
“main” — 2017/12/28 — page 1 — #1

ProteomeVis: a web app for exploration of protein
properties from structure to sequence evolution
across organisms’ proteomes
Amy I. Gilson 1,†, Niamh Durfee 1,†, Rostam M. Razban 1,†, Hendrik Strobelt2,
Kasper Dinkla2, Jeong-Mo Choi1, Hanspeter Pfister2, Eugene I.
Shakhnovich1,∗

1Department of Chemistry & Chemical Biology and
2School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

∗To whom correspondence should be addressed.
†These authors contributed equally.

Abstract

Motivation: Protein evolution spans time scales and its effects span the length of an organism. A web
app named ProteomeVis is developed to provide a comprehensive view of protein evolution in the S.
cerevisiae and E. coli proteomes. ProteomeVis interactively creates protein chain graphs, where edges
between nodes represent structure and sequence similarities within user-defined ranges, to study the long
time scale effects of protein structure evolution. The short time scale effects of protein sequence evolution
is studied by sequence evolutionary rate (ER) correlation analyses with protein properties that span from
the molecular to the organismal level.
Results: We demonstrate the utility and versatility of ProteomeVis by investigating the distribution of
edges per node in organismal protein chain universe graphs (oPCUGs) and putative ER determinants. S.
cerevisiae and E. coli oPCUGs are scale-free with scaling constants of 1.78 and 1.50, respectively. Both
scaling constants can be explained by a previously reported theoretical model describing protein structure
evolution (Dokholyan et al., 2002). Protein abundance most strongly correlates with ER among properties
in ProteomeVis, with Spearman correlations of −0.51 (p-value<10−10) and −0.46 (p-value<10−10) for
S. cerevisiae and E. coli, respectively. This result is consistent with previous reports that found protein
expression to be the most important ER determinant (Zhang and Yang, 2015).
Availability: ProteomeVis is freely accessible at http://proteomevis.chem.harvard.edu/proteomevis/.
Contact: shakhnovich@chemistry.harvard.edu
Supplementary information: Available to download on bioRxiv.

1 Introduction
Protein evolution spans time scales, from the billions of years during
which the universe of extant protein structures emerged to the fraction of
microseconds in which protein sequences mutate (Caetano-Anollés et al.,
2009). Protein evolution also spans length scales, from a protein’s length
and stability, to its copy number and interactions with other proteins, and
to its influence on organismal fitness (Zeldovich and Shakhnovich, 2008;
Sikosek and Chan, 2014; Bershtein et al., 2017). Accordingly, protein
evolution is studied through lines of inquiry usually separated by scale.

One approach takes a long time scale view, inferring evolutionary
dynamics of proteins by ordering extant proteins into a graph based on
relationships between their structures and sequences (Qian et al., 2001;
Dokholyan et al., 2002; Koonin et al., 2002; Deeds et al., 2004). Dokholyan
et al., 2002 constructed the graph by representing protein domains as nodes
and connecting pairs of nodes with edges only if their structure similarities,
measured by DALI Z-scores (Holm and Sander, 1993), exceed 9 and

their sequence identities (SIDs) are less than 0.25. A Z-score of 9 was
found to differentiate protein pairs with similar (Z-score>9) or different
(Z-score<9) structures (Dokholyan et al., 2002). A SID of 0.25 originates
from numerous studies finding that two aligned protein sequences sharing
greater than a SID value ranging from 0.2 to 0.4, are likely to share the
same structure (Chothia and Lesk, 1986; Sander and Schneider, 1991;
Chung and Subbiah, 1996; Rost, 1999). Such sequence pairs are called
homologous.

Strikingly, the distribution of edges per node in this non-homologous
protein domain graph, dubbed the protein domain universe graph (PDUG),
scales as k−1.6, where k stands for degree (number of edges per node)
and 1.6 is the scaling constant (Dokholyan et al., 2002). Scale-free graphs
were first shown to form by a process of preferential attachment, but
models of this type predict scaling constants greater than 2 (Albert and
Barabási, 2000; Krapivsky et al., 2000; Albert and Barabási, 2002). For
the PDUG, an alternative model called Big Bang was developed, where
structures originate from gene duplication events followed by significant
divergence in sequence. Simulations of the Big Bang model generated
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scale-free degree distributions with scaling constants ranging from 1.4-
1.9. The overall average over 100 independent simulations yielded a
scaling constant of 1.6, matching that observed in nature (Dokholyan
et al., 2002). Further studies found PDUG sub-graphs built from proteins
belonging to 59 prokaryotic organisms’ proteomes are also scale-free
(Deeds et al., 2004; Roland and Shakhnovich, 2007). These sub-graphs,
called organismal PDUGs (oPDUGs), have scaling constants ranging from
1.3-1.9, closely matching the extent of the Big Bang model (Deeds et al.,
2004). The Big Bang model’s successes in predicting scaling constants,
indicate that the universe of extant protein structures emerged by a process
of divergent evolution (Deeds and Shakhnovich, 2010).

