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Abstract 15 

Deciphering the functional roles of cis-regulatory variants is a critical challenge in genome 16 

analysis and interpretation. We hypothesize that altered transcription factor (TF) binding 17 

events are a central mechanism by which cis-regulatory variants impact gene expression. 18 

We present TF2Exp, the first gene-based framework (to our knowledge) to predict the 19 

impact of altered TF binding on personalized gene expression based on cis-regulatory 20 

variants. Using data from lymphoblastoid cell lines, TF2Exp models achieved suitable 21 

performance for 3,060 genes. Alterations within DNase I hypersensitive, CTCF-bound, and 22 

tissue-specific TF-bound regions were the greatest contributors to the models. Our cis-23 

regulatory variant-based TF2Exp models performed as well as the state-of-the-art SNP-24 

based models, both in cross-validation and external validation. In addition, unlike SNP-based 25 

models, our TF2Exp models have the unique advantages to evaluate impact of uncommon 26 

variants and distinguish the functional roles of variants in linkage disequilibrium, showing 27 

broader utility for future human genetic studies. 28 

 29 

Introduction 30 

Understanding the functional role of genetic variants in human disease is a fundamental 31 

challenge in medical genetics. Whole genome sequencing now enables clinicians to 32 

systematically seek variants that contribute to disease phenotypes, but current clinical 33 

approaches focus primarily on the ~2% of the genome coding for proteins. Predicting the 34 

functional impact of non-coding variants remains a challenge, which limits interpretive 35 

capacity. As up to 88% of disease-related variants in genome-wide association studies 36 

(GWAS) are located within non-coding regions 1, there is a recognized need for methods 37 

that provide mechanistic insights into cis-regulatory variants. 38 
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Substantial progress has been made on detecting statistical relationships between common 39 

polymorphisms and expression levels. These expression quantitative trait loci (eQTL) 40 

studies can highlight regions harboring regulatory roles. Reported eQTLs are enriched for 41 

regulatory regions 2, 3. Partially based on the success of eQTL analysis, regression-based 42 

models using SNPs proximal to genes as features have been developed, which show 43 

capacity to predict gene expression levels 4, 5. 44 

Such correlative approaches are useful, yet for multiple reasons they lack the resolution to 45 

direct researchers to specific causal alterations. First, causal variants are hard to infer in 46 

association studies due to linkage disequilibrium (LD) between SNPs 6. Second, uncommon 47 

variants (minor allele frequency, MAF < 0.05) are excluded from most association studies, 48 

but rare variants (MAF < 0.01) are often causal for genetic disorders 7, 8. Third, most 49 

approaches defer the annotation of variant function until after the model is constructed, 50 

whereas an early focus on variants likely to impact gene regulation would provide more 51 

functional insight. 52 

Both GWAS and eQTL studies have convincingly highlighted the importance of cis-53 

regulatory regions 2, 3. Advances in genomics and bioinformatics have greatly expanded the 54 

identification of functional elements within such regions, with an emphasis on DNA binding 55 

transcription factors (TFs). TFs recognize and bind to short DNA segments, named TF 56 

binding sites (TFBSs), in a sequence-specific manner 9. Machine learning approaches 57 

coupled to extensive TF ChIP-seq data have enabled better predictions of TFBSs 10, 11. 58 

Recently, the compilation of altered TF binding events has increased, and models have 59 

emerged to predict such events 12, 13. However, the relationship between altered TF binding 60 

events and gene expression levels remains unclear, hindering our understanding of cis-61 

regulatory variants14, 15. 62 

To gain more direct insight into the functional roles of non-coding variants, a key challenge is 63 

to determine the relationships between alterations of TF binding events and observed 64 
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expression levels of a target gene. To address this challenge, we developed TF2Exp models 65 

to predict gene expression levels based on TF binding alterations inferred from cis-66 

regulatory variants. We explored the utility of TF2Exp in answering four important questions: 67 

1) are alterations of TF binding events predictive of gene expression changes?; 2) what are 68 

the characteristics of the functional altered TF binding events?;  3) do TF2Exp models 69 

perform as well as the state-of-the-art SNP-based models?; and 4) are TF2Exp models able 70 

to evaluate the impact of SNPs in LD and uncommon variants? Our results show that 71 

