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ABSTRACT 

Cyanobacteria are important for fundamental studies of photosynthesis and have great 

biotechnological potential. In order to better study and fully exploit these organisms, the limited 

repertoire of genetic tools and parts must be expanded. A small number of inducible promoters 

have been used in cyanobacteria, allowing dynamic external control of gene expression through 

the addition of specific inducer molecules. However, the inducible promoters used to date suffer 

from various drawbacks including toxicity of inducers, leaky expression in the absence of 

inducer and inducer photolability, the latter being particularly relevant to cyanobacteria which, as 

photoautotrophs, are grown under light. Here we introduce the rhamnose-inducible rhaBAD 

promoter of Escherichia coli into the model freshwater cyanobacterium Synechocystis sp. PCC 

6803 and demonstrate it has superior properties to previously reported cyanobacterial inducible 

promoter systems, such as a non-toxic, photostable, non-metabolizable inducer, a linear 

response to inducer concentration and crucially no basal transcription in the absence of inducer. 
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INTRODUCTION 

Photoautotrophic microorganisms have great potential for the sustainable production of 

chemicals from carbon dioxide using energy absorbed from light. Cyanobacteria including 

Synechocystis sp. PCC 6803 (‘Synechocystis’ hereafter) and Synechococcus sp. PCC 7002 

have been successfully engineered to produce 2,3-butanediol1,2, lactate3, isobutanol4, plant 

terpenoids5 and ethanol6–9, and to allow the utilisation of xylose10. Cyanobacteria, particularly 

Synechocystis, are also used as model organisms for fundamental studies of important 

processes such as photosynthesis11–16, circadian rhythms17–19 and carbon-concentrating 

mechanisms20–23. Due to specific challenges, genetic modification of cyanobacteria is more 

difficult than genetic modification of model heterotrophic microorganisms such as Escherichia 

coli and Saccharomyces cerevisiae. These challenges include polyploidy24,25, which makes the 

isolation of segregated recombinant strains slow and laborious; genetic instability of 

heterologous genes26 and limited synthetic biology tools and parts such as promoters and 

expression systems. Improved synthetic biology capabilities for cyanobacteria would be useful 

for both fundamental and applied studies. 

 

Inducible promoters are important tools which allow flexible control over gene expression, which 

is useful in many fundamental and applied studies. Unlike the limited number of constitutive 

promoters which have been shown to function well in cyanobacteria6,10,27–29), inducible 

promoters provide access to a wide, continuous range of gene expression levels using a single 

genetic construct, simply by varying inducer concentrations30. Furthermore, inducible promoters 

also allow control over the timing of expression of a gene of interest. An ideal inducible promoter 

system would have certain properties: Firstly, the promoter should not ‘leak’, that is, there 

should be no basal transcription in the absence of inducer, allowing very low expression levels 

to be used, and avoiding premature expression during strain construction and segregation, 

which can be associated with toxicity and mutation26,31,32. Secondly, the inducer molecule should 

be non-toxic, non-metabolisable, readily available and stable under experimental conditions 

(including under light in the case of photoautotrophic organisms), allowing sustained expression 

with no impact on growth caused as an artefact of the expression system itself. Thirdly, 

expression should demonstrate a near-linear response to inducer concentration over a wide 

range. Finally, expression should have a consistent unimodal distribution across a population of 

cells. 
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Several inducible promoter systems have been described in Synechocystis spp. and 

Synechococcus spp., but none are ideal. Metal ion-inducible promoters have been described 

which respond to nickel, copper, cadmium, arsenic and zinc33–36. Unfortunately these systems 

have disadvantages including the presence of many of the metals in standard growth media37, a 

narrow range of useful concentrations because the concentrations required for detectable and 

unimodal induction are close to toxic levels34, and some are ‘leaky’ in the absence of inducer. 