A complementary approach to protein evolution takes a shorter time
scale view, inferring determinants of sequence evolutionary rates (ER) by
correlating ER with other protein properties (Zhang and Yang, 2015). A
complex cellular environment determines the fitness effects of mutations
that arise randomly in genes. Diverse and sometimes countervailing
selection pressures channel the course of a protein’s evolution (Zeldovich
and Shakhnovich, 2008; Sikosek and Chan, 2014; Bershtein et al., 2017).
Over the years in which organisms diverge from their common ancestor,
selection pressures aggregate in each protein’s ER. ERs span three orders
of magnitude (Zhang and Yang, 2015) and by examining which properties
correlate with ER, previous work attempted to extract the major constraints
of protein evolution.

Protein expression was found to be the most prominent constraint.
Quantified by mRNA abundance because it was more tractable to measure
than protein abundance (Vogel and Marcotte, 2012), protein expression
correlates negatively with ER across all three kingdoms of life, with
correlation coefficients exceeding those observed for other quantities (Pál
et al., 2001; Drummond et al., 2005, 2006; Drummond and Wilke, 2008;
Zhang and Yang, 2015). Much effort has been expended to identify
other protein properties that correlate with ER, independent of protein
expression. Protein length and contact density were found to correlate
positively with ER in E. coli, S. cerevisiae and D. melanogaster (Bloom
et al., 2006; Zhou et al., 2008), while the number of protein-protein
interaction partners (PPI degree) was reported to correlate negatively
with ER in S. cerevisiae (Fraser et al., 2003). However, the evidence is
not incontrovertible. In S. cerevisiae, a significant negative correlation
was found between contact density and ER (Shakhnovich, 2006), and
no correlation was found between PPI degree and ER when carefully
controlling for protein expression (Bloom and Adami, 2003).

By juxtaposing protein structure graphs and ER correlation analyses,
insights into one time scale of protein evolution can be gained by
information from the other. For example, not only do proteins with high
contact densities tend to evolve more quickly at the sequence level than
their less compact counterparts according to Zhou et al., 2008, they also
tend to have larger structure neighborhoods (Shakhnovich et al., 2005),
defined as the number of different sequences encoding a structure. This is
because selection for protein stability, roughly approximated by contact
density, biases evolution towards exploring closely related structures
(Gilson et al., 2017). An example that demonstrates long time scale
structural effects explaining sequence evolution constraints: proteins with
related structures (Lukatsky et al., 2007) or sequences (Wright et al., 2005)
have a statistically enhanced likelihood of forming stable PPIs. This is
most evident by the prevalence of homodimers and superfamily of dimers
in nature (Ispolatov et al., 2005).

In this work, protein chain graphs are merged with correlation
analyses of ER determinants into an interactive visualization tool called
ProteomeVis. ProteomeVis’ graph-theoretical approach takes a global
view of protein evolution over long time scales to capture structure
evolution, while ER correlation analyses span relatively short time scales.
ProteomeVis joins the growing list of visualization tools developed
to facilitate understanding of complex and interwoven experimental

data (Vizcaíno et al., 2015). What makes ProteomeVis unique is the
disparate data it integrates. A tool already exists that enables users
to interactively create protein graphs based on sequence and structure
similarities (Nepomnyachiy et al., 2015). However, no tool, to the best
of our knowledge, includes protein properties from the molecular to the
organismal level, as well as sequence and structure similarities to create
protein graphs to provide a comprehensive overview of protein evolution.

The roadmap for the remainder of the text is as follows. After
describing how we collect the underlying data and incorporate it in
the web app (Methods), we demonstrate the utility of ProteomeVis by
recapitulating and expanding upon previous literature results regarding
protein universe graphs and ER determinants (Results). The Results
section highlights ProteomeVis’ versatility, illustrating how it facilitates
evolutionary studies of protein structure and sequence.

