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Abstract

Motivation: The Gaussian Process Latent
Variable Model (GPLVM) is a popular approach
for dimensionality reduction of single-cell data
and has been used for pseudotime estimation
with capture time information. However current
implementations are computationally intensive
and will not scale up to modern droplet-based
single-cell datasets which routinely profile many
tens of thousands of cells.
Results: We provide an efficient implementa-
tion which allows scaling up this approach to
modern single-cell datasets. We also generalize
the application of pseudotime inference to cases
where there are other sources of variation, such
as branching dynamics. We apply our method
on microarray, nCounter, RNA-seq, qPCR and
droplet-based datasets from different organisms.
The model converges an order of magnitude faster
compared to existing methods whilst achieving
similar levels of estimation accuracy. Further,
we demonstrate the flexibility of our approach
by extending the model to higher-dimensional
latent spaces that can be used to simultaneously
infer pseudotime and other structure such as
branching. Thus, the model has the capability of
producing meaningful biological insights about
cell ordering as well as cell fate regulation.
Availability: Software available at
github.com/ManchesterBioinference/GrandPrix.

1 Introduction

The analysis of single-cell genomics data promises
to reveal novel states of complex biological pro-
cesses, but is challenging due to inherent bio-
logical and technical noise. It is often useful
to reduce high-dimensional single-cell gene ex-
pression profiles into a low-dimensional latent
space capturing major sources of inter-cell vari-

ation in the data. Popular methods for dimen-
sionality reduction applied to single-cell data in-
clude linear methods such as Principal and In-
dependent Components Analysis (P/ICA) (Trap-
nell et al., 2014; Ji and Ji, 2016) and non-
linear techniques such as t-stochastic neighbour-
hood embedding (t-SNE) (Becher et al., 2014),
diffusion maps (Haghverdi et al., 2015, 2016)
and the Gaussian Process Latent Variable Model
(GPLVM) (Buettner and Theis, 2012; Buettner
et al., 2015). In some cases the dimension is
reduced to a single pseudotime dimension repre-
senting the trajectory of cells undergoing some
dynamic process such as differentiation or cell
division. The pseudotemporal ordering of cells
is based on the principle that cells represent a
time series where each cell corresponds to distinct
time points along the pseudotime trajectory, cor-
responding to progress through a process of inter-
est. The trajectory may be linear or branching
depending on the underlying process.

Different formalisms can be used to represent
a pseudotime trajectory. In graph-based methods
such as Monocle (Trapnell et al., 2014), Wander-
lust (Bendall et al., 2014), Waterfall (Shin et al.,
2015) and TSCAN (Ji and Ji, 2016), a simpli-
fied graph or tree is estimated. By using dif-
ferent path-finding algorithms, these methods try
to find a path through a series of nodes. These
nodes can correspond to individual cells (Trap-
nell et al., 2014; Bendall et al., 2014) or groups
of cells (Shin et al., 2015; Ji and Ji, 2016) in the
graph. SCUBA (Marco et al., 2014) uses curve
fitting to characterize the pseudotime trajectory.
Principal curves are used to model the trajectory
and each cell is assigned a pseudotime according
to its low-dimensional projection on the principal
curves. On the other hand, in the diffusion pseu-
dotime (DPT) framework (Haghverdi et al., 2016),
there is no initial dimension reduction. DPT uses
random walk based inference where all the diffu-
sion components are used to infer pseudotime.
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One major drawback of the above methods is
the absence of an explicit probabilistic frame-
work. They only provide a single point estimate
of pseudotime, concealing the impact of biologi-
cal and technical variability. Thus, the inherent
uncertainty associated with pseudotime estima-
tion is not propagated to the downstream anal-
ysis and its consequences remain unknown. How-
ever, the robustness of the estimated pseudotime
for these models can be examined by re-estimating
the pseudotimes multiple times under different
initial conditions, parameter settings or samples
of the original data. Campbell and Yau (2016)
have examined the pseudotime estimation of Mon-
ocle where they have taken multiple random sub-
sets of data and re-estimated the pseudotimes for
each of them. They have shown that the pseudo-
time points assigned by Monocle for the same cell
can vary significantly across the random subsets
taken. This uncertainty in pseudotime assignment
motivates the use of probabilistic analysis tech-
niques. The GPLVM is a non-linear probabilistic
model for dimension reduction (Lawrence, 2005)
and has been used extensively to analyse single-
cell data. Buettner and Theis (2012) used the
GPLVM for non-linear dimension reduction to un-
cover the complex interactions among differentiat-
ing cells. Buettner et al. (2015) used the GPLVM
to identify subpopulations of cells where the al-
gorithm also dealt with confounding factors such
as cell cycle. More recently, Bayesian versions of
the GPLVM have been used to model pseudotime
uncertainty. Campbell and Yau (2016) have pro-
posed a method using the GPLVM to model pseu-
dotime trajectories as latent variables. They used
Markov Chain Monte Carlo (MCMC) to draw
samples from the posterior pseudotime distribu-
tion, where each sample corresponds to one possi-
ble pseudotime ordering for the cells with associ-
ated uncertainties. Zwiessele and Lawrence (2016)
have used the Bayesian GPLVM framework to es-
timate the Waddington landscape using single-cell
transcriptomic data; the probabilistic nature of
the model allows for more robust estimation of the
topology of the estimated epigenetic landscape.