The use of metals as inducers also has the potential to disrupt metal homeostasis, resulting in 

the sequestration of metals required as essential cofactors of many enzymes involved in 

photosynthesis and related metabolic pathways11,38–40. Synthetic inducible promoters have also 

been constructed and used in cyanobacteria. Two promoter systems using the tetracycline-

responsive repressor TetR and its cognate operator sites have been engineered for use in 

cyanobacteria. The first example for use in Synechocystis resulted in a well-characterised, 

anhydrotetracyline (aTc)-responsive promoter with low leakiness and a good dynamic range41. 

Unfortunately the inducer aTc is extremely sensitive to light and therefore induction from this 

promoter was transient and required high concentrations of aTc. The second example, in 

Synechococcus sp. PCC 7002, suffered the same issues with photolability of the inducer and 

low expression by comparison to a commonly-used strong constitutive promoter42. It is clear 

therefore that aTc-based inducible promoters are unsuitable for photoautotrophic growth 

conditions. The non-metabolisable analogue of lactose, isopropyl β-D-1-thiogalactopyranoside 

(IPTG) has also been tested for use as an external inducer of lac-based promoters in a variety 

of cyanobacterial strains1,27,43–45, with mixed performance in terms of dynamic range and 

leakiness in absence of inducer. Finally, use of a green-light inducible promoter in 

Synechocystis sp. PCC 6803 has been reported46, but isolating the specific wavelengths 

required for induction from natural or white light used for growth is difficult, leading to unwanted 

induction. 

 

To-date, heterologous promoters associated with the AraC/XylS family of positive transcriptional 

regulators have not been used in cyanobacteria. One promising candidate is the L-rhamnose-

inducible rhaBAD promoter system of E. coli, which naturally has almost all of the ideal 

properties described above47–49. Recently this system was optimised in E. coli by the 

identification of L-mannose as a non-metabolisable inducer and constitutive expression of the 

activating transcription factor RhaS in order to make the system independent of the native 

regulatory cascade50. 
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Here we introduce the rhaBAD promoter of E. coli into Synechocystis sp. PCC 6803, 

characterise its behaviour, assess inducer stability and investigate the effects of modifying 

various promoter sequence elements and of varying expression of the transcription factor RhaS. 

The result is an inducible expression system with several important advantages over   

expression systems previously characterised in cyanobacteria including precise control of the 

strength and timing of induction as well as sustained gene expression in the presence of light. 

This system is likely to be very useful and widely applicable in Synechocystis and other 

cyanobacteria. 

 

RESULTS AND DISCUSSION 

Analysis of the E. coli rhaBAD promoter in a heterologous Synechocystis context 

In the heterologous context of a Synechocystis cell the rhaBAD promoter might be expected to 

perform differently than in the native E. coli host. To assess this, we considered the known 

functional features of the rhaBAD promoter and whether the relevant transcription factors in 

Synechocystis were present, and if present, investigated the conservation of their functionally-

important amino acid residues.  

 

The rhaBAD promoter (Figure 1) contains three types of operator sequences for the binding of 

three distinct transcription factors: the cAMP (cyclic adenosine monophosphate) receptor 

protein (CRP); RhaS, which in E. coli mediates transcriptional activation of the rhaBAD operon 

in response to L-rhamnose; and RpoD, the primary vegetative sigma 70 factor of E. coli RNA 

polymerase (RNAP). 

The genome of Synechocystis encodes SYCRP1, a homolog of E. coli CRP52,53 with 27% 

identity and 49% similarity to the E. coli protein. In E. coli, CRP binds to promoters containing 

specific binding sites when the concentration of cAMP is high, for example when glucose is 

scarce and other carbon sources must be metabolised for growth. The CRP-binding site in the 

rhaBAD promoter has been shown to be essential for this promoter to function fully in E. coli47,54. 