2 Methods

2.1 Data curation

To access the in-house Python scripts that manage ProteomeVis’
data and create the web app’s static files, please refer to
https://github.com/rrazban/proteomevis_scripts. ProteomeVis currently
contains Saccharomyces cerevisiae (S. cerevisiae) and Escherichia coli (E.
coli) proteomes. These two organisms have the largest number of protein
structures deposited in the Protein Data Bank (PDB) (Berman et al., 2000),
accessed in November 2017, per proteome size. In addition, S. cerevisiae
and E. coli have a plethora of experimentally measured protein property
data since they are model organisms (Cooper, 2000). Future iterations
of ProteomeVis will include more proteomes, such as those from Homo
sapiens and Mus musculus.

Data are collected at the level of protein chains. Although most
structure evolution studies and some sequence evolution studies analyze
protein domains, the advantage of chains is that they correspond directly to
genes. Protein chain identification is straightforward, while protein domain
identification is dependent on the subjective definition chosen (Ingolfsson
and Yona, 2008). In addition, the protein chain is the smallest level at
which cellular-wide protein properties such as abundance, protein-protein
interaction and dosage tolerance can be measured. For the remainder of
the text, the word “protein” is used to mean “protein chain”.

2.1.1 Protein structure identification
The S. cerevisiae S288c proteome has 6049 proteins and the E. coli K-12
proteome has 4306, manually verified by the Universal Protein Resource
(UniProt) (The UniProt Consortium, 2016) and last modified on February
19, 2017 and October 1, 2017, respectively. We develop a procedure that
draws upon existing resources to match S. cerevisiae S288c and E. coli
K-12 sequences in UniProt with S. cerevisiae and E. coli structures in
the PDB. First, the Structure Integration with Function, Taxonomy and
Sequences resource (SIFTS) (Velankar et al., 2013) is employed to identify
protein sequences with potentially matching structures. Briefly, SIFTS
assigns PDB structures to UniProt sequences with a minimum SID of 0.9
and the source organism being zero, one or two levels up the species level in
the taxonomy tree (Velankar et al., 2013). If multiple structures are found
for a given sequence, the structure with the largest sequence coverage
is chosen. If multiple structures have the largest coverage, the structure
solved at the lowest resolution is chosen. Second, protein structures are
downloaded from the PDB and their lengths are calculated. Structures are
kept if their lengths are at least 80% of that listed for protein chains in
UniProt. This step filters out those protein structures that align well with
only a small portion of the protein chain, e.g. a single domain from a
multidomain protein.
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Running through the outlined steps yields 747 S. cerevisiae and 1, 098

E. coli proteins. ProteomeVis includes protein property data for only these
proteins. Monthly updates are performed to incorporate modifications to
reported proteomes in UniProt and additional structures deposited in the
PDB.

2.1.2 Structure similarity and sequence identity
The template modeling score (TM-score) is used as a metric for structure
similarity. TM-score and SID for all intra-organism protein pairs of S.
cerevisiae and E. coli are calculated by the TM-align software (Zhang and
Skolnick, 2005), freely downloadable from Yang Zhang’s Research Group
website. Briefly, TM-align iteratively aligns the two protein structures
until its TM-score is maximized and remains stable between iterations
(Zhang and Skolnick, 2005). Both TM-score and SID vary from 0 to 1,
where 0 signifies complete inequality and 1 signifies identity. TM-score
is proportional to the sum over aligned residue pair distance-dependent
weights. TM-score is independent of alignment length, an advantage over
other structure similarity scores (Zhang and Skolnick, 2004). SID is the
fraction of aligned residues that have the same amino acid identity. There
are N ∗ (N − 1)/2 unique pairs, equating to 278, 631 S. cerevisiae and
602, 253 E. coli protein pairs in ProteomeVis.

2.1.3 Length and contact density
A protein’s length is the number of residues present in the PDB structure
file. The contact density is the total number of residue-residue contacts in
the PDB structure file, normalized by its length. Two residues are defined
to be in contact if any non-hydrogen atom of the residue is within 4.5

Angstroms (Å) from another non-hydrogen atom of a non-adjacent residue
(Bloom et al., 2006; Zhou et al., 2008). In Results 3.2, we also explore
defining contacts as residue pairs having Cβ (Cα for glycine) distances
<7.5 Å (Shakhnovich, 2006). The Biopython module (Cock et al., 2009)
is employed to parse PDB files and calculate length and contact density.