TF2Exp models successfully predicted the alteration of gene expression for over three 72 

thousand genes, with an average performance comparable to that of models based solely on 73 

SNPs, supporting the hypothesis that TF binding alteration is a central mechanism by which 74 

cis-regulatory variants impact gene expression. 75 

 76 

Results 77 

TF2Exp: regression models to predict the impact of altered TF binding on gene 78 

expression 79 

We developed TF2Exp, a gene-based computational framework to assess the impact of 80 

altered TF binding events on gene expression (Figure 1). As detailed in Materials and 81 

methods, variant calling data (single nucleotide variants and small indels) and gene 82 

expression data for 358 lymphoblastoid cell lines (LCLs) were obtained from the 1000 83 

Genomes 16 and GEUVADIS projects 3. Moreover, TF-bound regions for 78 distinct TFs and 84 

DNase I hypersensitivity sites (DHSs) were obtained from the ENCODE project for 85 

GM12878 LCL 2. TF binding events (inclusive of DHS) were associated to a gene if they 86 

overlapped either the promoter or distal regulatory region of the gene (see Materials and 87 

methods). The impact of each single variant within a TF binding event was scored using 88 

DeepSEA 10, and multiple variants within the same TF binding event were summed to 89 
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generate an overall alteration score of that TF binding event in each individual. On average, 90 

each gene had 420.0 altered TF binding events within 36.6 regulatory regions across the 91 

358 individuals. Based on computed alteration scores of TF binding events in each 92 

individual, regression models were trained by LASSO 17 to predict gene expression per 93 

individual and to identify key contributing TF binding events. 94 

 95 

 96 
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Figure 1 Overview of the TF2Exp framework. (A) Infer regulatory regions and TF binding 97 

events of each gene based on the reference cell line (GM12878). Distal regulatory regions 98 

are associated to a gene according to Hi-C data. TF binding events on the promoter or distal 99 

regulatory regions of a gene are assigned to that gene. (B) Score the alteration of TF binding 100 

events based on the overlapped variants for each individual. (C) Train regression models for 101 

each gene across the collected individuals. 102 

 103 

TF2Exp predicts the expression levels for a subset of genes 104 

We successfully trained TF2Exp models for 15,914 genes. Average model performance (R2) 105 

by 10-fold cross-validation was 0.048, with most models having low predictive power (Figure 106 

2). To focus on predictive models, we applied an R2 threshold of 0.05 as in 4, resulting in 107 

19.2% of genes (hereinafter referred to as predictable genes). To assess the impact of 108 

random noise in the model training process, we set up control models in which gene 109 

expression was shuffled across individuals while preserving TF binding features. Control 110 

models achieved an average R2 of only 1.9×10-4 (Figure 2), supporting the non-random 111 

signal captured by TF2Exp models. As in the work of Manor et al. 4, we observed a 112 

significant correlation between model performance and the variance of expression levels for 113 

the predictable genes (Spearman correlation 0.25, p-value = 4.0×10-43; Supplementary file: 114 

Figure S2). We performed gene ontology enrichment analysis using GREAT 18.  The top 115 

10% predictable genes are enriched in pathways including graft-versus-host disease, 116 

allograft rejection and autoimmune thyroid disease, relevant to the roles of B cells (original 117 

cell type before transformed to LCL) in the immune system.  118 

We next sought to determine if additional information could substantially improve model 119 

performance. We assessed whether prior knowledge, such as Hi-C proximity scores and 120 

known TF-TF physical interactions, could improve TF2Exp models. We introduced the 121 
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proximity scores of Hi-C interactions to guide model fitting, so that TF-binding events on 122 

highly-interacting regions would be less regularized by LASSO (Materials and methods). We 123 

observed that adding Hi-C proximity scores resulted in a slight R2 improvement of 9.4×10-4 124 

(Wilcoxon signed-rank test, p-value = 8.1×10-45), suggesting that the original TF2Exp models 125 

had captured most of the signal from the Hi-C data. We also tested models including 126 

interaction terms for known TF-TF physical interactions (Materials and methods). Adding TF-127 