In Synechocystis, SYCRP1 has been shown to positively and negatively regulate a number of 

promoters in response to changing cAMP concentrations53,55. The sequence of the CRP-binding 

site in Synechocystis (tgtgaNNNNNNtcaca) differs by only one nucleotide to the CRP-binding 

site sequence found in the E. coli rhaBAD promoter (tgtgaNNNNNNtcacg), which suggests 

SYCRP1 might bind to this heterologous promoter sequence56,57. 
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To the best of our knowledge, positively-regulated AraC/XylS-type expression systems like 

those in E. coli have not been reported in Synechocystis or in other cyanobacteria. In E. coli, the 

positive transcriptional regulator RhaS is essential for transcription from the rhaBAD promoter. 

We used BLASTP58 to search the genome of Synechocystis for a homolog of E. coli RhaS. No 

protein with significant similarity to E. coli RhaS was identified, suggesting that heterologous 

expression of the rhaS gene of E. coli which encodes this protein would be required for the 

heterologous rhaBAD promoter from E. coli to function in Synechocystis. 

 

It has been hypothesised that differences in the RNA polymerase components between 

cyanobacteria and E. coli are one reason for E. coli promoters failing to function as expected 

when used in cyanobacteria59. With this in mind, the RpoD sigma factor of E. coli and the SigA 

sigma factor of Synechocystis were compared by alignment of their amino acid sequences 

(Figure 2). RpoD (accession number: NP_417539.1) is the E. coli primary vegetative sigma 70 

factor, which binds to the -35 and -10 regions of the rhaBAD promoter in E. coli, and SigA 

(accession number: ALJ69094.1) is the Synechocystis primary sigma factor . The two orthologs 

share 59% identity and 78% similarity but as the Synechocystis protein is much smaller than the 

E. coli ortholog (425 and 613 amino acids respectively), the overall coverage is only 46%, with 

the N-termini sharing little similarity in contrast to the good alignment at the C-termini, which is 

the most conserved region across the sigma 70 family of transcription factors60–62. The C-termini 

of sigma 70 factors contain the DNA-binding domains, with conserved and well-defined 

functional regions63. Region 2 is responsible for interaction with the -10 element of the promoter 

and region 4.2 is responsible for interaction with the -35 element64,65. The sequence of the -10 

element-binding domain of the Synechocystis sigma 70 factor, RTIRLPVH differs only in one 

amino acid from the E. coli sequence RTIRIPVH (Figure 2), which suggests this protein is likely 

to bind to the -10 element of the rhaBAD promoter. Even more encouragingly, the amino acid 

sequence of the -35 element-binding domain, VTRERIRQIEAKALRKLRHP, is perfectly 

conserved between both Synechocystis and E. coli proteins (Figure 2). Finally, it is known that 

two residues of the E. coli RNAP sigma 70 factor protein, RpoD are essential for interaction with 

two residues of RhaS when both proteins are bound to the DNA66. These interactions are 

formed between R599 of the sigma 70 factor and D241 of RhaS, as well as K593 of the sigma 

70 factor and D250 of RhaS. Both of these residues are found in the Synechocystis sigma 70 

factor protein, corresponding to R412 and K406 respectively (Figure 2). The above analysis 

suggested that the the E. coli rhaBAD promoter is likely to be functional in Synechocystis, and 

will probably require RhaS to be provided. 
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L-rhamnose is not metabolised by nor toxic to Synechocystis 

Before testing whether the E. coli rhaBAD promoter is functional in Synechocystis, we first 

wanted to check if the natural sugar inducer L-rhamnose was metabolised by the 

cyanobacterium or if the use of a non-metabolisable analog of rhamnose would be required, as 

previously found in E. coli50. Wild-type Synechocystis cells were cultivated in BG11 medium 

under constant light, with L-rhamnose added to the culture to a final concentration of 1 mg/ml L-

rhamnose or omitted in the control. The concentration of L-rhamnose in the culture supernatant 

was monitored over time using HPLC-RID (Figure 3A). The concentration of L-rhamnose does 

not change over the course of the experiment, indicating that it is not metabolised by 

Synechocystis in photoautotrophic conditions, nor degraded by exposure to light. Next the effect 

of L-rhamnose on growth was investigated by monitoring the optical density (OD) at 750 nm of 

cultures over time, with or without L-rhamnose (Figure 3B). No negative effect of L-rhamnose on 

growth was observed indicating that L-rhamnose is not inhibitory to Synechocystis growth. 