2.1.4 Protein abundance
Protein abundance per cell was measured in Ghaemmaghami et al.,
2003 and Arike et al., 2012 for S. cerevisiae and E. coli K-12
MG1655, respectively. Abundance data are downloaded from the Protein
Abundances Across Organisms database (PaxDb) (Wang et al., 2012).
They cover 57% and 74% of the S. cerevisiae and E. coli K-12 proteomes.
They are the largest and most accurate single-sourced datasets for their
respective proteome (PaxDb accessed in November 2017). To allow for
fair comparison between organisms, abundance data in ProteomeVis are
presented as protein abundance per cell divided by the total protein
abundance per cell for the respective organism.

2.1.5 Protein-protein interaction
PPI partners are downloaded from the IntAct database (Orchard et al.,
2014) via the Bioservices Python module (Cokelaer et al., 2013). IntAct
has the largest number of experimentally determined PPIs among PPI
databases (Szklarczyk and Jensen, 2015). Only interactions identified by
affinity purification methods for S. cerevisiae S288c and E. coli K-12 are
included. Affinity purification methods capture more stable interactions,
rather than transient interactions that can vary greatly between independent
experiments (Berggård et al., 2007).

2.1.6 Dosage tolerance
Dosage tolerance was measured in Douglas et al., 2012 for S. cerevisiae
and in Kitagawa et al., 2005 for E. coli K-12. Douglas et al., 2012
reported dosage tolerance, called overexpression toxicity in their paper, as
a logarithmic base 2 (log2) ratio between organismal growth when the gene
of interest is overexpressed compared to that when the gene is expressed

at wild-type levels. Dosage sensitive genes are defined as those with log2
ratios less than -1. Kitagawa et al., 2005 reported dosage tolerance, called
growth inhibitory effects in their paper, as an integer value of 1, 2, or 3.
One signifies no growth, 2 signifies some growth and 3 signifies wild-type
growth when the gene is overexpressed. All studied genes, regardless of
their wild-type expressions, are overexpressed to the same elevated copy
number. The most recent and least invasive dosage tolerance measurement
for S. cerevisiae is from Douglas et al., 2012. Kitagawa et al., 2005 is the
only known study that measured dosage tolerance for E. coli.

2.1.7 Evolutionary rate
ER data for S. cerevisiae S288c and E. coli K-12 MG1655 are taken from
Zhang and Yang, 2015. Briefly, orthologous proteins for S. cerevisiae
S288c were identified in Saccharomyces baynus and for E. coli K-12
MG1655, in Salmonella typhimurium LT2. ER was calculated as the
SID between orthologous proteins. This approximates nonsynonymous
substitutions per nonsynonymous site (dN), a more popular metric for
ER. Indeed, the correlation between ER from Zhang and Yang, 2015 and
dN from Wall et al., 2005 for S. cerevisiae is very strong - Spearman
correlation=0.98, p-value<10−300 (Figure S1). We will add dN and dS

data in future iterations of ProteomeVis.

2.2 Web app

The ProteomeVis web app can be accessed through any web browser
at http://proteomevis.chem.harvard.edu/proteomevis/. To access the
source code, refer to https://github.com/rrazban/proteomevis. The web
framework of ProteomeVis is implemented using Python Django. The
front-end is implemented in JavaScript with D3.js; the backend, SQLite.
ProteomeVis is hosted on Amazon Web Services. Currently, users can
only upload their data by altering the CSV files from which the database
is created and deploying the web app locally.

The ProteomeVis web app layout comprises a top bar - called the
Control Strip (Figure 1A), two left panels - Edge Filtering (1B) and Protein
Chain Graph (PCG) (1C), one center panel - Protein Inspection (1D), and
one right panel - Scatter Plot Matrix (SPloM) (1E).

2.2.1 Control Strip
The Control Strip (Figure 1A) controls the overall data presented. From
left to right, the user can (1) select which organism’s proteome to visualize
(2) enter the TM-score and SID ranges that define a graph in the PCG
panel (3) select the differentially colored property in the PCG panel in
log10 units, except for dosage tolerance (no log transformation) (4) click
the download button to obtain spreadsheets of the underlying data (5) click
the help button for a quick tour of the web app. In Figure 1, the Control
Strip is set up such that the S. cerevisiae proteome is visualized. Protein
pairs with TM-score>0.5 and SID<0.25 are connected by an edge and
nodes are differentially colored by degree in the PCG.

2.2.2 Edge Filtering
The Edge Filtering panel (Figure 1B) displays the SID vs. TM-score scatter
plot for all protein pairs in the designated proteome. As an alternative to
entering values into the TM-score and SID fields in the Control Strip,
users can define TM-score and SID ranges by brushing over the SID vs.
TM-score plot. Each point corresponds to a potential edge in the PCG. All
edges within the brushed region are rendered in the PCG panel below the
Edge Filtering panel. In addition, datapoints colored green denote protein
pairs that physically interact according to the IntAct database.