TF interactions significantly reduced model performance by 7.7×10-4 (Wilcoxon signed-rank 128 

test, p-value = 2.2×10-81, Figure 2), suggesting that TF-TF interaction terms did not add 129 

further information. Taken together, models incorporating prior knowledge achieved similar 130 

performance to the original models. Thus, we focused on the original (and simpler) TF2Exp 131 

models in the next stages of the analysis. 132 

 133 
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 134 

Figure 2 Performance comparison of alternative TF2Exp models 135 

For each type of TF2Exp model, performances (R2) of investigated genes (y axis) are plotted 136 

in ascending order with respect to the cumulative percentage of genes (x axis). Dashed line 137 

indicates the defined performance threshold of 0.05 for predictable genes. 138 

 139 
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Alterations of DHS, CTCF and tissue-specific TF binding are the most frequently 140 

selected features 141 

We next sought to identify TFs for which binding events were more frequently selected in 142 

TF2Exp models. For the predictable genes, models selected an average of 3.7 key features 143 

(where a feature was the alteration score of a single TF binding event). Frequently selected 144 

TFs tended to have more binding events across the genome (Pearson correlation 0.97, p-145 

value < 2.2×10-16). The top 5 selected TF features included DHS, RUNX3, CTCF, EBF1 and 146 

PU.1, accounting for 34.2% of the selected features (Figure 3). Particularly, 41.4% of the 147 

predictable genes had at least one DHS feature, highlighting the well-known relationship 148 

between chromatin accessibility and gene expression 19. CTCF has diverse roles in gene 149 

regulation across multiple tissues 20, 21, and the remaining three TFs perform important roles 150 

in LCL tissue-specific regulation: RUNX3 in immunity and inflammation 22, EBF1 in B 151 

lymphocyte transcriptional network expression 23, and PU.1 in lymphoid development 24. 152 
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 153 

Figure 3 Top 10 TFs whose binding events are the most frequently selected features 154 

across predictable genes.  155 

Red bars indicate the total number of TF binding events selected by TF2Exp models. Blue 156 

bars indicate the total number of genes that selected binding events of the indicated TF as 157 

key features.  158 

 159 
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Selected TF binding events correlate with gene expression in vivo 160 

We next sought to assess whether in vivo TF binding of selected features correlated with 161 

gene expression. We obtained CTCF and PU.1 ChIP-seq LCL data for two independent sets 162 

of 45 originally training individuals (38 individuals overlapped between the two sets). TF 163 

binding signals were extracted from the reference GM12878 TF binding events (i.e. the 164 

ChIP-seq features used in the TF2Exp for model construction). In predictable genes, 83 165 

CTCF and 72 PU.1 binding events were selected for testing based on their high variance of 166 

binding score change (see Materials and methods). Eight CTCF (9.7%) and seven PU.1 167 

(9.6%) of the tested in vivo binding events significantly correlated with gene expression 168 

levels (Pearson correlation, FDR<0.05), and their correlation coefficients were consistent 169 

with the coefficients estimated based on the TF sequence alteration score and gene 170 

expression (p-value= 1.4×10-4, coefficient = 0.81). Due to limited testing sample size (n = 171 

45), we did not have sufficient statistical power to detect weakly correlated TF-gene 172 

relationships (e.g. coefficient < 0.29, see Materials and methods), which accounted for most 173 

(89.7%) of the tested in vivo binding events. In summary, we observed that 9.7% of TF 174 

binding events selected by TF2Exp displayed detectable correlation (correlation coefficient > 175 

0.29) between in vivo binding and gene expression. 176 

 177 

Effect sizes of TF binding events within promoters are greater than distal regulatory 178 

regions 179 

We next examined the locations and effect sizes of selected features. The selected features 180 

in promoters were mostly within 10Kb of gene start positions, while selected features in 181 

distal regions were distributed within ~500Kb. We observed significant depletion of selected 182 

features in distal regulatory regions compared with promoter regions (Fisher’s exact test, 183 

odds ratio = 0.32, p-value < 2.2×10-16). Effect sizes of TF binding events decreased rapidly in 184 
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relation to the distance from gene start positions (Figure 4A). Such a decreasing trend has 185 

been reported for effect sizes of eQTLs 25. The selected features in promoter regions also 186 

exhibited significantly larger absolute effect sizes (Wilcoxon rank-sum test, p-value = 2.5×10-187 

