jobs were terminated if they exceeded the runtime or the memory requirements. Unless 247 

otherwise specified, we used the default parameters for each simulation. We tested IMPUTE2 248 

using either the default 10-cM windows or the entire chromosome and found that imputing the 249 

entire chromosome increased accuracy at the cost of additional computational time. We used 5-250 

cM windows with an overlap of 1 cM for Beagle v4.0 and Beagle v4.1. The real dataset was 251 

imputed with only the two-step imputation methods given their high accuracy and low runtimes. 252 

 In all cases, the high-density individuals and low-density individuals were phased 253 

separately. For the case of multiple high-density arrays, we used the “merge_ref_panels” option 254 

in IMPUTE2 and phased both high-density arrays separately. Because neither minimac3 or 255 
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Beagle v4.1 accept multiple high-density arrays, we phased the high-density individuals together 256 

and let the phasing method fill in the missing genotypes for high-density individuals. 257 

Results 258 

Accuracy 259 

The performance of diploid imputation methods is given in Figure 1. Among the diploid 260 

imputation methods, MaCH performs well in most settings. Its accuracy depends slightly on the 261 

number of high-density dams, the number of low-density SNPs, and the overlap between high-262 

density arrays. The performance of fastPHASE was similar to that of MaCH, but performed 263 

better when there were a small number of high-density animals or small overlap between high-264 

density arrays.  IMPUTE2 had similar accuracy to MaCH, but performed worse when given a 265 

small number of high-density dams, or a small number of individuals, and performed better than 266 

MaCH when a large number of high-density dams were given. Beagle v4.0 performed similarly 267 

to IMPUTE2, but was less affected by the number of high-density dams and number of 268 

individuals. 269 

The performance of pre-phasing and haploid imputation methods is given in Figure 2. 270 

Among these methods, we found that the combination of Eagle2 and IMPUTE2 gave the highest 271 

imputation accuracy. Eagle2 led to the highest downstream imputation accuracy regardless of the 272 

imputation method, and led to higher accuracies than any of the diploid imputation methods. 273 

SHAPEIT2 led to similar but slightly lower performance than Eagle2. HAPI-UR led to the 274 

lowest overall performance. Of the tested haploid imputation methods we found only a small 275 

difference between IMPUTE2 and Minimac3, but found that Beaglev4.1 had poor imputation 276 

accuracy in all tested scenarios. We re-ran Beagle v4.1 with different-sized windows but did not 277 

see a noticeable increase in accuracy. There was no interaction between the choice of phasing 278 
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method and the choice of imputation method for the overall imputation accuracy with the 279 

exception of when multiple high-density arrays were used. In this case the combination of HAPI-280 

UR and minimac3 outperformed the combination of Eagle2 and minimac3.  281 

Run time and memory requirements 282 

The elapsed run time of each method in the baseline scenario is given in Table 1. We 283 

found that of the diploid imputation methods, MaCH had the lowest run time followed by Beagle 284 

v4.0, fastPHASE, and IMPUTE2. Of the phasing methods, HAPI-UR was the fastest by an order 285 

of magnitude, followed by Eagle2 and SHAPEIT2. Of the haploid imputation methods, 286 

minimac3 was the fastest followed by Beagle v4.1 and IMPUTE2. The combined run-times of 287 

the two-step phasing and imputation methods were all substantially lower than that of the single 288 

step methods.  289 

Real Data 290 

The performance on the real dataset was similar and is given in Table 4. The imputation 291 

accuracy of Eagle2 with minimac3 was 0.992, with Beagle v4.1 was 0.925, and with IMPUTE2 292 

was 0.827. The imputation accuracy of HAPI-UR with minimac3 was 0.995%, with Beagle v4.1 293 

was 0.939%, and with IMPUTE2 was 0.997%. Phasing with Eagle2 took 7 hours distributed 294 

across 8 cores. Phasing with HAPI-UR took 54 hours on a single core. All of the haploid 295 

imputation methods took under 6 hours. SHAPEIT2 was not able to phase the high-density and 296 

low-density individuals in 4 days and so was not analysed.  297 

Discussion 298 

In this paper we evaluated the performance of HMM based imputation methods for 299 

imputation in animal populations. We found that combinations of phasing and haploid 300 

imputation methods provide increased imputation accuracy at substantially reduced runtimes 301 
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compared to diploid imputation methods. The combination of using Eagle2 to pre-phase 302 

individuals and using minimac3 to impute the data lead to high accuracy imputation in a wide 303 

range of simulation scenarios and when analysing a real animal population.  304 

 The results of this paper highlight the power of separately phasing and imputing 305 

individuals. Intuitively it makes sense that performing phasing and imputation in a single step 306 

may increase imputation accuracy by marginalizing over uncertainty in phasing. However, the 307 

results here suggest that the additional accuracy lost by marginalizing over phasing errors is 308 

outweighed by the accuracy gained by considering larger haplotype reference panels. These 309 

results are particularly surprising in the context of animal populations where pre-existing 310 

reference panels may not exist (at least in the public domain), and so the reference panel itself is 311 