As well as allowing for uncertainty in infer-
ences, Bayesian methods have the advantage of
allowing the incorporation of additional covariates
which can inform useful dimensionality reduction
through the prior. In particular, pseudotime es-
timation methods may usefully incorporate cap-
ture times which may be available from a single-
cell time series experiment. For example, in the

immune response after infection, gene expression
profiles show a cyclic behaviour which makes it
challenging to estimate a single pseudotime. Reid
and Wernisch (2016) have developed a Bayesian
approach that uses a GPLVM with a prior struc-
ture on the latent dimension. The latent dimen-
sion in their model is a one-dimensional pseudo-
time and the prior relates it to the cell capture
time. This helps to identify specific features of in-
terest such as cyclic behaviour of cell cycle data.
The pseudotime points estimated by their model
are in proximity to the actual capture time and use
the same scale. Further, Lönnberg et al. (2017)
have adopted this approach and used sample cap-
ture time as prior information to infer pseudotime
in the their trajectory analysis.

However, although the Bayesian GPLVM pro-
vides an appealing approach for pseudotime es-
timation with prior information, existing imple-
mentations are too computationally inefficient for
application to large single-cell datasets, e.g. from
droplet-based RNA-Seq experiments. In this con-
tribution, we develop a new efficient implemen-
tation of the Bayesian GPLVM with an informa-
tive prior which allows for application to much
larger datasets than previously considered. Fur-
thermore, we show how extending the pseudo-
time model to include additional latent dimen-
sions allows for improved pseudotime estimation
in the case of branching dynamics. Our model
is based on the variational sparse approximation
of the Bayesian GPLVM (Titsias and Lawrence,
2010) that can generate a full posterior using only
a small number of inducing points and is imple-
mented within a flexible architecture (Matthews
et al., 2017) that uses TensorFlow to perform com-
putation across a number of CPU cores and GPUs.

2 Methods

Our model is motivated by the DeLorean ap-
proach (Reid and Wernisch, 2016) and uses cell
capture time to specify a prior over the pseudo-
time. The probabilistic nature of the model can be
used to quantify the uncertainty associated with
pseudotime estimation. The GPLVM uses a Gaus-
sian process (GP) to define the stochastic map-
ping from a latent pseudotime space to an ob-
served gene expression space. A Gaussian process
is an infinite dimensional multivariate normal dis-
tribution characterised by a mean function and
a covariance function (Rasmussen and Williams,
2006). In the GPLVM, the mean function defines
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the expected mapping from the latent dimension
to the observed data and the covariance function
describes the associated covariance between the
mapping function evaluated at any two arbitrary
points in the latent space. Thus, the covariance
function controls the second order statistics and
can be chosen based on different second order fea-
tures such as smoothness and periodicity.

2.1 Model

The challenge is to develop scalable models that
can handle both biological and technical noise in-
herent in the data. Our preference for the sparse
Bayesian approach offers a principled yet prag-
matic answer to these challenges. The core of
the model is the Gaussian process which has been
used extensively to model uncertainty in regres-
sion, classification and dimension reduction tasks.
The model uses a sparse variational approxima-
tion which requires only a small number of induc-
ing points to efficiently produce a full posterior
distribution.

The model we use is similar to the Bayesian
GPLVM DeLorean model (Reid and Wernisch,
2016); the main differences between the two ap-
proaches lie in how model inference is accom-
plished which is discussed in Section 2.2. The pri-
mary latent variables in our method are the pseu-
dotimes associated with each cell. The method
expects the technical variability is sufficiently de-
scribed by a Gaussian distribution which is often
accomplished by taking a logarithmic transforma-
tion of the gene expression data. The critical as-
sumption is that the cell capture times are infor-
mative for the biological dynamics of interest. The
expression profile of each gene yg is modelled as a
non-linear transformation of pseudotime which is
corrupted by some noise ε

yg = fg(t) + ε, (1)

where ε ∼ N
(
0, σ2

noise

)
is a Gaussian distribution

with variance σ2
noise. We place a Gaussian process

prior on the mapping function

fg(t) ∼ GP
(
0, σ2k(t, t∗)

)
, (2)

where σ2 is the process variance and k(t, t∗) is the
covariance function between two distinct pseudo-
time points t and t∗. Thus, the expression profiles
are functions of pseudotime and the covariance
function imposes a smoothness constraint that is
shared by all genes.