53, Figure 4B) and more positive effects (Wilcoxon rank-sum test, p-value = 3.0×10-4) than 188 

features in distal regulatory regions. Nevertheless, the selected distal features of a gene 189 

were significantly enriched in the enhancer regions associated to that gene, as specified in 190 

the FANTOM5 project 26 (Fisher's exact test, odds ratio = 1.3, p-value < 1.5×10-9, see 191 

Materials and methods), supporting a functional role of the selected distal TF binding events. 192 

Thus TF2Exp models are identifying cis-regulatory sequence variants that bring functional 193 

insights into the mechanisms underlying gene expression levels. 194 

 195 

 196 

Figure 4 Feature effect sizes in promoter and distal regulatory regions. (A) Effect sizes of 197 

selected features decrease rapidly with their increasing distances to the gene start positions.  198 

Each dot represents one selected feature (TF binding event) of predictable genes, and the 199 

coordinates indicate the feature distance to gene start site (x axis) and the feature effect size 200 

(y axis) obtained in TF2Exp models. The green contours indicate estimated dot density. 201 
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Feature effect sizes are plotted separately for promoter regions (top panel) and distal 202 

regulatory regions (bottom panel). (B) Compare the absolute feature effect sizes of selected 203 

TF-binding events at promoters and distal regulatory regions across the all the predictable 204 

genes. The labeled p-value indicates the significance for the difference of two groups 205 

(Wilcoxon rank-sum test). 206 

 207 

Uncommon variants improve model performance for a small portion of genes 208 

As TF2Exp models can distinguish the impact of variants in TF-binding events, we 209 

investigated the contribution of uncommon (MAF <= 0.05) variants to model performance. 210 

TF2Exp models trained only on uncommon variants achieved lower average performance 211 

(R2 = 0.011) compared with models based on all variants (R2 = 0.048). However, when 212 

combining both uncommon and common variants, a small portion (11.5%) of models 213 

improved compared with using common variants alone. The improvement can be negative if 214 

performances of uncommon variants models were near zero (Supplementary file: Figure S3215 

 ), suggesting that majority of the uncommon variants are not informative for TF2Exp 216 

models. 217 

 218 

TF2Exp models can distinguish SNPs in LD compared with SNP-based expression 219 

models 220 

We compared our TF2Exp models with state-of-the-art models, which predict alteration of 221 

gene expression levels using proximal SNPs 4, 5 (see Materials and methods). First, for each 222 

gene, we trained both models (TF2Exp and SNP-based) on the same set of variants (SNPs 223 

within all TF binding events, SNPinTF) for each gene, and named two models as TF2Exp-224 

SNPinTF and SNP-SNPinTF. The two models showed comparable performance across the 225 

shared predictable genes (Wilcoxon signed-rank test, p-value=0.19; Supplementary file: 226 
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Figure S4). In addition, the default SNP-based models using all the proximal SNPs within 227 

1Mb of the gene body showed essentially equal performance (mean R2 = 0.051) to TF-228 

SNPinTF (mean R2 = 0.050, Wilcoxon signed-rank test, p-value=0.08), indicating that altered 229 

cis-regulatory variants can serve equally as well as SNPs as the basis for predictive 230 

expression models, while providing added benefit of mechanistic insight. 231 

Compared with SNP-based models, TF2Exp models are able to infer the functional roles of 232 

SNPs in linkage disequilibrium (LD) based on the predicted impact of variants on TF-bound 233 

regions. Most of the selected SNPs (59.8%, n=9,386) in the SNP-SNPinTF models 234 

overlapped selected TF binding events (62.7%, n=12,663) in TF2Exp-SNPinTF for the same 235 

gene. 18.4% of the overlapped SNPs were in high LD (r2>0.9) with other SNPs in the same 236 

TF-bound regions, hindering the inference of the casual variants for SNP-based models. 237 