 

Characterisation of rhaBAD promoter system in Synechocystis 

To facilitate the testing of the rhaBAD promoter from E. coli in Synechocystis, an E. coli-

Synechocystis shuttle reporter plasmid pCK306 (Figure 4) containing the rhaBAD promoter 

sequence and the rhaS gene encoding its transcriptional activator was constructed (see 

Plasmid Construction section of Supplementary Information for details). This plasmid contains 

homology arms for integration into the genome of Synechocystis at the ssl0410 locus, the p15A 

origin of replication for E. coli, the promoter of the rhaBAD operon from E. coli (PrhaBAD), a 

reporter gene encoding yellow fluorescent protein (YFP), a kanamycin-resistance gene 

functional in both Synechocystis and E. coli, and rhaS from E. coli, which encodes the 

transcriptional activator of the rhaBAD promoter, RhaS.. In this genetic context, the native E. 

coli RBS of rhaS was predicted to have a T.I.R. of just 7268. To determine whether it is 

necessary to supply rhaS heterologously, a control reporter plasmid, pCK305, identical to 

pCK306 except lacking rhaS, was also constructed. 

 

To test for L-rhamnose induction of the rhaBAD promoter in Synechocystis, wild-type cells were 

transformed with either pCK305 or pCK306 and kanamycin-resistant transformants were 

passaged until complete segregation was confirmed by PCR. These transformants were then 

cultured under constant light in BG11 media supplemented with kanamycin, with or without 

glucose. Cultures were adjusted to a starting optical density (measured at 750 nm) of 0.1, grown 
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for 24 h and then L-rhamnose was added to a range of final concentrations. To determine the 

response of the promoter to the concentration of the inducer L-rhamnose, the fluorescence 

intensity of each cell was measured using flow cytometry after 116 h of growth for both 

photoautotrophic and mixotrophic cultures (Figure 5A & C). Cell density was monitored during 

growth by measuring optical density of cultures at 750 nm. At the time of sampling, cultures 

were in the mid-exponential phase of growth. Small differences in optical density were observed 

between cultures containing glucose and those without glucose. Fluorescence intensity of 

individual cells (10,000 cells per sample) was measured by flow cytometry, avoiding the need to 

normalise the fluorescence intensity of culture volumes by optical density, which can be 

problematic as highly pigmented cyanobacterial cells can partially quench fluorescence. Cells 

containing the reporter plasmid pCK305, lacking rhaS, were unresponsive to any concentration 

of L-rhamnose added, whereas cells containing the plasmid constitutively expressing rhaS, 

pCK306, show a linear response in YFP fluorescence to increasing concentrations of L-

rhamnose in both photoautotrophic and mixotrophic conditions. Saturation of induction occurs at 

lower concentrations in mixotrophic conditions (0.6 mg/ml) than photoautotrophic conditions (no 

saturation at 1 mg/ml). To determine the kinetics of YFP expression from the rhaBAD promoter 

in Synechocystis, the fluorescence intensity of cells sampled from in the same transformant 

cultures was monitored over a longer period (Figure 5B & D). Fluorescence was observed in 

cells containing pCK306 after only 24 h of induction and showed sustained induction in both 

photoautotrophic and mixotrophic growth conditions, with no decrease in fluorescence observed 

after > 250 h of growth. Finally, as levels of gene expression can differ among cells in a 

population of either in natural or engineered strains, flow cytometry was used to investigate the 

modality (distribution) of fluorescence across Synechocystis cells containing pCK306. Induction 

of the rhaBAD promoter in Synechocystis containing pCK306 in photoautotrophic conditions 

was unimodal at all time points measured (Figure S2A). In mixotrophic conditions at the early 

stages of induction (120 h), some bimodality was observed (Figure S2B), with 3-6% of cells 

failing to be induced at this time point, however when induction was complete at a later time 

point (215 h) the induction was unimodal once again (Figure S2C). These data demonstrate that 

the rhaBAD promoter from E. coli is functional in Synechocystis, allows the strength of 

expression of a gene of interest to be precisely controlled in both phototrophic and mixotrophic 

growth conditions and that the transcriptional activator RhaS from E. coli is required for function 

in Synechocystis. 