The pseudotime tc of cell c is given a normal
prior distribution centred on the capture time τc
of cell c,

tc = N
(
τc, σ

2
t

)
. (3)

Here σ2
t describes the prior variance of pseudo-

times around each capture time.

To identify a non-periodic smooth pseudotime
trajectory we have used the Radial Basis Function
(RBF) and Matern3/2 kernels:

RBF : k(t1, t2) = exp
(
−r2

)
, (4)

Matern3/2 : k(t1, t2) =
(

1 +
√

3r
)

exp
(
−
√

3r
)

(5)

where r = |t1−t2|
l and l is the process length scale.

For cell cycle data, we have used the periodic
kernel described in MacKay (1998). For a known
period λ

Periodic : k(t1, t2) = exp

(
−1

2

(
sin
(
π
λ (t1 − t2)

)
l

)2
)

(6)
which limits the GP prior to periodic functions.

We have exploited the model’s flexibility by ex-
tending it to higher dimensional latent spaces. If
the x represents the extra latent dimensions, then
the expression profile of each gene is modelled as

yg = fg(t, x) + ε, (7)

where

fg(t, x) ∼ GP
(
0, σ2k ((t, x), (t, x)∗)

)
. (8)

This generalisation takes the model beyond the
estimation of pseudotime to provide a more gen-
eral probabilistic non-linear dimension reduction
technique.

2.2 Inference

The computation of the log marginal likelihood
is mathematically intractable and MCMC meth-
ods (Campbell and Yau, 2016; Reid and Wernisch,
2016) have been employed for inference. Reid and
Wernisch (2016) also use black box variational ap-
proaches that rely on data subsampling to increase
inference efficiency. However, for the Bayesian
GPLVM an analytic exact bound exists (Titsias
and Lawrence, 2010; Damianou et al., 2016) but
the original derivation and all currently available
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packages such as GPy (2012) assume an uninfor-
mative prior. We modify the exact bound to allow
for informative priors

log p (Y ) ≥ Eq(t) [log p (Y |t)]−KL [q (t) ||p (t)]
(9)

where q (t) is the variational distribution and

p (t) =
N∏
n=1

N
(
tn|τn, σ2

t

)
, (10)

is the modified prior centred at the capture time
τn of cell n with prior variance σ2

t . The vari-
ational approximation for the inputs q (t) is a
factorised Gaussian as in the standard Bayesian
GPLVM (Titsias and Lawrence, 2010)

q (t) =

N∏
n=1

N
(
tn|τ∗n, σ∗

2

t

)
. (11)

The modified lower bound on the model marginal
likelihood is used to optimise all model parame-
ters including the kernel hyperparameters (process
variance, length scale, noise model variance) and
the pseudotime locations. The Gaussian assump-
tion for the variational approximate distribution
may fail to adequately model multimodal distri-
butions and model inference may be susceptible
to local optima, as different pseudotime orderings
may provide similarly smooth expression profiles.
Careful initialisation of the mean τ∗n of variational
approximation q (t) helps the algorithm to obtain
good orderings (see Supplementary). Although
using a non-Gaussian distribution would be pos-
sible, it would require a more complex approxi-
mate inference scheme (Rasmussen and Williams,
2006). In our experiments we find the estimated
pseudotime ordering to be in close agreement with
known times as reflected by high rank correlation
values.

The most common practical limitation of GPs in
practice is the computation required for inference;
for each optimisation step the algorithm requires
O(n3) time and O(n2) memory, where n is the
number of training examples. Campbell and Yau
(2016) have incorporated an MCMC implementa-
tion of the Bayesian GPLVM without an approx-
imation in their model and hence their approach
does not scale for large datasets.

The Bayesian GPLVM has computational com-
plexity ofO(GC3), whereG is the number of genes
and C is the number of cells. To make the model
computationally tractable for large datasets, a
variety of sparse approximations have been pro-
posed (Quiñonero-Candela and Rasmussen, 2005).

Sparse GP approximations reduce the complex-
ity to O(GCM2) where M � C is the number
of auxiliary or inducing points. These inducing
points may or may not coincide with actual points.
As M is chosen much smaller than C, sparse ap-
proximations can result in significant reductions
in computational requirements.