Based on TF2Exp models, we found that 36.8% of the linked SNPs showed at least a two-238 

fold impact on the overlapped TF-bound region compared with the selected SNPs (Figure 5), 239 

suggesting a more dominant contribution of the linked SNPs. In addition, a subset of the 240 

selected SNPs (20.1%) overlapped more than one selected TF binding event, which 241 

highlights that individual SNPs can alter multiple mechanisms of gene regulation. Overall, 242 

TF2Exp models provide a quantitative way to evaluate the impact of SNPs in LD, suggesting 243 

a broader utility for genomic studies than SNP-based models.  244 

 245 
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 246 

Figure 5 Distinguish the functional roles of SNPs in LD based on TF2Exp framework. 247 

Most of the SNPs selected by SNP-based models overlapped with TF binding events 248 

selected by TF2Exp models for the same gene. A subset of these selected SNPs were in 249 

high LD (r2>0.9) with other SNPs in the same TF-bound region. Each dot depicts the 250 

absolute impact of a selected SNP by a SNP-based model (x axis) versus the absolute 251 

impact of its linked SNP, according to the TF2Exp model. The dashed line indicates two-fold 252 

impact of the linked SNPs compared with the selected SNPs. 253 

  254 
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TF2Exp models exhibit robust performance in external validation datasets 255 

We finally sought to evaluate the models of predictable genes on external datasets. We 256 

obtained microarray expression data from LCLs of 256 individuals 27, including 80 Utah 257 

residents with Northern and Western European ancestry (CEU), 87 Chinese (CHB) and 89 258 

Japanese (JPT) (Materials and methods). As 79 of the CEU individuals overlapped with the 259 

training individuals of TF2Exp models, we first evaluated the agreement between the 260 

microarray and RNA-seq data on these individuals. Relative expression levels across all 261 

genes within each individual were concordant between microarray and RNA-seq 262 

experiments (average Spearman correlation = 0.76), supporting an overall consistency 263 

between the two data sets. However, when we considered a single gene across the 79 264 

individuals, the correlation between the two platforms was low (average Spearman 265 

correlation = 0.19). Therefore, we expected models trained on RNA-seq data to have an 266 

upper limit performance when applied to microarray data. Then, we used TF2Exp models to 267 

predict gene expression levels on the CHB and JPT individuals. TF2Exp models achieved 268 

an average correlation of 0.16 for CHB and 0.15 for JPT individuals. Similarly, SNP-based 269 

models achieved an average correlation of 0.16 for both populations. 270 

An example of a high performing gene (FAM105A) in the external validation is illustrated in 271 

Figure 6A by comparing the predicted (TF2Exp) and observed (microarray) expression 272 

levels. FAM105A is associated with pancreatic islet function and type 2 diabetes 28, 29. For 273 

this gene, TF2Exp identified 4 contributing TF binding events (Figure 6B), of which two of 274 

them had greater weights: DHS (chr22:45711760-45711910, effect size: -0.325) and MEF2A 275 

(chr22:45771822-45772122, effect size: 0.334). Alterations of these key events largely 276 

explained the changes of gene expression in the different individuals. For example, 277 

NA18640 had the lowest observed expression level in CHB individuals, as variant rs104664 278 

of this individual was predicted by TF2Exp to increase the score of DHS; while rs5765304 in 279 

NA18573 increased MEF2A binding scores, resulting in the highest predicted expression. 280 
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 281 

 282 

Figure 6 Performance and key features of TF2Exp for FAM105A gene in the external 283 

validation set  284 

(A) Each point represents one tested individual and its coordinates indicate the predicted 285 

expression levels given by TF2Exp model (x axis) and the observed microarray expression 286 

(y axis). (B) Key features and inferred roles of variants of two individuals. The top panel 287 

illustrate key TF binding events learned from training data sets. The figure legend is the 288 

same as Figure 1. The middle and bottom panel show the variants within key TF binding 289 

events and their inferred roles on TF binding and gene expression for two individuals.  290 

 291 

Discussion 292 

Deciphering the functional roles of regulatory variants is a critical challenge in the post-293 

sequencing era. To address this challenge, we have introduced a novel framework, TF2Exp, 294 

which uses alteration of TF binding as an intermediate feature to elucidate the functional 295 

impact of regulatory variants and predict gene expression levels. TF2Exp models based on 296 

lymphoblastoid cell line data showed predictive capacity for over 3,000 genes, incorporating 297 
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an average of 3.7 altered TF binding events per gene model. The most frequently selected 298 

