Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The interplay between facilitation and habitat type drive spatial vegetation patterns in global drylands

Miguel Berdugo, Santiago Soliveres, Sonia Kéfi, Fernando T. Maestre
doi: https://doi.org/10.1101/227330
Miguel Berdugo
1Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mglberdugo@gmail.com
Santiago Soliveres
2Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sonia Kéfi
3ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fernando T. Maestre
1Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

The size distribution of discrete plant patches (PSD), a common descriptor of the spatial patterns of vascular vegetation, has been linked to variations in land degradation and ecosystem functioning in drylands. However, most studies on PSDs conducted to date have focused on a single or a few study sites within a particular region. Therefore, little is know on the general typology and distribution of PSDs at the global scale, and on the relative importance of biotic and abiotic factors as drivers of their variation across geographical regions and habitat types. We analyzed 115 dryland plant communities from all continents except Antarctica to investigate the general typology of PSDs, and to assess the relative importance of biotic (plant cover, frequency of facilitation, soil amelioration, height of the dominant species) and abiotic (aridity and sand content) factors as drivers of PSDs across contrasting habitat types (shrublands and grasslands). We found that both power-law and lognormal PSDs were generally distributed regardless of the region of the world considered. The percentage of facilitated species in the community drives the emergence of power-law like spatial patterns in both shrublands and grasslands, although mediated by different mechanisms (soil and climatic amelioration, respectively). Other drivers of PSDs were habitat-specific: height of the dominant species and total cover were particularly strong drivers in shrublands and grasslands, respectively. The importance of biotic attributes as drivers of PSDs declined under the most arid conditions in both habitats. We observed that PSDs deviated from power law functions not only due to the loss of large, but also of small patches. Our results expand our knowledge about patch formation in drylands and the habitat-dependency of their drivers. They also highlight different ways in which facilitation may act on ecosystem functioning through the formation of plant spatial patterns.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted November 30, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The interplay between facilitation and habitat type drive spatial vegetation patterns in global drylands
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The interplay between facilitation and habitat type drive spatial vegetation patterns in global drylands
Miguel Berdugo, Santiago Soliveres, Sonia Kéfi, Fernando T. Maestre
bioRxiv 227330; doi: https://doi.org/10.1101/227330
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The interplay between facilitation and habitat type drive spatial vegetation patterns in global drylands
Miguel Berdugo, Santiago Soliveres, Sonia Kéfi, Fernando T. Maestre
bioRxiv 227330; doi: https://doi.org/10.1101/227330

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ecology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4079)
  • Biochemistry (8750)
  • Bioengineering (6467)
  • Bioinformatics (23315)
  • Biophysics (11719)
  • Cancer Biology (9135)
  • Cell Biology (13227)
  • Clinical Trials (138)
  • Developmental Biology (7404)
  • Ecology (11360)
  • Epidemiology (2066)
  • Evolutionary Biology (15078)
  • Genetics (10390)
  • Genomics (14001)
  • Immunology (9109)
  • Microbiology (22025)
  • Molecular Biology (8773)
  • Neuroscience (47317)
  • Paleontology (350)
  • Pathology (1419)
  • Pharmacology and Toxicology (2480)
  • Physiology (3701)
  • Plant Biology (8044)
  • Scientific Communication and Education (1427)
  • Synthetic Biology (2206)
  • Systems Biology (6009)
  • Zoology (1247)