To reduce computational complexity Reid and
Wernisch (2016) use the Fully Independent Train-
ing Conditional (FITC) approximation (Snelson
and Ghahramani, 2006). This is a simple ap-
proach where a specific type of kernel is used to
reduce the computational requirement. The ap-
proach is attractive because only the kernel is af-
fected; the bound on the marginal likelihood is not
affected and is therefore simple to derive. However
as Bauer et al. (2016) have shown, this approach is
prone to overfitting as it does not penalize model
complexity. Titsias (2009) derived a Variational
Free Energy (VFE) approximation for GP regres-
sion where the bound of the marginal likelihood is
modified to include such a penalty term.

Both methods can be succinctly summarized by
a different parametrisation of the marginal likeli-
hood bound:

F = −N
2

log(2π)− 1

2
log |QNN +G|︸ ︷︷ ︸

complexity penalty

(12)

− 1

2
yT (QNN +G)−1 y︸ ︷︷ ︸

data fit

− β

2
tr(T )︸ ︷︷ ︸

trace term

,

For the VFE approximation we have

QNN = KNMK
−1
MMKMN , (13)

GVFE = β−1IN , (14)

TVFE = KNN −QNN . (15)

Here, QNN is approximating the true covariance
matrix KNN , but only involves the inversion of
a M × M matrix KMM . KMM is the covari-
ance matrix on the inducing inputs Z; KNM is
the cross covariance matrix between the training
and inducing inputs, i.e. between X and Z and
KMN = KT

NM .
The objective function of Equation (12) consists

of three terms: the data fit term imposes a penalty
on data not well explained by the model; the com-
plexity term characterises the volume of probable
datasets which are compatible with the data fit
term and therefore penalises complex models fit-
ting well on only a small ratio of datasets. Fi-
nally, the trace term measures the additional er-
ror due to the sparse approximation. Without this
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term VFE may overestimate the marginal likeli-
hood like previous methods of sparse approxima-
tion such as FITC. In fact, the objective function
of the FITC can be obtained from Equation (12)
by using the same expression for QNN and taking

GFITC = diag [KNN −QNN ] + β−1IN , (16)

TFITC = 0, (17)

which clearly shows that the objective function of
the FITC can be obtained by modifying the GP
prior

p(fg|U) = N (fg|0, QNN + diag [KNN −QNN ]) .
(18)

Here the inducing points are acting as an extra set
of hyperparameters to parametrise the covariance
matrix QNN . As this approach changes the prior,
the continuous optimisation of the latent variable
fg with respect to the inducing points U does
not guarantee to approximate the full GP pos-
terior (Titsias, 2009). Moreover, as fg is heavily
parametrised because of the extra hyperparameter
U and the trace term is 0, overfitting may arise at
the time of jointly estimating the inducing points
and hyperparameters. For detailed derivation of
the bound see the supplement and for a compre-
hensive comparison of FITC and VFE see Bauer
et al. (2016). For both the VFE and FITC ap-
proximations, the inducing points may be chosen
randomly from the training inputs or optimized
with respect to the marginal likelihood bound.

Lastly, we have implemented our model in the
GPflow package whose flexible architecture allows
to perform the computation across multiple CPU
cores and GPUs (Matthews et al., 2017).

The source of the scalability of our approach
compared to DeLorean is therefore three-fold:
model estimation using an exact variational
bound, a robust sparse approximation (VFE vs
FITC) and implementation on a scalable software
architecture.

3 Results and discussion

The performance of our model has been investi-
gated by applying it on a number of datasets of
varying sizes collected from different organisms
using different techniques. First we have com-
pared our method with the DeLorean model (Reid
and Wernisch, 2016) in terms of model fitting
as well as the time required to fit the model
on all the datasets used by Reid and Wernisch

(2016); this encompasses the whole-leaf microar-
rays of Arabidopsis thaliana (Windram et al.,
2012); single-cell RNA-Seq libraries of mouse den-
dritic cells (Shalek et al., 2014) and single-cell
expression profiles of a human prostate cancer
cell line (McDavid et al., 2014). Unlike the ap-
proach taken in Reid and Wernisch (2016) where
the variational approximation is computed numer-
ically, our approach provides an exact analytical
bound which, as we show, results in robust param-
eter estimation. Moreover, our method converges
quickly by using a small number of inducing points
even for large data. Overall, our model outper-
forms the DeLorean model in both robustness and
computational scalability aspects.

