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Abstract 
Background: Genome editing by CRISPR-Cas9 technology allows large-scale screening of gene 

essentiality in cancer. A confounding factor when interpreting CRISPR-Cas9 screens is the high false-

positive rate in detecting essential genes within copy number amplified regions of the genome. We 

have developed the computational tool CRISPRcleanR which is capable of identifying and correcting 

gene-independent responses to CRISPR-Cas9 targeting. CRISPRcleanR uses an unsupervised 

approach based on the segmentation of single-guide RNA fold change values across the genome, 

without making any assumption about the copy number status of the targeted genes.  

 
Results: Applying our method to existing and newly generated genome-wide essentiality profiles 

from 15 cancer cell lines, we demonstrate that CRISPRcleanR reduces false positives when calling 

essential genes, correcting biases within and outside of amplified regions, while maintaining true 

positive rates. Established cancer dependencies and essentiality signals of amplified cancer driver 

genes are detectable post-correction. CRISPRcleanR reports sgRNA fold changes and normalised 

read counts, is therefore compatible with downstream analysis tools, and works with multiple sgRNA 

libraries.  

 
Conclusions: CRISPRcleanR is a versatile open-source tool for the analysis of CRISPR-Cas9 

knockout screens to identify essential genes. 

  
Keywords: CRISPR-Cas9 - Genetic Screens - Cancer - Gene copy number - bias correction 
 
 

Background 

CRISPR-Cas9-based genome editing techniques are transforming the landscape of genetic 

studies [1,2]. The high efficiency and specificity of the CRISPR-Cas9 system to mutagenise genes 

through the introduction of DNA double strand breaks (DSB), either at the level of individual genes or 

at genome-wide scale, enables the systematic investigation of loss-of-function phenotypes.  
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We and others have developed genome-wide pooled CRISPR knock-out (CRISPR-KO) 

screening strategies  [3–5]. A prominent application of CRISPR-KO screens is the systematic 

identification of genes that are essential for cancer cell fitness to identify strategies for the 

development of novel targeted therapies. These studies typically introduce Cas9 endonuclease into 

cells, followed by or alongside the introduction of a library of pooled sgRNAs targeting the genome.  

The library usually contains multiple single guide RNA (sgRNA) targeting each gene to facilitate a 

robust identification of essential genes. Analysis strategies compare the abundance of sgRNAs 

between control and test samples to determine which sgRNAs are differentially under-represented, 

thus targeting a gene that is potentially essential to the fitness of the cancer cells. Several groups have 

performed these types of screens to identify novel drug targets [6,7]. A recent landmark study has 

reported gene essentialities in 342 cancer cell lines [8]. This will empower association studies 

between gene essentialities and genomic/transcriptomic features to develop biomarkers for patient 

stratification.  

One drawback of the CRISPR-KO screening system is caused by its mode of action, namely 

DSB induction. DSBs trigger a DNA damage response which can cause cell cycle arrest and in some 

cases cell death [9–11]. This is problematic when performing whole-genome CRISPR-KO screens in 

cancer cells because of frequent copy number (CN) alterations in their genome, resulting in 

widespread Cas9 induced DNA damage. Consequently, DSBs at genes in amplified regions result in 

depletion of these genes in a pooled CRISPR-KO screen regardless of their essentiality, and thus they 

are erroneously called as fitness genes. This can result in a high false-positive rate and correcting for 

this CN-associated effect is crucial for the interpretation of CRISPR-KO screening results. Solutions 

proposed thus far encompass scanning the dataset for biased regions and their removal from 

downstream analysis [12], resulting in the exclusion of potentially biologically relevant genes residing 

in CN-amplified regions, or to apply a piecewise linear model to infer true gene dependencies based 

on CN profiles across large panels of cell lines [8]. 
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During the analysis of CRISPR-KO data we identified a number of instances for which 

existing approaches for correcting bias in CRISPR-KO data were unsuitable or hampered further 

downstream analyses. To address this, we  developed CRISPRcleanR, a computational approach 

implemented in open-source R and a Python packages, which identifies biased genomic regions from 

CRISPR-KO screens in an unsupervised manner and provides both corrected read count and log fold 

change (logFC) values of individual sgRNAs in such regions. Our method reduces false positive calls 

while keeping the true positive rate of known essential genes largely unchanged, and allows the 

detection of essential genes even within focally amplified regions.  