 

Having confirmed that the rhaBAD promoter was functional in Synechocystis and demonstrated 
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many of the desired properties of an ideal inducible promoter system, we next investigated if 

modifications to the promoter sequence itself or varying the concentration of RhaS in the cell 

affected the behaviour of the system. As the role of CRP is still poorly understood in 

Synechocystis and as the CRP-binding site is required for rhaBAD functioning in E. coli, we 

investigated the effect that deleting this operator sequence from the promoter would have on 

induction strength and/or kinetics. The reporter plasmids pCK305 and pCK306 were both 

modified through deletion of the CRP-binding operator sites, resulting in pCK313 and pCK314 

respectively. Wild-type Synechocystis cells were transformed with either plasmid and integration 

and segregation confirmed as before. Transformants were then cultured in both 

photoautotrophic and mixotrophic growth conditions and the inducer-response and timecourse 

experiments repeated (Figure 6). Results were very similar to those observed with pCK305 and 

pCK314, meaning the CRP-binding site is not required for the rhaBAD promoter to function in 

Synechocystis. 

 

Next we investigated whether increasing the cellular concentration of the transcriptional 

activator RhaS would change the response to inducer concentration, dynamic range or kinetics 

of rhaBAD promoter induction. The original rhaS RBS was predicted to have a low T.I.R. of just 

72, so two synthetic RBSs were designed using the RBS Calculator 68 with much higher T.I.R. 

values of 5,000 and 18,000, and these new RBS sequences were inserted in place of the rhaS 

RBS used in pCK306, resulting in pCK320 and pCK321 respectively. These constructs were 

introduced into Synechocystis, integration and complete segregation was confirmed as before, 

then these transformants were used for inducer-response and timecourse experiments as 

before. The Synechocystis strains transformed with the new RBS variant plasmids pCK320 or 

pCK321 showed similar fluorescence response to inducer concentration and timecourses to 

cells transformed with pCK306 (Figure S1). 

 

Finally, we sought to directly compare all the functional rhaBAD expression system variants. 

Absolute levels of fluorescence measured using flow cytometry cannot be directly compared 

between different days and experiments due to instrument variation. This is sometimes 

overcome in reporter studies by normalising to a reference promoter included in each separate 

experiment, allowing relative comparisons. Here, as we had a defined set of constructs to 

compare, we compared these directly in a single experiment. Synechocystis cells containing 

each of the rhaBAD-promoter reporter plasmids were cultured, both photoautotrophically and 

mixotrophically, in BG11 media supplemented with 1 mg/ml L-rhamnose, and the fluorescence 
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intensity measured by flow cytometry after 191 h (Figure S4). No statistically-significant 

difference was observed between cells containing constructs pCK306 (+rhaS), pCK314 (+rhaS, 

ΔCRP-binding site), pCK320 (+rhaS, T.I.R. of RBS of rhaS = 5,000) or pCK321 (+rhaS, T.I.R. of 

RBS of rhaS = 18,000). 

 

The inducible reporter constructs described above show non-zero levels of fluorescence in 