We also apply our approach on more re-
cent droplet-based single-cell data. We apply
the model on mouse embryo single-cell RNA-
seq (Klein et al., 2015) and compare our the pre-
dicted pseudotime with results from the diffu-
sion pseudotime method (DPT) (Haghverdi et al.,
2016). We then apply the model on a large single-
cell dataset of 3

′
mRNA count data from periph-

eral blood mononuclear cells (Zheng et al., 2017)
to demonstrate scalability to tens of thousands of
cells.

Finally, we demonstrate the flexibility of the
model by applying it on single-cell qPCR data
of early development stages collected from mouse
blastocyst (Guo et al., 2010). We infer a two-
dimensional latent space and show that the cap-
ture time used as an informative prior helps to dis-
ambiguate pseudotime from branching structure.

3.1 Comparison with the DeLorean
model

We have applied our model on three different
datasets from three different organisms which have
been also used by Reid and Wernisch (2016). The
results produced by our model are similar to the
DeLorean model, but our model converges signif-
icantly faster. All the experiments have been car-
ried out by using the same experimental setup,
that is the same model structure and initial con-
ditions.

Windram et al. (2012) examined the effects of
Botrytis cinera infection on Arabidopsis thaliana.
Among the 150 genes described by Windram et al.
(2012), we have used 100 genes for the inference
process. The remaining 50 genes were left out as
held-out genes and used further to validate the
model as in Reid and Wernisch (2016). Fig. 1
shows the comparison of our method to the De-
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Lorean model. Fig. 1(a) shows the best and av-
erage, over 20 different initialisations, Spearman
correlation between the actual capture time and
the estimated pseudotime as the number of induc-
ing points is increased. Both the best and aver-
age correlation values show that our method has
faster convergence for a smaller number of induc-
ing points than the DeLorean method. Fig. 1(b)
depicts the fitting time required by both models
for different number of inducing points. As our
model uses the VFE approximation with an exact
bound, it converges an order of magnitude faster
than the DeLorean model which requires a sam-
pling process. The problem with the sampling ap-
proach is that it requires initial burn-in time to fit
the model which makes the inference slower and
therefore problematic for larger datasets.

Reid and Wernisch (2016) defined the roughness
statistic Rg as the difference of consecutive expres-
sion measurements under the ordering given by
pseudotime. Our model estimates smooth pseudo-
time trajectories which have close correspondence
with the actual capture time points. To verify the
smoothness of our predicted trajectory, we calcu-
lated the roughness statistics for the 50 held out
genes. The average Rg for all experiments in Fig. 1
is the same for both the DeLorean and Bayesian
GPLVM approaches (0.71), reflecting the pseudo-
time similarity. For details, see supplementary.
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Figure 1: Arabidopsis thaliana microarray
data (Windram et al., 2012): A comparison of per-
formance and fitting time between the proposed
method and DeLorean method. (a): Spearman
correlation between the actual capture time and
the estimated pseudotime for different number of
inducing points. (b): Fitting time required by the
models for the same experimental setups.

Shalek et al. (2014) investigated the primary
bone-marrow-derived dendritic cells of mouse in
three different conditions. The time course data
were collected using single-cell RNA-seq technol-

ogy. They described several modules of genes
which show different temporal expression patterns
through the lipopolysaccharide stimulated (LPS)
time course. Fig. 2(a) shows that our model cor-
rectly assigns two precocious cells to later pseu-
dotime as in the DeLorean approach (see supple-
mentary). Fig. 2(b) depicts the fitting time re-
quired by the both models for different number of
inducing points and in all the cases the Bayesian
GPLVM model converges significantly faster than
the DeLorean model.
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Figure 2: Mouse dendritic cells (Shalek et al.,
2014): (a): The module score of core antiviral cells
over pseudotime. The two precocious cells (plot-
ted as triangles) have been placed in later pseu-
dotimes than the other cells captured at 1 hour.
A Loess curve (solid blue line) has been plotted
thorough the data. (b): Comparison of fitting
time required by both the DeLorean and our mod-
els for different number of inducing points while
using the same experimental setups.

McDavid et al. (2014) examined the effect of cell
cycle on single-cell gene expression across three
human prostate cancer cell lines. To model the
cyclic nature of the cell cycle, we have used a
periodic kernel (Equation (6)). The DeLorean
model requires 7h 31m to fit the model while our
method uses 20 inducing points and takes only
4m 45s to converge whilst achieving similar error
in recovering the cell cycle peak times (see sup-
plementary). The DeLorean approach uses sam-
ples from 40 model initialisations to generate a
full posterior GP whilst the BGPLVM only re-
quires a single initialization as an analytic bound
of the marginal likelihood is available. We also
attempted to compare the fitting time required
for different numbers of inducing points for this
dataset but the sparse kernel used in the De-
Lorean packages results into non-invertible covari-
ance matrices. Therefore the sparse approxima-
tion followed in the DeLorean package appears
more fragile in cases of non-standard kernels such
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as the periodic kernel. The estimated pseudotimes
are in good agreement with the cyclic behavior of
the data. The model also predicts the cell cycle
peak time of each gene with similar accuracy level
of the DeLorean approach. See supplementary for
the details of these results.