inferred by phasing high-density genotyped individuals. Our results suggest that modern phasing 312 

methods have a sufficiently high accuracy such that this phasing leads to only a small number of 313 

errors. 314 

 The performance of pre-phasing and haploid imputation is also surprising given the lower 315 

density of SNP arrays (both high-density and low-density), and the substantially lower number of 316 

overall individuals compared to human studies. We found that pre-phasing and haploid 317 

imputation was more effective than the best performing diploid imputation method even for a 318 

very small number of low-density markers or, low number of high-density dams, and low 319 

numbers of individuals.  320 

Of the three phasing methods we tested, using Eagle2 led to the most accurate 321 

downstream imputation. This is likely due to the fact that Eagle2 is able to exploit longer 322 

segments of shared haplotypes between individuals, which are very common in highly related 323 

animal populations. Although Eagle2 led to the highest accuracy, we found that HAPI-UR was 324 
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an order of magnitude faster for most datasets and resulted in a small decrease in accuracy on the 325 

simulated scenarios, but no decrease in accuracy on the real dataset. In their original paper, the 326 

authors of HAPI-UR suggest that it may be possible to increase the accuracy of HAPI-UR by 327 

running it multiple times with different window start positions and taking the consensus phase 328 

(Williams et al., 2012). Due to the low run time, this strategy would be feasible in animal 329 

populations but was not analysed here. SHAPEIT2, the oldest of the phasing methods had both 330 

the longest run-time which prevented us from evaluating it on the real dataset. Although the 331 

authors of SHAPEIT2 have now released SHAPEIT3, they do not recommend using it for 332 

populations of under 60,000 individuals and so the performance of SHAPEIT3 was not analysed 333 

here. 334 

 We found little difference in the performance of the assessed haploid imputation 335 

methods. Both Minimac3 and IMPUTE2 lead to accurate imputation. The accuracy of IMPUTE2 336 

was consistently slightly (<1%) higher than that of minimac3 in simulated data, but the runtime 337 

was between two and three times that of minimac3. On the real dataset, the imputation accuracy 338 

of IMPUTE2 dropped when Eagle2 was used to pre-phase the data, but remained high when 339 

HAPI-UR was used to pre-phase the data. Overall the performance of Beagle v4.1 was poor for 340 

performing haploid imputation, although improved when analysing the real data set. This may be 341 

a result of the approximations used in Beagle v4.1, which were designed for imputation of 342 

human high-density SNP arrays to whole genome sequence data. These approximations seem 343 

less appropriate for low-density SNP arrays used in some animal populations. 344 

With two exceptions, we found little interaction between the choice of phasing method 345 

and the choice of haploid imputation method. The first exception came in the performance of 346 

HAPI-UR when individuals were genotyped with multiple, semi-overlapping, SNP arrays. In this 347 
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case the performance of HAPI-UR with minimac3 or Beagle v4.1 was substantially higher than 348 

the performance of Eagle2 with minimac3 or Beagle v4.1, although the accuracy of HAPI-UR 349 

with IMPUTE2 remained lower than that of Eagle2 with IMPUTE2. The underlying reason for 350 

this difference stems from the fact that in the case of minimac3 and Beagle v4.1 the phasing 351 

algorithms were also used to perform imputation on the missing non-overlapping SNPs in each 352 

high-density array, whereas in IMPUTE2 the two high-density arrays were phased separately, 353 

and IMPUTE2 was used to fill in missing SNPs as part of it’s high-density array merging step. 354 

The increased accuracy with HAPI-UR over Eagle2 in this scenario suggests that HAPI-UR can 355 

impute untyped loci in high-density arrays better than Eagle2. This is consistent with the second 356 

exception where HAPI-UR led to as high imputation accuracy, if not higher, as Eagle2 when 357 

performing imputation on the real dataset. Animals in the real dataset were genotyped with two 358 

high-density arrays, and two low-density arrays, and also exhibited a number of spontaneously 359 

missing SNPs. When using Eagle2 to phase individuals, IMPUTE2 and Beagle v4.1 markedly 360 

decreased in performance, particularly compared to minimac3. In contrast when HAPI-UR was 361 

used to phase individuals the performance of minimac3, IMPUTE2 and Beagle v4.1 remained 362 

high, suggesting an advantage of using HAPI-UR over Eagle2 when individuals are genotyped 363 

on multiple arrays or when observing a large amount of spontaneous missingness. 364 

Some of the analysed phasing methods have an option to use pedigree information to 365 

improve phasing. Although these options were originally designed to help phase and impute 366 

parent-progeny trios (Browning and Browning, 2009), they can also be used for larger pedigrees 367 

(O’Connell et al., 2014). Previous work in phasing and imputing animal populations has found 368 

that combining pedigree and linkage information can improve phasing and imputation accuracy 369 

(Hickey et al., 2012). In this paper, we did not analyse the option to use pedigree information, 370 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/227157doi: bioRxiv preprint 

https://doi.org/10.1101/227157
http://creativecommons.org/licenses/by-nc-nd/4.0/


HMM imputation methods for animal breeding 18 

but focused solely on HMMs based methods that use linkage-disequilibrium information for 371 

phasing and imputation as originally proposed by Li and Stephens (2003). SHAPEIT2 372 