TF binding events included both general properties (e.g. alterations within DNase I 299 

hypersensitive regions) and tissue-specific properties (e.g. alterations in TF bound regions 300 

for TFs relevant to the studied lymphoblastoid samples). TF2Exp models achieved 301 

equivalent performance to state-of-the-art SNP-based models, and provide mechanistic 302 

insights into cis-regulatory variants. 303 

 304 

TF2Exp models have the potential to address two challenges left unresolved by SNP-based 305 

models and classical eQTL studies. For these approaches, it is difficult to: 1) infer variant 306 

function, as the studied SNPs can be in high linkage disequilibrium; and 2) evaluate the 307 

impact of rare variants (which are excluded from such analyses). By treating TF binding 308 

events as functional units within genes, TF2Exp models can evaluate the relative impact of 309 

any variant (SNV or small indel) within a TF-bound region. As in the example presented in 310 

Figure 6, for individual variants, the derived impact within the model is independent of the 311 

linkage disequilibrium or allele frequency. Moreover, even though the inclusion of uncommon 312 

variants only improved the performance for a small portion of genes (~11%), the resulting 313 

TF2Exp models offer a unique advantage for the inference of functional cis-regulatory 314 

variants, compared with previous SNP-based methods 4, 5. 315 

 316 

Similarly to SNP-based methods, the predictive performance of TF2Exp models is limited, 317 

showing utility for a subset of genes (19.2%), and even within these genes, model 318 

performance is modest (R2 = 0.21). The limited performance is likely attributable to multiple 319 

causes. First, the variance of gene expression attributed to common variants is quite low 320 

(e.g. 15.3% as estimated by Gamazon et al. 5), suggesting that models restricted to DNA 321 

sequence features alone only account for a portion of the observed variance in expression 322 

levels. Second, TF2Exp models were limited by the availability of ChIP-seq data (78 TFs in 323 

LCLs), while transcriptome studies have revealed that human cells express around 430 TFs 324 
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on average 30. Third, TF2Exp models focused on TF binding events potentially involved in 325 

transcriptional regulation, but other regulatory mechanisms (e.g. post-transcriptional 326 

regulation) or genomic features (e.g. DNA methylation 31 or sequence conservation 32) might 327 

explain additional portion of the observed variance of gene expression. Fourth, TF2Exp 328 

models were likely constrained by the small number of available training samples, as 329 

including additional features (e.g. TF-TF interactions and uncommon variants) decreased 330 

model performance. We expect that the expansion of reference transcriptome datasets will 331 

provide more samples for exploring more complex relationships between genes and TF 332 

binding events, thereby improving model performance. Fifth, long-distance interactions 333 

within the nucleus 33 are unaccounted for in existing models, and incorporating more 334 

dimensions in the nucleus could further improve model performance.  335 

 336 

In conclusion, identifying the impact of cis-regulatory variants on gene expression is a critical 337 

step towards understanding the genetic mechanisms contributing to diseases. TF2Exp 338 

models are able to predict the impact of altered TF binding on gene expression levels and 339 

provide mechanistic insights into the roles of selected TF-binding events and cis-regulatory 340 

variants. We anticipate that future enlarged omics data, in LCLs and other cell types, will 341 

greatly expand the application scope of TF2Exp models. 342 

 343 

 344 

Materials and methods 345 

Quantifying gene expression from RNA-seq data 346 

LCL RNA-seq and variant calling data for 358 individuals from European populations were 347 

downloaded from the GEUVADIS project 3 and the 1000 Genomes Project 34 348 

(Supplementary notes). Individuals covered 4 populations, including 89 Utah residents with 349 

Northern and Western European ancestry (CEU), 92 Finns (FIN), 86 British (GBR) and 91 350 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2017. ; https://doi.org/10.1101/228155doi: bioRxiv preprint 

https://doi.org/10.1101/228155
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Toscani (TSI). For each population, we built sex-specific transcriptomes in which SNP 351 

positions with MAF ≥ 0.05 were replaced by N (representing any of the four nucleotides A, C, 352 