Results 

Gene-independent responses in CRISPR-KO screens 

We performed genome-wide CRISPR-KO screens on 15 human cancer cell lines (hereafter 

called ‘Project Score’), which are a subset of the Genomics of Drug Sensitivity in Cancer (GDSC) 

collection (Supplementary Table S1) [13,14]. This involved six tumour types with different 

mutational processes, including high frequency of single-nucleotide variants (large intestine, lung, and 

melanoma) and CN variation (breast and ovary). We used the Sanger Institute CRISPR library 

(version 1.0) targeting 18,010 genes (90,709  sgRNAs; ~5 sgRNAs per gene) [6]. The screens showed 

high consistency between technical replicates in each cell line (median average correlation for sgRNA 

counts = 0.83) and readily discriminated between pre-defined fitness essential (FE) and non-essential 

genes (median area under the Receiver Operating Characteristic curve (AUROC) = 0.92)  

(Supplementary Fig. S1) [15].  Additionally, a high true positive rate (TPR, or recall) was observed 

for known essential genes assembled from the Molecular Signature Database (MsigDB) [16] and from 

literature [17]  (median TPR across gene sets and cell lines = 85% at 5% FDR). 

When comparing CRISPR data and CN profiles for each line, we confirmed a large negative 

effect for logFCs of sgRNAs targeting genes in CN-amplified regions, particularly with CN ≥ 8 

(Supplementary Fig. S2 and Supplementary Table S2). Notably, sgRNA targeting CN-amplified 
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(CN ≥ 8) non-expressed genes (FPKM < 0.05) were significantly more depleted in six cell lines than 

the rest of the sgRNA in the whole library. For three cell lines (HT55, EPLC-272H, and MDA-MB-

415), the negative effect on logFC of sgRNA in CN-amplified regions was comparable or greater than 

for FE genes  (Supplementary Fig. S3 and Supplementary Table S2). Collectively, using 

independent data, our analysis confirms the systematic negative bias on sgRNA logFC values in 

particular regions of the genome, which are enriched for CN amplifications. 

 

Variable effect of amplification on responses to CRISPR-Cas9 targeting 

To gain greater insight into CN-associated biases, we performed a detailed analysis of the 

relationship between sgRNA logFC values and CN at the level of individual CN segments (Fig. 1a 

and Supplementary Fig. S4). For some cell lines, the negative bias on average logFC values within 

segments was positively correlated with CN values (EPLC-272H, NCI-H520, OVCAR-8, TOV-21G 

and SW48). In other cell lines the bias effect on average logFC was not observed (MDA-MB-436), 

plateaued (NCI-H2170), or fluctuated as CN varied (MDA-MB-453, HT55 and HuP-T3). These 

effects were preserved when only considering sgRNA targeting non-expressed genes (Fig. 1b and 

Supplementary Fig. S4), demonstrating that the negative logFCs are most likely independent of true 

gene essentiality. In addition, we observed a wide range of average logFC values for segments of a 

given CN (Fig. 1a, b), and this is often larger than the variation between segments of different CN, 

indicating that CN alone does not capture all of the observed bias variance. 

Furthermore, although in the majority of instances CN segments matched segments of equal 

sgRNA logFCs (Fig. 1c), we identified several CN segments with discontinuous logFC patterns (Fig. 

1d). Additionally, regions of consistently depleted sgRNAs were identified also in diploid regions of 

the genome. For example, the cell line CL-40 harbours two copies of chromosome 16, but several 

contiguous genes (of which many are not expressed) in region 16q23 exhibited a negative logFC 

across targeting guides (Fig. 1e). 
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Our results indicate that biases observed in CRISPR-KO screens are often associated with CN  

alterations but are heterogeneous, with poorly understood variation between segments of differing 

CN, and variation within segments of the same CN. Taken together, these results highlights the value 

of an unsupervised approach, not dependent on CN alone, to correct for biased regions in CRISPR-

KO data.  