Synechocystis even in the complete absence of inducer, which could suggest  that the promoter 

is ‘leaky’. However, it was noted that even cells containing the non-functional promoter reporter 

constructs (such as pCK305) were slightly more fluorescent than wild type cells lacking any 

reporter plasmid (Figure 7A). As these constructs are integrated into the Synechocystis 

genome, it was hypothesised that this basal fluorescence resulted from transcriptional read 

through from the chromosome rather than leaky expression from the rhaBAD promoter itself. To 

test this hypothesis, the rhaBAD promoter of pCK321 (one of the above-described derivatives of 

pCK306 which performs identically) was removed resulting in the promoterless plasmid 

pCK324. This construct was integrated into the same site on the Synechocystis genome as all 

other reporter plasmids, fully segregated and the timecourse experiments in mixotrophic and 

photoautotrophic growth conditions performed as before. Cells containing pCK324, lacking the 

rhaBAD promoter had the same level of basal YFP fluorescence whether L-rhamnose was 

added to the media or not and the level of fluorescence in both cases was the same as cells 

containing pCK305 or pCK306 without inducer. This confirmed that chromosomal read-through 

was the cause of basal YFP fluorescence and the rhaBAD promoter itself was not leaky in the 

absence of inducer. 

 

Conclusions 

This study tested and showed that the E. coli rhaBAD promoter performs excellently as an 

inducible promoter in the cyanobacterium Synechocystis sp. PCC 6803, with a linear response 

to inducer concentration, good dynamic range, sustained induction in light over long periods and 

crucially no basal expression in the absence of inducer. For many Synechocystis projects and 

applications, the use of this promoter should allow more precise control of the timing and 

strength of expression than alternative cyanobacterial inducible promoters. Heterologous 

expression of rhaS was required for promoter function in Synechocystis, which is consistent with 

the apparent absence of an ortholog in the Synechocystis genome. This lack of 

complementation of the rhaBAD promoter system by any native Synechocystis protein suggests 

that the heterologously-supplied transcriptional activator RhaS is unlikely to interact with other 
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Synechocystis promoters, providing a useful level of independence (or orthogonality). Deletion 

of the CRP-binding sites from the rhaBAD promoter had no effect on promoter function in 

Synechocystis in the experimental conditions tested, including when glucose was added to the 

growth media. This was unexpected as the function of the rhaBAD promoter in E. coli requires 

binding of CRP. For those interested in using the rhaBAD promoter in fundamental studies of 

the circadian clock or photosynthesis, or in applications where cyanobacteria are grown in light 

and dark cycles, the use of the CRP-binding site deletion variant pCK314 may result in 

alternative induction responses, as cAMP levels are known to increase in cyanobacteria at 

night55. 

 

The only observed flaw with this implementation of the rhaBAD promoter in Synechocystis was 

a low level of basal expression, which we found was independent of the rhaBAD promoter. The 

sll0410 insertion site adjacent to ndhB has been used previously, but seems to result in 

transcriptional read-through of inserts, presumably from the promoter found inside the ndhB 

ORF69. For most inducible expression studies, this observation will be unimportant and 

expression constructs reported here will be ideal, because in many cases the ability to specify 

extremely low expression levels is not required. Where extremely low or zero basal and induced 

expression is required, alternative integration sites or extrachromosomal plasmids may prove 

more suitable70. 

 

We found that the rhaBAD promoter of E. coli was functional and inducible in Synechocystis 

without any modification of the promoter sequence itself. This was not obvious in advance given 

reports of difficulties in using E. coli promoters in cyanobacteria. In this case our analysis of the 

relevant transcription factor machinery and interacting residues successfully predicted function 

of this promoter in Synechocystis, so it is interesting to consider whether this promoter might 

function in other cyanobacteria such as Synechococcus sp. PCC 7002 or Arthrospira species. 

For example, one of the sigma 70 factor residues important for interaction with RhaS, K593, is 

not found in the Synechococcus sp. PCC 7002 ortholog but is found in the Arthrospira 

plantensis ortholog. The residue found in the Synechococcus ortholog is an arginine, a similar 

basic amino acid, so may still interact appropriately with RhaS for function. 

 

This study represents an important step towards addressing the shortage of reliable synthetic 

biology tools for the manipulation of cyanobacteria, both for fundamental and applied studies. 

The characteristics of the rhamnose-inducible expression system shown in this work will allow 
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greater control of gene expression in cyanobacteria than previously possible. Despite this 

progress, much work remains in the development and characterisation of other synthetic biology 

tools to address the unique challenge of engineering these important photoautotrophic 

organisms and realising their applied potential. 