3.2 Scaling up the model to droplet-
based single-cell data

To investigate the robustness and scalability of
our method, we have applied it on droplet-based
single-cell data. First, we have applied the model
on single-cell RNA-seq data from mouse embry-
onic stem cells (ESC) generated using droplet bar-
coding (Klein et al., 2015). Klein et al. (2015)
developed a method termed inDrop (indexing
droplet) based on droplet microfluidics. They
assayed the gene expression profiles and differ-
entiation heterogeneity of mouse stem cells af-
ter leukaemia inhibitory factor (LIF) withdrawal.
They captured the cells at t = 0, 2, 4 and 7 days
and used their protocol to profile 2717 cells with
24175 observed transcripts. Haghverdi et al.
(2016) have used this dataset for their analysis
of diffusion pseudotime (DPT). They have applied
their model on the cell cycle normalised data to in-
fer DPT. We have used this cell cycle normalized
data to assess the quality of the Bayesian GPLVM
inferred pseudotime.
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Figure 3: Mouse embryonic stem cells (Klein et al.,
2015): Comparison of estimated pseudotime with
the actual cell capture time and the pseudotime
estimated using DPT. The points are coloured ac-
cording to the actual cell capture times. The rank
correlation is shown in the caption of each subplot.

The inference process uses 2717 cells and 2047
genes. The model uses a RBF kernel (Equation
(4)) to identify a smooth pseudotime trajectory.
We have set the capture time prior variance to
σ2
t = 1. The pseudotime estimated by our model

has a high rank correlation with both the actual
capture time as well as the estimated pseudotime
using DPT (Fig. 3).

As memory is a crucial resource when analysing
large volumes of data, we also examine the effect of
lower precision computations. We have examined
the performance of our model under both 64 and
32 bits floating point precision. In both cases we
observe a strong correlation with DPT (˜0.94) but
note a significant reduction in fitting time when
using 32 bits precision. For 64 bits precision the
algorithm take ˜32 seconds to converge, whilst it
takes only ˜11 seconds to converge for 32 bits pre-
cision.

Figure 4: PBMCs with ˜68k cells (Zheng et al.,
2017): Time per iteration using 1, 2, 4, 8, 16 CPU
cores. The algorithm has been applied using both
32 and 64 bit floating point precision.

We also apply our method on a larger single-
cell RNA-seq dataset to further demonstrate its
scalability. Zheng et al. (2017) have presented
a droplet-based technology that enables 3

′
mes-

senger RNA (mRNA) digital counting to encap-
sulate tens of thousands of single cells per sam-
ple. In their method, reverse transcription takes
place within each droplet and barcoded comple-
mentary DNAs (cDNAs) have been amplified in
bulk. The resulting libraries are then used for
Illumina short-read sequencing. Their method
has 50% cell capture efficiency and can process
a maximum of 8 cells simultaneously in each run.
Zheng et al. (2017) have assayed ˜68k peripheral
blood mononuclear cells (PBMCs) demonstrating
the suitability of single-cell RNA-seq technology
to characterise large immune cell populations.

We have applied our method using the top
1000 variably expressed genes ranked by their nor-
malised dispersion (Zheng et al., 2017). We use a
2D GPLVM model with no capture time prior in-
formation and an RBF kernel (Equation (4)) with
60 inducing points. The inducing points and hy-
perparameters have been optimised jointly with
model parameters and the algorithm takes ˜10m
to converge on a simple desktop machine1. To val-
idate the GrandPrix result, we compare the clus-

1Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz with 16
GB memory.
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tering in the latent space with the clustering re-
ported in Zheng et al. (2017). The latent space
clustering is computed using the k-means algo-
rithm with k = 10 clusters and we have used the
adjusted rand index (ARI) (Hubert and Arabie,
1985) to evaluate it’s agreement with the cell la-
bels reported in Zheng et al. (2017). The ARI
has a value near to 0.0 if the cluster labelling is
performed randomly and 1.0 for identical cluster-
ings. A better solution is achieved when using
t-SNE to initialise the latent space rather than
PCA (see supplement), suggesting that it is worth
considering different methods to initialise Grand-
Prix to improve the quality of the solution; a sim-
ilar strategy is taken in Zwiessele and Lawrence
(2016) where multiple dimension reduction meth-
ods are used to initialise a GPLVM model. We
have also found that the GrandPrix ARI (0.54) is
higher than the t-SNE method (0.51) showing an
improvement over the initialisation used.