2.2.3 Protein Chain Graph
Upon setting TM-score and SID ranges, nodes and edges appear in the
PCG panel (Figure 1C). A node represents an individual protein, while
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Fig. 1: The ProteomeVis web app after exploration has occurred. Hovering over asterisks located in the top-right corner of each panel opens an informational
window. Pressing the help button (question mark symbol) located to the right of the Control Strip (A) leads to a quick tour. Alphabetical labels (A-E) are
added to each component of ProteomeVis in this figure to introduce the tool in the text.

an edge signifies that the two proteins it connects have a TM-score and
SID within the user-defined range. Only nodes with at least one edge are
shown in the PCG for visual clarity. The horizontal bar at the top of the
panel allows users to gauge the fraction of nodes displayed (black). As
in the Edge Filtering panel, edges colored green denote two physically
interacting proteins. The node’s color is given by the gray scale shown in
the Control Strip. In Figure 1, nodes are colored by degree. Nodes in small
clusters tend to be light in color as they have low degrees, while nodes in
large clusters are darker because they are typically connected to multiple
other nodes. When the user hovers over a node, the protein structure and
PDB identifier appear at the top left of the panel. If the user clicks on
the node, detailed information about the protein appears in the Protein
Inspection panel.

2.2.4 Protein Inspection
The Protein Inspection panel (Figure 1D) invites users to examine the
properties of any protein in ProteomeVis. Clicking on a node in the PCG
or searching for a protein in the search bar populates the Individual tab
of the Protein Inspection panel with the corresponding protein complex
and its chains, PDB identifier, associated genes and UniProt accession
numbers. Clicking the plus button provides information on the protein
complex’ function as well as PubMed identifiers and Evidence codes
(ECOs) (Chibucos et al., 2014) for tracking references. The PDB identifier
and gene name are clickable links to its PDB and UniProt web page,
respectively. Clicking the image of the protein structure opens a window
with the image enlarged and protein property values below it.

The Cluster tab in the Protein Inspection panel makes it easy for users
to peruse all proteins in a connected component in the PCG (Figure S2).
The cluster size is the number of nodes comprising the cluster in the PCG.
The tab displays a histogram of cluster sizes, for all cluster sizes larger

than 2. In the histogram, each cluster is represented by a square. The gray
scale color of each square in the histogram denotes the average degree
(default) or other property defined by the user in the Control Strip. All
proteins belonging to a cluster can be displayed by clicking on the square
representing the cluster, which displays a header, and then clicking this
header.

Protein chains identified in the Individual and Cluster tabs are given
a color, which allows them and data associated with them to be identified
in the PCG and SPloM panels, respectively. In these tabs, the color is
displayed in the protein chain letter underneath the image of the protein
structure. In Figure 1, 1WPX chain B is colored orange. Its representative
node in the PCG panel and its associated datapoints in the SPloM panel are
also orange. If the default color assigned is not appealing, the user can cycle
through different colors by clicking the protein chain letter. For example,
in Figure S2, all chains associated with the selected cluster are displayed
in purple. In order to differentiate 5XJG chain A from other proteins in the
cluster, the protein chain letter was clicked, yielding a green color (Figure
1D).

2.2.5 Scatter Plot Matrix
The SPloM panel (Figure 1E) allows users to quickly identify statistically
significant correlations between pairs of protein properties. ProteomeVis
includes eight properties.

1. Degree: number of nodes sharing an edge with a node of interest in
the PCG, e.g. 4 for the gray node in Figure S3A.

2. Weighted degree: the abundance of a protein of interest plus the sum
of protein abundances that share an edge with the protein of interest
in the PCG, e.g. 12 for the gray node in Figure S3.

3. Length: number of residues in the PDB structure.
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4. Contact density: average number of contacts per residue in the PDB
structure.

5. Abundance: normalized protein copy number per cell in parts per
million.

6. PPI degree: number of stable protein-protein interaction partners.
7. Dosage tolerance: an organism’s level of insensitivity to protein

overexpression.
8. Evolutionary rate: SID between orthologous proteins.

Not all proteins in ProteomeVis have recorded values for all of its
properties. The last four in the list are obtained from external sources
as described in Methods 2.1, and some have incomplete overlap with
ProteomeVis (Figure S4).