MATERIALS AND METHODS  

Bacterial strains and Growth Conditions 

E. coli strain DH5α was used for all plasmid construction and propagation. Synechocystis sp. 

PCC 6803 (the glucose-tolerant derivative of the wild type, obtained from the Nixon lab at 

Imperial College London) was used for all cyanobacterial experiments. E. coli were routinely 

cultured in LB at 37 °C with shaking at 240 rpm and Synechocystis cultured in TES-buffered (pH 

8.2) BG11 media37 with 5 mM glucose (mixotrophic growth) or without glucose 

(photoautotrophic growth) at 30 °C with agitation at 150 rpm, supplemented with 30 μg ml-1 

kanamycin where required. Synechocystis were grown in constant white light at 50 μmol m−2 

s−1. 

 

Plasmid Construction 

A table of all plasmids and oligonucleotides (Table S1) is provided in the Supplementary 

Information. All plasmid construction was carried out using standard molecular cloning methods. 

Full details are provided in the Supplementary Information. 

 

Strain Construction 

Wild-type Synechocystis cells were cultured in BG11 supplemented with 5 mM D-glucose to an 

optical density (measured at 750 nm) of 0.5 and 4 ml harvested by centrifugation at 3200 g for 

15 mins. Pellets were resuspended in 100 μl BG11, 100 ng of plasmid DNA was added and the 

mixture was incubated at 100 μmol m−2 s−1 white light for 60 mins. Cells were spotted onto 

BG11 glucose plates and incubated at 100 μmol m−2 s−1 white light for 24 h at 30°C. Cells were 

collected and transferred onto BG11 glucose plates supplemented with 30 μg ml-1 kanamycin. 

When single colonies appeared, transformants were segregated through passaging on selective 

plates and full segregation was confirmed by PCR. 
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Assays 

After confirmation by PCR that Synechocystis transformants were fully segregated, cells were 

cultured to mid exponential phase before subculture to a final optical density (measured at 750 

nm) of 0.1. Cultures were grown for 24 h and then L-rhamnose added to a variety of final 

concentrations. The optical density of cultures was monitored at 750 nm and high-resolution 

fluorescence intensity of each cell was performed using flow cytometry using an Attune NxT 

Flow Cytometer (ThermoFisher). Cells were gated using forward and side scatter, and GFP 

fluorescence (excitation and emission wavelengths: 488 and 525 nm [with 20 nm bandwidth] 

respectively) was measured. Histograms of fluorescence intensity were plotted, and mean 

statistics extracted. 
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Figure 1. The rhaBAD promoter of E. coli showing transcription factors and binding sites. 

Binding site sequences are in uppercase letters and labelled. The -35 and -10 operators47,51 are 

the binding sites for RpoD, the sigma 70 factor of RNA polymerase. TSS +1 is the 

transcriptional start site. 
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Figure 2. Sequence alignment of RNA polymerase sigma 70 factors from E. coli and 

Synechocystis. RpoD (NP_417539.1) of the E. coli K12 strain MG1655 was aligned pairwise 

with SigA (ALJ69094.1) of Synechocystis sp. PCC 6803 using EMBOSS Needle67 accessed at 

https://www.ebi.ac.uk/Tools/psa/. Only the C-terminal portion of the alignment is shown, where 

the key features of interest are found (see Fig. S1 for full alignment). Box 1. Residues involved 

in binding to the -10 promoter region (region 2). Box 2. Residues involved in binding to the -35 

promoter region (region 4.2). Underlined are the two residues in the E. coli sigma 70 factor 

RpoD, K593 and R599, required for interaction with two residues of RhaS (D250 and D241 

respectively) and the conserved residues found in the Synechocystis ortholog (R412 and K406 

respectively). 
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Figure 3. L-rhamnose stability and impact on growth in photoautotrophic cultures of 

Synechocystis. A. Concentration of L-rhamnose over time in the supernatant of 

photoautotrophic cultures of wild-type Synechocystis, as measured by HPLC-RID. B. Growth of 

wild-type Synechocystis in photoautotrophic conditions with and without 1 mg/ml L-rhamnose. 