 

 

Fig. 1: Heterogeneous gene-independent responses to CRISPR-Cas9 targeting. (A) Average logFC values 
of sgRNA within segments of equal CN (excluding FE and histones) for three cell lines. Each circle represents a 
CN segment of the indicated copy number. Asterisks mark the CN at which a significance difference (Welchs t-
test, p < 0.05) is initially (starting point) and continuously (critical point) observed compared to logFC values at 
CN = 2.  Box-plots show the median, inter-quartile ranges and 95% confidence intervals. (B) Same as for A but 
considering only non-expressed genes (FPKM < 0.05). (C, D, E) Segments of equal gene copy number and 
segments of equal sgRNA logFCs for selected chromosomes in three cell lines.  

 

CRISPRcleanR corrects bias in CRISPR-Cas9 datasets 

In order to detect biased regions in an unsupervised manner and correct corresponding 

sgRNA logFCs in CRISPR-KO screening data, we developed CRISPRcleanR, a computational 

approach implemented in open-source R and Python packages. CRISPRcleanR applies a circular 

binary segmentation algorithm, originally developed for array-based comparative genomic 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 1, 2018. ; https://doi.org/10.1101/228189doi: bioRxiv preprint 

https://doi.org/10.1101/228189
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

hybridization assay [18,19], directly to the genome-wide patterns of sgRNA logFCs across individual 

chromosomes in a cell line. It then detects genomic segments containing multiple sgRNAs with 

sufficiently equal logFCs. If these segments contain sgRNAs targeting a minimum number of distinct 

genes then the sgRNA in the segment are most likely responding to CRISPR-Cas9 targeting in a gene-

independent manner, and logFCs values are corrected via mean-centering. Median-based centering 

can also be applied for experimentally variable data or in the presence of many outliers. 

CRISPRcleanR embeds functions from the DNAcopy R package [20] allowing users to 

customise their arguments. Furthermore, it has several features that make it statistically robust, 

versatile and practical for downstream applications: (i) it works in an unsupervised manner, requiring 

no chromosomal CN information nor a priori defined sets of essential genes; (ii) it implements a 

logFC correction, making depletion scores for all genes usable in follow up analyses; (iii) it examines 

logFC at the sgRNA level to gain resolution and to account for different levels of sgRNA on-target 

efficiency, and enables the subsequent use of algorithms to call gene depletion significance that 

require input data at the sgRNA level (e.g. BAGEL [21]); (iv) by applying an inverse transformation 

to corrected sgRNA logFCs, it computes corrected sgRNA counts, which are required as input for 

commonly used mean-variance modeling approaches, such as MAGeCK [22], to call gene 

depletion/enrichment significance; (v) lastly, CRISPRcleanR corrects logFC values using data from 

an individual cell line and with invariant performances, unlike other computational correction 

approaches whose performances depend on the number of analysed cell lines [8]; as a consequence, 

CRISPRcleanR is suitable for the analysis of data from both small- and large-scale CRISPR-KO 

studies. 

When applied to Project Score data, CRISPRcleanR effectively corrected the bias in sgRNA 

logFCs over a wide range of chromosomal segments with variable CN alterations. Furthermore, this 

included detection and correction of different level of biases in sgRNA logFCs within an individual 

segment of equal CN (Fig. 2a, b). An immediate result of the application of CRISPRcleanR to our 

data was that biases in particularly high CN regions were strongly attenuated over all the cell lines 

(Fig. 2c). 
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  Overall, CRISPRcleanR reduced the recall of sgRNAs targeting CN-amplified regions, 

including sgRNAs targeting CN-amplified non-expressed genes, towards expectation when 

classifying the whole library of sgRNAs based on their logFCs (Fig. 2d). The correction was also 

consistently observed at the gene level (average logFCs of targeting sgRNAs) across all screened cell 

lines at a fixed 5% FDR, with a median reduction in recall equal to 72% and 88%, respectively for 

CN-amplified and CN-amplified non-expressed genes (Fig. 2e and Supplementary Table S3). This 

reduction was also observed at the level of the area under the overall recall curves (AURCs), thus 

independent of a fixed depletion significance threshold. Specifically, we observed the median AURCs 

across all cell lines shifting from 0.74 to 0.51 (p  = 0.02, Welch’s two sample t-test) and from 0.7 to 

0.5 (p = 0.01), respectively, for CN-amplified and CN-amplified non-expressed genes (Fig. 2e and 

Supplementary Table S3).  The reduction in AURC was independent of whether amplified genes in 

cell lines were identified using CN data from the GDSC or the cancer cell line encyclopedia (CCLE).  