G, T) using scripts from 35. RNA-seq data were processed using Sailfish (version 0.6.3) 36, 353 

and the expression level of each gene was quantified as transcripts per million reads. The 354 

resulting expression data were normalized via multiple steps, including standardization, 355 

variation stabilization, quantile normalization and batch effects removal (i.e. population and 356 

gender, and 22 hidden covariates) by PEER 37 (Supplementary file: Figure S1). Any gene 357 

that was either on the sex chromosomes or showed near-zero variance in expression levels 358 

was removed, leaving 16,354 genes for model training. 359 

 360 

Associating TF binding events to genes according to Hi-C data 361 

We obtained Hi-C data to measure physical interactions between DNA regions (Hi-C 362 

fragments) from GM12878 cells (an LCL) 35. The average size of Hi-C fragments was 3.7Kb 363 

35. Promoters were defined as the ±2Kb region centered at the start position of a gene 364 

(outermost transcript start position annotated by Ensembl 38 in genome assembly GRCh37). 365 

Each promoter was extended to include any overlapping Hi-C fragments. Distal regulatory 366 

regions were defined as Hi-C fragments within 1Mb of a gene body (as delimited by the 367 

outermost transcript start and end) interacting with the promoter of that gene (proximity 368 

score >0.4). Uniformly processed GM12878 DHSs and ChIP-seq peaks for 78 TFs were 369 

downloaded from the ENCODE project 2. As DHS is a general indicator of TF binding 39, 370 

DHSs are referred to as part of the set of ChIP-seq peaks within this manuscript for editorial 371 

convenience. A TF binding event was associated to a gene if it overlapped the promoter or a 372 

distal regulatory region of that gene. The resulting associations between genes and TF 373 

binding events derived from GM12878 cells were used as the reference for all studied 374 

individuals. 375 
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 376 

Predicting sequence variation impact on TF binding events 377 

Variant calling data of each individual was downloaded from the 1000 Genomes Project 378 

(release 20130502) 34. We only considered single nucleotide variants and small indels 379 

(<100bp). For each individual, the impact of a variant within a TF binding event was 380 

evaluated as the binding score difference between the altered and reference alleles, as 381 

determined by the corresponding DeepSEA (v0.93) TF binding model trained on GM12878 382 

data 10. To allow for the analysis of multiple variants within a TF binding event, we modified 383 

DeepSEA to calculate the binding score of each allele using the 1,100bp region centered at 384 

the ChIP-seq peak max position (the original code centered the 1,100bp region at each 385 

variant). Score differences of multiple variants within the same TF binding event were 386 

summed to represent the overall alteration of that event. TF ChIP-seq peaks with multiple 387 

peak max positions and overlapped peaks from the same experiment were split at the center 388 

of each pair of neighboring peak max positions. At heterozygous positions, the binding score 389 

difference was divided by 2. Lastly, we calculated the linkage disequilibrium between 390 

variants across studies individuals using plink2 40. 391 

 392 

Quantitative models of gene expression 393 

LASSO regression on gene expression: We developed regression models to predict the 394 

expression level of a gene using altered TF binding events associated with that gene based 395 

on the following equation:  396 

     ∑         
 
                                                             (1) 397 

where    is the expression levels of gene i across the studied individuals, n is the number of 398 

TF binding events associated with gene i ,       is the alteration of TF binding event k 399 
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across studied individuals and βk is the effect size of TF binding event k. In equation (1), Yi is 400 

the response and        is the input feature for the LASSO regression model, which was 401 

trained using the R 41 glmnet package 17 based on collected training data for 358 LCLs. 402 

Model performance was evaluated by 10-fold nested cross-validation, in which internal folds 403 

identified the optimal hyper-parameter lambda, and outer layers tested the model 404 

performance. Model performance was measured as the square of the correlation between 405 

predicted and observed expression levels (R2). The trained models would select a subset of 406 