Each of the8∗7/2 = 28 graphs in the panel, except for those involving
dosage tolerance, is a log-log scatter plot of one trait against another. Values
of 0 are approximated by an order of magnitude smaller than the second
smallest possible value for the respective protein property. For example,
the second smallest value for degree is 1, therefore 0 is approximated by
0.1 in the log scale. The scatter plots involving the last 6 properties in
the list are static, i.e. no matter the TM-score and SID ranges chosen, the
plots remain the same. Only plots involving degree and weighted degree
change each time a new TM-score and SID selection is made, such that
they always reflect the PCG. As described above, nodes with no edges,
called orphans, are not displayed in the PCG. However, data associated
with orphans are always shown in the SPloM, including their degree (i.e.
zero, approximated by 0.1 in the log scale) and weighted degree (i.e. their
abundance).

All plots in the SPloM have a background color determined by the p-
value color bar at the top of the panel. Red corresponds to a p-value<0.01;
black, p-value=0.05; and white, p-value>0.1. If the Spearman correlation
coefficient is less than 0.15, no matter how small the p-value, the plot
will be colored white. Results from correlation analysis can be obtained
by hovering over a plot in the SPloM. Clicking on a specific scatter
plot enlarges it in the bottom right corner of the SPloM panel for closer
inspection and presents its corresponding correlation analysis results to its
left. In Figure 1, the abundance vs. evolutionary rate plot is enlarged.

2.2.6 Data download
At any point, users can download the data making up ProteomeVis by
clicking the download button located on the far right of the Control Strip.
As shown in Figure S5, there are three main options. First, users can
download a spreadsheet of the individual proteins’ properties, selecting
which of the eight properties they desire. Second, they can choose to
download data on the relationships between protein pairs, either the edges
that fulfill the set TM-score and SID ranges (“Edges in current range") or
all edges. Edge files include TM-scores and SIDs for each protein pair, as
well as whether they form a PPI. Third, in the Correlations tab, users can
download matrices of correlation analyses values presented in the SPloM
panel.

In addition to downloading from the Control Strip, ProteomeVis offers
a fourth option that enables users to download data associated with specific
protein clusters. In the Cluster tab of the Protein Inspection panel, clicking
on a cluster, hovering over its header line, and clicking the download icon
that appears to the left, downloads the data. In Figure S2, the download
button is not seen but if the user was to hover over the header line with
their cursor, the download button would appear to the left of the 11 label.

We encourage users to download data to rigorously test any hypotheses.
Simply scanning the SPloM panel for significant correlations is prone to
the multiple testing problem and may lead to incorrect conclusions (Yoav
and Hochberg, 1995).

Fig. 2: Degree distribution of the organismal protein chain universe graph
(oPCUG) with its best-fit line on a log-log plot. The slope of the best-fit
line (scaling constant, γ) with its standard error and the Pearson correlation
coefficient (r) with its p-value in parenthesis are calculated by Python
SciPy’s linear regression function. Only 21 S. cerevisiae datapoints are
seen because its maximal degree is 20; for E. coli, its maximal degree
is 52. All degrees are horizontally shifted by 1 unit to allow viewing of
orphans (degree=0) and be consistent with Deeds et al., 2004 in evaluating
the scaling constant.

3 Results

3.1 Degree distribution of the organismal protein chain
universe graph

A characteristic behavior seen in the PDUG compiled across (Dokholyan
et al., 2002) as well as within organisms (oPDUGs) (Deeds et al., 2004;
Roland and Shakhnovich, 2007) is that they are scale-free, meaning that
the probability to find a node with degreek scales as a power law ofkwith a
scaling constant, γ: P (k) ∼ k−γ . This behavior, especially for oPDUGs,
provides support that protein structures evolutionarily diverge rather than
converge. In Figure 2, ProteomeVis reproduces the scale-free behavior
for the S. cerevisiae and E. coli oPCUGs. The oPCUGs are composed of
protein pairs from the respective organism with TM-scores greater than
0.5 and SIDs less than 0.25. For an indepth discussion on threshold and
cutoff values, and the scaling constant’s robustness, refer to Supplementary
information 3.1a. To create Figure 2, the TM-score and SID ranges are
entered in the Control Strip of the ProteomeVis web app and then the
degree data is downloaded via option 1 as described in Methods 2.2.6.