In contrast, for the MsigDB known essential genes and the FE genes, the reduction was negligible at 

less than 2%, with median AURCs preserved at ≥ 0.82. 

Excluding from the essentiality profiles the sgRNAs targeting a priori known essential genes 

(taken from MSigDB) before CRISPRcleanR correction yielded very similar results as when 

imposing the constraint that, for a segment to be corrected, it must contain sgRNA targeting n = 3 

different genes (Supplementary Fig. S5). This was determined by performing several correction 

attempts varying n and considering or not FE and other MSigDB essential genes. Thus, 

CRISPRcleanR can be used in a completely unsupervised setting, without making any assumption on 

gene essentiality. 
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Fig. 2: Unsupervised detection of segments of equal sgRNA logFCs and their correction. (A and B) 
Example segments of equal gene copy number and equal sgRNA logFC values detected and corrected by 
CRISPRcleanR in two cell lines. (C) logFC values of sgRNAs of the entire library for all cell lines grouped 
according to the copy number of their targeted gene before (left) and after (right) CRISPRcleanR correction. 
Box-plots show the median, inter-quartile ranges and 95% confidence intervals. (D) Recall curves of sgRNA 
when classified as targeting amplified genes, amplified non-expressed genes, FE genes, and non-essential genes 
before and after CRISPRcleanR correction, for an example cell line (EPLC−272H). (E) Assessment of 
CRISPRcleanR correction comparing Recall at 5% FDR (top row) or area under the Recall curve (AURC, 
bottom row) of genes in six predefined gene sets based on their uncorrected or corrected logFCs (averaged 
across targeting sgRNAs). 
 

 

CRISPRcleanR is effective using multiple sgRNA libraries 

To investigate the versatility of CRISPRcleanR we assessed its performance across different 

libraries of sgRNAs. For the purpose of comparability we initially used our previously published 
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dataset derived from screening the HT-29 cell line with the Brunello [23] and Whitehead [12] 

libraries, using the same lentiviral vector as our library [24]. Of note, despite all three libraries 

targeting 17,646 overlapping genes, fewer than 5% of the 19-mer gRNA in the libraries are 

overlapping in sequence. A similar reductions in recall for CN-amplified genes (mean = 40 ± 2.7 %), 

CN amplified non-expressed genes (45 ± 5.7 %), fitness essential genes (2 ± 0.47 %), and non-

essential genes  (mean = -3.8 ± 1.81 %) was observed across all three libraries (Fig. 3a, b). As a 

specific example, all three libraries showed matching patterns of biased logFCs in the same CN-

amplified genomic region spanning the proto-oncogene MYC on chromosome 8 (Fig. 3c). 

CRISPRcleanR corrected the sgRNA logFC values for this bias in all three libraries.  

To further evaluate the compatibility of CRISPRcleanR with different sgRNA libraries, we 

tested it on an independent dataset of 342 cell lines using the Avana library from Project Achilles [8] 

(Supplementary Fig. S6). We observed a reduction of false positive hits (average recall at 5% FDR) 

for CN-amplified genes after correction from 0.10 to 0.04 (p  = 6.23 x 10-29) based on GISTIC [25] 

copy number scores from the CCLE,  from 0.27 to 0.08 (p  = 1.64 x 10-8) based on PicNic [26] copy 

number scores from the GDSC [13], and from 0.03 to 0.001 (p  = 10-4) for non-expressed genes which 

are CN-amplified according to either GISTIC or PicNic scores. Additionally, true positive rates for 

known essential genes were slightly increased (average recall at 5% FDR) for a priori known 

essential genes from MSigDB [16] from 0.74 to 0.76 (p  = 0.06), and significantly increased for 

essential genes from [15] from 0.59 to 0.63 (p  = 8 x 10-4, Supplementary Fig. S6). The recall 

increment for known essential genes was greatest for lower quality CRISPR-KO data, suggesting that 

CRISPRcleanR contributes to a signal improvement in noisy or low quality data (Supplementary 

Fig. S7). Taken together, these results show that CRISPRcleanR is suitable for correcting bias in 