(O’Connell et al., 2014), Beagle v4.0 (Browning and Browning, 2009), and HAPI-UR (Williams 373 

et al., 2012) all provide options to use parent-progeny trio information. However, the two top 374 

performing methods, Eagle2 and minimac3, do not provide this option. Future work is needed to 375 

analyse how HMMs can utilize pedigree information to improve phasing and imputation, and to 376 

merge these insights with high-performance methods reviewed and tested here. 377 

Overall, this study suggests that modern pre-phasing and haploid imputation methods can 378 

perform fast and accurate imputation of animal populations of any size. We noticed no 379 

disadvantage of using the two-step imputation approach even in cases of small populations, low-380 

density SNP arrays, or multiple high-density arrays. Of the algorithms, we found that Eagle2 and 381 

HAPI-UR both reliably pre-phased the data and that IMPUTE2 and minimac3 lead to the highest 382 

imputation accuracy. However, we also noted a decreased accuracy when Eagle2 and IMPUTE2 383 

were used to pre-phase and impute the data when animals were genotyped with semi-overlapping 384 

high-density SNP arrays. In this case the usage of Eagle 2 with minimac3 and HAPI-UR with 385 

IMPUTE2 or minimac3 lead to high accuracy. Overall, the results of these studies highlight the 386 

importance and feasibility of using HMMs to perform imputation in animal populations even as 387 

an increasing number of animals are genotyped and as genotyping densities increase.  388 
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 456 

 457 

Figure 1. Performance of each diploid HMM algorithm for each set of simulations. Unless 458 

otherwise noted there were 1000 high-density SNPs, 200 low-density SNPs, 100 dams 459 

genotyped at high-density and complete overlap between the high-density arrays of generations 460 

1 and 2 and those of 3 and 4. We varied (a) the number of dams genotyped at high-density, (b) 461 

the number of individuals in the population, (c) the number of SNPs in the low-density array, 462 

and (d) the amount of overlap between the high-density array for generations 1 and 2 and those 463 

of 3 and 4.  464 
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 467 

Figure 2. Performance of each combination of pre-phasing and haploid HMM method. Unless 468 

otherwise noted there were 1000 high-density SNPs, 200 low-density SNPs, 100 dams 469 

genotyped at high-density and complete overlap between the high-density arrays of generations 470 

1 and 2 and those of 3 and 4. We varied (a) the number of dams genotyped at high-density, (b) 471 

the number of individuals in the population, (c) the number of SNPs in the low-density array, 472 

and (d) the amount of overlap between the high-density array for generations 1 and 2 and those 473 

of 3 and 4.   474 
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Table 3 477 

Simulated data: Run time and accuracy for diploid imputation, phasing, and haploid imputation 478 
methods in the baseline scenario. The run time is given in seconds separately for phasing and 479 
imputation steps and as a total. 480 
 481 
Phasing method Imputation method HD Phasing (s) LD Phasing (s) Imputation (s) Total (s) Accuracy 

/ IMPUTE2 / / 42,796 42,796 0.861 

/ Beagle v4.0 / / 23,042 23,042 0.901 

/ MaCH / / 21,998 21,998 0.944 

 / fastPHASE / / 28,892 28,892 0.941 

HAPI-UR IMPUTE2   117      14      149      280 0.964 

HAPI-UR minimac3   117      14        62      193 0.967 

HAPI-UR Beagle v4.1   117      14        78      209 0.793 

Eagle2 IMPUTE2 1,361    207      148   1,717 0.988 

Eagle2 minimac3 1,361    207        55   1,623 0.988 

Eagle2 Beagle v4.1 1,361    207        79   1,647 0.794 

SHAPEIT2 IMPUTE2 8,495 1,175      150   9,820 0.979 

SHAPEIT2 minimac3 8,495 1,175        58   9,728 0.977 

SHAPEIT2 Beagle v4.1 8,495 1,175        77   9,747 0.792 

  482 

  483 
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Table 4 484 

Real data: Run time and accuracy for phasing, and haploid imputation methods on the real 485 
dataset scenario. The run time is given in hours separately for phasing and imputation steps and 486 
as a total. For Eagle2, the program was run distributed across 8 compute cores. HAPI-UR was 487 
run on a single core. 488 
 489 
Phasing method Imputation method HD Phasing (h) LD Phasing (h) Imputation (h) Total (h) Accuracy 

HAPI-UR IMPUTE2   11.53 43.09 60.25 12.48 0.997 

HAPI-UR minimac3   11.53 43.09 56.89 9.06 0.995 

HAPI-UR Beagle v4.1   11.53 43.09 57.32 11.04 0.939 

Eagle2 IMPUTE2 4.48 (8 cores)    2.37 (8 cores) 5.63 12.48 0.827 

Eagle2 minimac3 4.48 (8 cores)    2.37 (8 cores) 2.21 9.06 0.992 

Eagle2 Beagle v4.1 4.48 (8 cores)    2.37 (8 cores) 4.19 11.04 0.925 

 490 
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