The slope of the best-fit line in a log-log plot is the additive inverse of
the scaling constant. Both organisms exhibit highly significant scale-free
behavior, with Pearson correlation coefficients<−0.9 and corresponding
p-values<10−9 (Figure 2). E. coli’s oPCUG scaling constant is 1.50 ±
0.11, whose range captures Deeds et al., 2004’s measurement of 1.59 for
E. coli’s oPDUG. We hypothesize that this agreement results from protein
domains within protein chain pairs dominating alignments and leave it
for a future study. S. cerevisiae’s scaling constant is 1.78 ± 0.15. No
corresponding protein universe graph result is present in the literature for
S. cerevisiae. Qian et al., 2001 and Koonin et al., 2002 demonstrated that
the distribution of S. cerevisiae domains exhibiting the same structure
classified by SCOP are scale-free. However, Dokholyan et al., 2002
showed that this distribution is one of cluster sizes, making its scale-free
behavior simply a result of random graphs and not indicative of any unique
mechanism behind protein structure evolution.
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Both organisms exhibit oPCUG scaling constants that fall within the
1.4-1.9 range of scaling constants output by Big Bang model simulations
(Dokholyan and Shakhnovich, 2001), described in the Introduction. This
result has interesting implications for the generality of protein structure
evolution. Although S. cerevisiae and E. coli belong to different kingdoms
of life, their oPCUG scaling constants are captured by the Big Bang model,
indicating that the mechanism behind protein structure evolution may be
inherent to the last universal common ancestor.

3.2 Putative evolutionary rate determinants

Multiple studies have determined protein expression to be the strongest
predictor of ER (Pál et al., 2001; Drummond et al., 2005, 2006;
Drummond and Wilke, 2008; Zhang and Yang, 2015). Quantified by
mRNA abundance, protein expression correlates negatively with ER. There
has been continuous debate as to whether other properties impact ER.
Figure 3 summarizes the correlations between ER and all five non-PCG
properties in ProteomeVis, alongside their corresponding correlations
in the literature, if available. The scatter plots from which correlation
coefficients and p-values are calculated, can be seen in the SPloM panel
of the ProteomeVis web app. Protein abundance has the largest magnitude
correlation coefficient at −0.51 for S. cerevisiae and −0.46 for E. coli,
with the lowest p-values (<10−10), in agreement with protein expression
results. Previous studies have mostly focused on the correlation between
mRNA abundance and ER because measuring protein abundance across the
proteome was more laborious (Vogel and Marcotte, 2012). Just one other
study examined the protein abundance-ER relationship in S. cerevisiae,
and they reported a strong negative correlation (Drummond et al., 2006).
To our knowledge, no other study has performed this analysis for E. coli.
Our results expand the scope of previous protein expression studies by
demonstrating that a protein level property, protein abundance, strongly
correlates with ER for both S. cerevisiae and E. coli. This result is nontrivial
because the correlation between mRNA and protein abundance is not very
strong (Greenbaum et al., 2003; Vogel and Marcotte, 2012).

The second strongest ER determinant in ProteomeVis is PPI degree.
In agreement with Fraser et al., 2003, we report a significant negative
correlation between PPI degree and ER (Figure 3). Fraser et al., 2003
hypothesized that proteins with more interaction partners are under
stronger negative selection to keep their sequences unchanged to avoid
detrimental loss of interaction partners. Bloom and Adami, 2003 argued
that the negative correlation between PPI degree and ER is confounded
by protein expression. In the dataset that Fraser et al., 2003 used, Bloom
and Adami, 2003 found that proteins with more PPIs were more likely
to have larger protein expression measurements. When controlling for
protein expression by partial correlation analysis, Bloom and Adami, 2003
found no significant correlation between PPI degree and ER. To see if this
correlation as revealed by ProteomeVis could be confounded by protein
abundance, the PPI degree vs. abundance plot is explored in the SPloM
panel. Indeed, there is a significant positive correlation between them
in ProteomeVis - Spearman correlation=0.27, p-value<10−10, whose
absolute value is approximately the same as that of the PPI degree vs.
ER correlation - Spearman correlation=−0.27, p-value<10−9.