CRISPR-KO screening datasets generated with a variety of different sgRNA libraries. 
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Fig. 3: CRISPRcleanR is effective with multiple different sgRNA libraries. (A) Recall curves for three 
sgRNA libraries when classifying sgRNAs targeting amplified genes, amplified non-expressed genes, FE genes, 
and non-essential genes using sgRNA logFCs before (first row of plots) and after (second row of plots) 
CRISPRcleanR correction. (B) Variation of the area under the recall curve for sgRNAs targeting genes in six 
predefined sets, based on their uncorrected/corrected logFCs, across the three different libraries (one circle per 
library). (C) Segments within chromosome 8 of equal gene copy number juxtaposed to segments of equal 
sgRNA logFCs before and after CRISPRcleanR in HT-29 cells screened with three different sgRNA libraries. 
The position of MYC is shown with a blue line. 
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CRISPRcleanR preserves cell line essentiality profiles  

We next determined whether the correction performed by CRISPRcleanR alters the overall 

essentiality profile of a given cell line. For Project Score data, we checked the position of sets of top-

depleted sgRNAs from uncorrected logFCs along the profiles of corrected sgRNA logFCs by means 

of precision/recall analysis (Fig. 4a, b). We observed a median area under the precision/recall curve 

(AUPRC) of 0.92 (min = 0.81 for HCC-15, max = 0.96 for MDA-MB-436) for the top 50 depleted 

sgRNA, and a median AUPRC of 0.96 for the top 2,500 depleted sgRNA (min = 0.88 for HCC-15, 

max = 0.98 for MDA-MB-453). Considering that an experiment typically yields ~6,000 sgRNAs 

called as significantly depleted with our library, this indicates that the CRISPRcleanR correction, 

while reducing false-positive rates, does not have an unwanted impact on the overall essentiality 

profile of a cell line. 

To further assess the impact of CRISPRcleanR on gene essentiality profiles, we compared all 

genes with a significant gain or loss-of-fitness effect before and after CRISPRcleanR correction as 

this is the key phenotype measured in CRISPR-KO screens (Supplementary Fig. S8).  For Project 

Score data, we found CRISPRcleanR impacted on the significant loss/gain-of-fitness effect for a 

median of 1.98% of all screened genes. This included a median of 24.69% genes significantly 

detected as exerting an effect on cellular fitness (gain- or loss-of-fitness) and a median of 17.02% of 

loss-of-fitness genes. The vast majority (88%) of these attenuated loss-of-fitness genes were 

composed of putatively false positive hits, involving genes which are not expressed (FPKM < 0.05), 

located in CN-amplified segments, prior known non-essential, or genes with a weak loss-of-fitness 

effect when compared to the whole set of genes called as loss-of-fitness in the uncorrected data 

(average logFC over the 4th quartile). For a very small number of genes (median 0.02% of genes, n = 

28 unique genes total) the post-correction fitness effect was opposite to that observed prior to the 

correction.  A very similar effect on significant genes following CRISPRcleanR correction was 

observed for the Project Achilles data (Supplementary Fig. S8). Thus, CRISPRcleanR preserves the 

overall essentiality profile present in a cell line and alters the significant fitness effects observed in the 
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uncorrected data for only a minority of genes. Where correction occurs, the majority of instances 

involve likely putative false positive genes. 

 

Fig. 4: CRISPRcleanR retains overall essentiality profiles. (A) Example precision/recall curves in HuP-T3 
cells for the indicated number of top depleted sgRNAs after CRISPRcleanR correction, classified based on their 
un-corrected sgRNAs logFC rank position. (B) Area under the precision/recall curves defined as for A for all 
cell lines. Box-plots show the median, inter-quartile ranges and 95% confidence intervals. 

 

 

CRISPRcleanR corrects sgRNA counts to enable mean-variance 

modeling 

MAGeCK is a widely used computational tool to call gene depletion or enrichment in 

CRISPR-KO screens and is based on mean-variance modelling of median-ratio normalised sgRNA 

read-counts [22]. To make CRISPRcleanR compatible with mean-variance modeling approaches such 

as MAGeCK, we designed an inverse transformation to derive corrected sgRNA treatment counts 

from CRISPRcleanR corrected sgRNA logFC values. To benchmark our transformation, we 

compared results obtained from executing MAGeCK using normalised uncorrected and 

CRISPRcleanR corrected sgRNA counts by means of recall estimation when classifying predefined 

gene sets. The inverse transformation had an effect on both the mean and variance of the sgRNA 

counts, with the greatest impact on sgRNAs targeting genes in CN-amplified regions, whose value 