Further we have investigated the scalability of
the model across varying number of CPU cores2.
For simplicity only the 1-D latent positions are
optimised, using fixed values for the kernel hyper-
parameters l = 1 and σ2 = 1 and the inducing
points. In Fig. 4 we show the time required per it-
eration when using different number of CPU cores
for both 32 and 64 bit precision. The computa-
tional benefits of lower precision are reduced as
the number of cores is increased. We also note the
diminishing returns of increasing the number of
CPU cores; we see an approximately doubling of
performance when increasing the number of cores
from 2 to 4 but a reduced benefit when increas-
ing from 8 to 16. We recommend a small number
of cores is assigned to an individual model fitting,
with any remaining resources assigned to perform
multiple model fittings using different initial con-
ditions. The latter is needed to alleviate the local
minima problem inherent when fitting a Bayesian
GPLVM model.

We can further increase the performance of the
GrandPrix model by fixing rather than optimis-
ing the inducing point locations. This results
in faster convergence without sacrificing accuracy
given a sufficient number of inducing points is used
(see supplementary). The effectiveness of this ap-
proach stems from the high amount of redundancy
that is typical in larger datasets and offers a way
to scale up the GrandPrix approach to datasets

2The hardware used was a 16-core Intel Ivy Bridge CPUs
(E5-2650 v2, 2.60GHz) with 512 GB memory. TensorFlow
version 1.0.0 and GPflow version 0.3.8.

with a larger number of cells.

3.3 Extending the model to infer
pseudotime-branching

To demonstrate the flexibility of our approach, we
extend the model to 2-D latent spaces with a cap-
ture time prior on one latent dimension and apply
it on single-cell qPCR data of early developmental
stages in mouse (Guo et al., 2010). The gene ex-
pression profiles of 48 genes were measured across
437 cells. Cells differentiate from the single-cell
stage into three different cell states in the 64 cell
stage: trophectoderm (TE), epiblast (EPI), and
primitive endoderm (PE).

Models with both informative and non-
informative priors are examined. Both models use
an RBF kernel (Equation (4)). Both models are
initialized with identical values. For the informa-
tive prior, we set the capture time variance to
σ2
t = 0.1. The informative prior (Fig. 5(b)) on

capture time helps with the identifiability of the
model as it aligns the first latent dimension (hor-
izontal axis) with pseudotime and the second la-
tent dimension (vertical axis) with the branching
structure.
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Figure 5: Single-cell qPCR of early developmental
stages (Guo et al., 2010): Latent space reconstruc-
tion without and with prior. The bottom captures
both developmental time and branching structure.
The cell stage and type labels are also shown.

To investigate how the branching dynamics af-
fect the estimation of pseudotime points, we have
used our model to infer the 1-D pseudotimes with
informative prior and compared it with the pseu-
dotimes from the 2-D informative prior model
(Fig. 6(a) and (b)). Both models were run from
multiple initial conditions to ensure a good like-
lihood optimum was obtained. The 2-D model
estimate of the pseudotime is found to have bet-
ter correspondence with the actual capture time
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(correlation 0.84 vs 0.95), suggesting that the 1-
D model is less able to align all variation with a
pseudotime axis.

In Fig. 6(c) and (d), we have plotted the expres-
sion profiles of two marker genes against our esti-
mated pseudotime points. Id2 is a known marker
gene for TE, thus it behaves differently in TE cells
from the other two differentiation stages. It is dif-
ferentially expressed between the stages TE and
EPI, as well as between TE and PE. Similarly,
Fig. 6 (d) shows that Sox2 is differentially ex-
pressed between the stages TE and EPI, and be-
tween the stages PE and EPI. To see the expres-
sion profiles of the other differentially expressed
genes across the differentiation stages, see the sup-
plementary material.
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Figure 6: Single-cell qPCR of early developmen-
tal stages (Guo et al., 2010): (a) and (b): The
actual capture times against the estimated pseu-
dotimes from the 2-D and 1-D model with infor-
mative prior. (c) and (d): The expression profiles
of the two known markers genes against the es-
timated pseudotime shows the time series experi-
ments describing how the genes behaves differen-
tially across the differentiation stages.