Focusing on the correlation between contact density and ER,
ProteomeVis can explain previously conflicting reports for S. cerevisiae.
Mathematical relationships predict that the number of sequences stably
folding into a native structure is approximated by contact density
(England and Shakhnovich, 2003; Choi et al., 2017). Therefore, proteins
with larger contact densities are expected to have larger ERs because
more mutations can be accommodated while still stably folding. In
agreement, Zhou et al., 2008 reported a significant positive correlation
between contact density and ER for S. cerevisiae and E. coli. However,
Shakhnovich, 2006 found a corresponding correlation for S. cerevisiae

that is significantly negative. In ProteomeVis, corresponding positive
correlations are reported that is significant (p-value<10−3) for S.
cerevisiae and slightly significant (p-value<0.01) for E. coli. To probe
whether ProteomeVis’ consistency with Zhou et al., 2008 is due to having
the same contact definition, we define contacts as in Shakhnovich, 2006
(Methods 2.1.3). The corresponding correlation for S. cerevisiae becomes
insignificant - Spearman correlation=0.02, p-value>0.05. Although we do
not recapitulate the significant negative correlation found in Shakhnovich,
2006, we find that the significant positive correlation between contact
density and ER in ProteomeVis is contingent on the employed contact
definition.

As seen In Figure 3, all statistically significant correlations in
ProteomeVis agree with those available in the literature, except for the
correlation between length and ER for E. coli. Although ProteomeVis
agrees with Zhou et al., 2008 regarding correlations between contact
density and ER, they contradict regarding the correlation between protein
length and ER for E. coli. Zhou et al., 2008 reported a significant
positive correlation, while ProteomeVis reports an insignificant negative
correlation for E. coli. Methodological differences may still explain
the discrepancy. Length could be more sensitive to methodology than
contact density because contact density is normalized while length is
an absolute number. Inaccuracies in the number of contacts and length
due to the identified PDB structure being poor, could partially cancel
out when dividing the two numbers to obtain contact density. Zhou
et al., 2008 employed a SID threshold of 0.4, compared to 0.9 in
ProteomeVis, and did not filter based on length to identify structures in the
respective organism’s proteome. In spite of methodological differences,
the length vs. ER correlation for S. cerevisiae in ProteomeVis and Zhou
et al., 2008 are consistent. Further studies are required to elucidate
why differences in protein structure identification lead to an inconsistent
length-ER correlation in E. coli but not S. cerevisiae.

4 Conclusion
Proteomic data visualization tools are increasingly developed to facilitate
understanding of complex and interwoven experimental data (Vizcaíno
et al., 2015). Here, we present a novel web app called ProteomeVis,
accessible at http://proteomevis.chem.harvard.edu/proteomevis/, to study
protein structure and sequence evolution simultaneously across
organisms’ proteomes. Data downloaded from three published papers,
programmatically accessed from four databases and generated by running
three software packages are organized into ProteomeVis’ four panels.
Interacting with the panels gives users quick insight into the underlying
data. Once more detailed hypotheses are formulated throughout their web
sessions, users can freely download the data to further probe on their own.

In this paper, we applied ProteomeVis to investigate two important
problems in evolutionary protein biology: the scale-free degree distribution
of oPCUGs and the correlations between ER and protein properties. These
two topics span time and length scales in protein evolution, and we
successfully recapitulated and extended previous studies. We report the
previously unknown scaling constant for S. cerevisiae’s protein universe
graph. Interestingly, its oPCUG scaling constant fits the range predicted by
the Big Bang model, which had only been applied to prokaryotic organisms
(Dokholyan et al., 2002; Deeds et al., 2004). This observation points
to the mechanism of protein structure evolution being common among
organisms since the last universal common ancestor. In our studies of
potential ER determinants, protein abundance is the strongest correlate
among properties in ProteomeVis. Previously, the importance of mRNA
abundance had been highlighted (Zhang and Yang, 2015), but our work
joins only one other study to demonstrate the importance of protein
abundance influencing ER (Drummond et al., 2006).
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Fig. 3: Spearman correlations (ρ) between evolutionary rate (ER) and five protein properties (x) in ProteomeVis and the literature. X marks and asterisks
above or below bar plots denote p-value ranges: xxx≡ p-value < 10−100, xx< 10−50, x< 10−10, ***< 0.001, **< 0.01, *< 0.05. Length (Zhou
et al., 2008), contact density (Zhou et al., 2008) and abundance (mRNA) (Zhang and Yang, 2015) correlations with evolutionary rate in the literature for
both organisms are presented. PPI degree and dosage tolerance correlations with evolutionary rate in the literature for S. cerevisiae are from Fraser et al.,
2003 and Vavouri et al., 2009, respectively; for E. coli, not available (N/A) as of November 2017.

ProteomeVis captures 12% of the S. cerevisiae and 25% of the E. coli
proteomes as of November 2017. These percentages will grow as monthly
updates are performed to incorporate newly deposited PDB structures. We
plan to further expand ProteomeVis in future iterations by including more
proteomes, such as those from Homo sapiens and Mus musculus, and
adding genomic data, such as dN and dS.
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