TF binding events as key features of which effect sizes were not zero. When Hi-C proximity 407 

scores were used as the prior to select features, the prior (penalty.factor in the glmnet 408 

function) was set to “1 – proximity score”.  409 

Defining TF-TF interactions: For TFs known to interact in the BioGrid database 42, we 410 

created interaction terms between pairs of TF binding events (one from each TF) if they 411 

satisfied one of the following conditions: 1) two binding events overlapped by at least 200bp; 412 

or 2) their regulatory regions were reported to interact in the Hi-C data. 413 

SNP based models: For each gene, we trained regression models based on multiple SNPs 414 

to predict the expression level of that gene following the same procedure as in the work of 415 

Gamazon et al. 5. We only considered SNPs with MAF > 0.05 and within 1Mb of gene body 416 

regions. The regression formula for SNP-based models was as follows: 417 

     ∑      

 

   

    

Where    is the expression levels of gene i across studied individuals, n is the number of 418 

SNPs, and      is the number of minor alleles of       . 419 

 420 
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Analyzing selected features using FANTOM5 data 421 

In the FANTOM5 project, an enhancer is associated with a gene based on the correlation of 422 

expression between the enhancer and the gene promoter across >800 tissues and cell types 423 

26. For each gene with an average model performance of at least 0.05 as in 4 (i.e. a 424 

predictable gene), we counted the number of selected (and unselected) TF binding events in 425 

distal regulatory regions overlapping FANTOM5 enhancers associated to that gene. 426 

Individual gene statistics were aggregated, and the overall enrichment of selected features in 427 

enhancer regions was calculated using Fisher’s exact test. 428 

 429 

Validating the correlation between TF binding and gene expression in vivo  430 

Next, for the key TF binding events identified by TF2Exp models, we sought to validate 431 

whether the TF binding correlates with the gene expression in vivo. We obtained CTCF 432 

ChIP-seq mapped data (BAM files) for 45 LCLs 43 and PU.1 for another set of 45 LCLs 433 

(38/45 overlap with CTCF LCLs) 44 from the 358 LCLs in the original training data. For each 434 

TF binding event, the TF binding signal was quantified as the number of ChIP-seq reads in 435 

each ChIP-seq experiment using HOMER 45. TF binding signals were then normalized 436 

through multiple steps, including scaling by library size, averaging between replicates of 437 

each individual, converting to standard deviation units (standardization), performing quantile 438 

normalization and removing batch effects by PEER 37. The resulting normalized data 439 

constitutes the in vivo TF binding signal for each TF binding event in each LCL. 440 

We reserved the LCLs for which the extra ChIP-seq data was available as testing sets (one 441 

set for each of the two TFs). TF2Exp models were retrained on the non-testing LCLs, 442 

identifying 370 CTCF and 309 PU.1 TF binding events as key features for the subset of 443 

predictable genes. As less than 10% of in vivo TF binding events have been previously 444 

reported to show variable binding (greater inter-individual variance than intra-replicate 445 
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variance) 46, 47, we anticipated that the majority of selected TF binding events in the testing 446 

cases would be invariable. To focus on potential variable TF binding events (and minimize 447 

multiple testing impacts), we restricted the analysis to the subset of TF binding events which 448 

exhibit a strong DeepSEA score variance (top 10% of all TF binding events), resulting in 83 449 

CTCF and 72 PU.1 selected TF binding events. Then, we assessed the correlation between 450 

the in vivo TF binding of the selected events and the associated gene expression in the two 451 

testing sets. Recognizing the small sample size, we estimated the minimum detectable 452 

correlation coefficient for the given testing size (n=45) at significance of 0.05 and power of 453 

0.6 using the pwr package 48. 454 

 455 

External validation with microarray expression data 456 

For external validation of TF2Exp models, we relied on microarray data reporting expression 457 

levels of 15,997 Ensembl genes for LCLs of 80 CEU, 87 Chinese (CHB), and 89 Japanese 458 

(JPT) individuals 27. For these individuals, variant data was retrieved from the 1000 459 

Genomes Project. We applied the TF2Exp model to predict gene expression levels from 460 

potentially altered TF binding events based on the variant data, and compared these 461 

predictions with the gene expression levels reported from the microarray.  462 

 463 

Code and data availability 464 

The code and model training results can be found at www.github.com/wqshi/TF2Exp. 465 

Multiple packages have been used for data processing and model training, including 466 

BEDTools 49, vcftools 50, caret 51 and ggplot2 52. 467 

  468 

 469 
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