4 Conclusion

Pseudotime estimation on single-cell genomics
faces a number of challenges as the structure of
the expression data is complex and non-linear.
Many sources of variability, both biological and
technical, introduce a significant amount of sta-
tistical uncertainty in the inference process. Here,

we have used the Bayesian GPLVM model with
informative priors to perform pseudotime estima-
tion within a probabilistic framework. The model
uses cell capture times as priors over pseudotime.
Experimental results show that the properties of
pseudotime ordering do not only depend on the
data but also on the prior assumptions about
the trajectory such as proximity to capture time,
smoothness and periodicity.

The Bayesian GPLVM framework allows us
to predict a number of latent dimensions along
with associated uncertainty. A sampling-based
Markov Chain Monte Carlo implementation of the
Bayesian GPLVM is impractical for large number
of cells because of its high computational com-
plexity. We have developed our model on the ba-
sis of a sparse approximation that can generate a
full posterior using only a small number of induc-
ing points. Among a number of sparse approxi-
mation techniques, we have used the Variational
Free Energy (VFE) approximation which has an
exact bound to the marginal likelihood and avoids
overfitting unlike the FITC approximation used
by Reid and Wernisch (2016). To validate these
claims, our approach has been tested on a variety
of datasets from different organisms collected us-
ing different protocols. We find that our model has
comparable accuracy to the DeLorean method for
inferring the posterior mean pseudotime across all
datasets used in Reid and Wernisch (2016) while
converging considerably faster. The sources of the
speed up are threefold: an analytic rather a nu-
merically assessed variational bound, a more ro-
bust sparse approximation (VFE vs FITC) requir-
ing fewer inducing points, and a scalable software
implementation (Matthews et al., 2017) allowing
for lower precision and GPU computation. The
posterior mean from our model agrees closely with
the posterior mean from DeLorean in all cases, but
we find that the posterior variance of both the
DeLorean and GrandPrix variational inference al-
gorithms can be underestimated when compared
to MCMC results (see supplementary Section 2.1).
However, the DeLorean approach does not scale to
datasets with more than a few hundred cells (Sae-
lens et al., 2018). Our method therefore provides
a practical approach to incorporate prior informa-
tion into pseudotime estimation but at the cost of
some loss in accuracy when assessing pseudotime
uncertainties.

We have applied our model on droplet-based
datasets to examine the robustness and scala-
bility of our approach on much larger datasets.
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Our model successfully estimates pseudotimes for
single-cell RNA-seq data of mouse embryonic stem
cells (ESC) generated using the inDrop protocol.
The Bayesian GPLVM estimated pseudotimes are
in good agreement with DPT whilst providing all
the benefits of a fully probabilistic model; namely
quantification of uncertainty in the pseudotime es-
timation which has been shown to be of biological
relevance (Campbell and Yau, 2016). To demon-
strate our models scalability, we have measured
its performance on a ˜68k single-cell data of pe-
ripheral blood mononuclear cells and the model
converges in 6 minutes on this large dataset.

Finally, we have applied the model on single-cell
qPCR of early developmental stages to demon-
strating its flexibility. We extended the model
to higher dimensional latent spaces where the in-
teraction of pseudotime with other factors, such
as cell type differentiation, can be captured. We
demonstrated the importance of this additional
flexibility using a two-dimensional latent space
where pseudotime is estimated jointly with the
developmental branching structure. As extra la-
tent dimensions can be used to describe other
biological functions, the model can be extended
to include additional prior information on the
other latent dimensions; for example the prior
could include information on branching dynam-
ics extracted from the application of branching
models such as Monocle (Qiu et al., 2017) and
DPT (Haghverdi et al., 2016).

The model performs well across varying float-
ing point precisions. For droplet-based datasets
we have run the model using both 32 and 64 bit
floating point precision and the algorithm pro-
duces similar estimation of pseudotime. We ex-
pect that in most cases, low precision will be suf-
ficient to understand the behaviour of the system
offering a way to further scale up our approach
without the need for more expensive hardware.
Mixed precision computations would also be possi-
ble with higher-precision computations performed
only on the most numerically critical parts of the
algorithm maintaining high accuracy whilst being
significantly faster (Baboulin et al., 2009).

The analysis of single-cell data creates the op-
portunity to examine the temporal dynamics of
complex biological processes where the generation
of time course experiments is challenging or tech-
nically impossible. As single-cell data are becom-
ing increasingly available in larger volumes, we be-
lieve scalable yet rigorous approaches such as the
Bayesian GPLVM we have presented, will become

ever more relevant. The flexibility of our approach
can also reveal interesting biological facts such as
identifying branching points in the differentiation
pathways.
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