Error bars represent the standard deviation of three independent biological replicates. 
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Figure 4. E. coli-Synechocystis shuttle plasmid pCK306 containing a YFP reporter of the 

rhaBAD promoter. L and R denote left and right homology arms respectively for integration into 

the Synechocystis sp. PCC 6803 genome at a previously-used insertion site within the ssl0410 

ORF adjacent to the ndhB locus69. PrhaBAD is the rhaBAD promoter sequence from E. coli. YFP 

encodes yellow fluorescent protein. kanR encodes an aminoglycoside phosphotransferase 

which confers resistance to kanamycin in both Synechocystis and E. coli. rhaS encodes the 

transcriptional activator of rhaBAD promoter, RhaS. p15A is the medium-copy origin of 

replication which allows replication of the shuttle plasmid in E. coli. 
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Figure 5. Response to concentration of inducer L-rhamnose and timecourse of induction 

of rhaBAD promoter in Synechocystis. A. Synechocystis cells containing either pCK305 

(rhaBAD promoter and YFP only) or pCK306 (rhaBAD promoter, YFP and rhaS) were cultured 

in BG11 media supplemented with specified concentrations of L-rhamnose in photoautotrophic 

conditions and the fluorescence intensity of 10,000 cells measured after 116 h using flow 

cytometry. B. The same strains of Synechocystis were cultured in BG11 media supplemented 

with L-rhamnose to a final concentration of 1 mg/ml in photoautotrophic conditions and the 

fluorescence intensity of 10,000 cells measured at specified timepoints using flow cytometry. C. 

Equivalent experiment to A but strains cultured in BG11 supplemented with 5 mM D-glucose 

(mixotrophic growth). D. Equivalent experiment to B but strains cultured in BG11 supplemented 

with 5mM D-glucose (mixotrophic). Error bars shown are the standard deviation of the mean for 

three independent biological replicates. 
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Figure 6. Response to concentration of inducer L-rhamnose and timecourse of induction 

of a variant of the rhaBAD promoter with CRP-binding site deletion. A. Synechocystis cells 

containing either pCK313 (rhaBAD promoter minus CRP-binding site and YFP only) or pCK314 

(rhaBAD promoter minus CRP-binding site, YFP and rhaS) were cultured in BG11 media 

supplemented with specified concentrations of L-rhamnose in photoautotrophic conditions and 

fluorescence intensity of 10,000 cells measured after 116 h using flow cytometry. B. The same 

strains of Synechocystis were cultured in BG11 media supplemented with L-rhamnose to a final 

concentration of 1 mg/ml in photoautotrophic conditions and the fluorescence intensity of 10,000 

cells measured at specified timepoints using flow cytometry. C. Equivalent experiment to A but 

strains cultured in BG11 supplemented with 5 mM D-glucose (mixotrophic growth). D. 

Equivalent experiment to B but strains cultured in BG11 supplemented with 5 mM D-glucose 

(mixotrophic). Error bars shown are the standard deviation of the mean for three independent 

biological replicates. 
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Figure 7. Chromosomal read-through from the site of Synechocystis genome integration 

is responsible for the low basal level of YFP fluorescence observed with rhaBAD reporter 

plasmids. A. Wild-type Synechocystis (WT) or Synechocystis containing pCK305 (rhaBAD 

promoter and YFP only) or pCK306 (rhaBAD promoter, YFP and rhaS) were cultured in BG11 

media  without L-rhamnose and the fluorescence intensity of 10,000 cells measured by flow 

cytometry. B. Wild-type Synechocystis (WT) or Synechocystis containing pCK324 (a control 

vector lacking PrhaBAD) were cultured with or without 1 mg/ml L-rhamnose and the fluorescence 

intensity of 10,000 cells measured by flow cytometry. 
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