was consistently shifted toward the corresponding value in the plasmid/control condition (Fig. 5a, b). 
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Furthermore, we observed a strong reduction in recall when classifying sgRNAs targeting genes in 

biased regions (PicNic scores ≥ 8 or GISTIC ≥ 2), when considering as positive predictions the 

sgRNAs called significantly depleted by MAGeCK. The median reduction was 75% for CN-amplified 

genes and 80% for CN-amplified non-expressed genes at a 10% FDR, and 72% and 100% reductions 

at a 5% FDR  (Fig. 5c and Supplementary Table S4). In contrast, the effect on the recall of FE and 

non-essential genes was negligible (median = 2.9% reduction) (Fig. 5c).  Thus, the reverse 

transformation post-correction enables the use of mean-variance modelling approaches such as 

MAGeCK for downstream calling of significant depletion or enrichment of genes. 
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Fig. 5: CRISPRcleanR corrected sgRNA counts and downstream analysis with MAGeCK. (A and B) 
Normalised counts of sgRNAs of the transfected libraries versus the control plasmid for FE and non-essential 
genes (first two rows of plots), CN amplified genes (third row) and CN non-expressed genes (fourth row), for 
two example cell lines before (first and third column) and after (second and fourth column) CRISPRcleanR 
correction. Essentialities for CN-amplified cancer driver genes such as MYC, ERBB2 and CCND1 are retained 
post correction. For the sake of readability only genes with at least 10 copies have been highlighted. (C) 
Comparison of recall using MAGeCK for sgRNAs targeting genes in six predefined gene sets when using as 
input CRISPRcleanR uncorrected and corrected sgRNAs counts. 

 

 

Robust detection of cancer dependencies following CRISPRcleanR 

Since a major application of CRISPR-KO screens is the accurate identification of genes 

essential for cellular fitness in defined molecular settings, we investigated the ability of 

CRISPRcleanR to preserve the detection of expected cancer gene dependencies in individual cell 

lines. To perform a systematic analysis, we used CRISPRcleanR corrected sgRNA counts and a set of 

64 cancer driver genes [27] which are modified by somatic mutation or CN amplification. We 

considered CN amplifications at the segment level (from [13]), thus including multiple genes in a 

segment.   

Project Score cell lines included a total of 57 potential dependencies, involving a total of 29 

cancer driver genes (9 mutated and 20 genes in amplified CN segments). Of these, we detected 21 

dependencies prior to CRISPRcleanR correction (MAGeCK FDR < 10%), and 16 of them (76%)  

were preserved following CRISPRcleanR correction (Supplementary Fig. S9 and Supplementary 

Table 5).  Examples included SW48 carrying the EGFRg719s mutation associated with depletion of 

EGFR targeting sgRNA, and MDA-MB-453 carrying the PIK3CAh1047r mutation associated with 

depletion of PIK3CA targeting sgRNA (Fig. 6a).  

CRISPRcleanR preserved the ability to selectively detect cancer dependencies involving 

amplified cancer driver genes.  For example, MYC is amplified in the cell line HT-29 and sgRNAs 

targeting MYC, as well as flanking genes, are reported as significantly depleted when using 

uncorrected logFCs (Fig. 6b). The logFC depletion is greater for MYC compared to other genes in this 

region. Following CRISPRcleanR correction, the sgRNAs targeting MYC remained significantly 
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depleted, whereas those targeting the co-amplified flanking genes were no longer significant. A 

similar essentiality was selectively preserved post-CRISPRcleanR correction in an amplified region of 

chromosome 16 that contains ERBB2 in the NCI-H2170 cell line (Fig. 6c). Two of the dependencies 

attenuated post correction involved co-amplification of two driver genes; CDK12 co-amplified with 

ERBB2 in NCI-H2170 and CTTN co-amplified with CCND1 in MBA-MB-415 were no longer 

significant post correction. Similar results were found using the Project Achilles data with an overall 

retention rate of 80% (179 of 233) of dependencies post CRISPRcleanR correction (Supplementary 

Fig S9 and Supplementary Table 5).  Of the attenuated dependencies, 41%  (n = 44) involved genes 

co-amplified with another driver gene.  In addition, we observed in both datasets a trend of increased 

significance (as measured by FDR) of detected dependencies post-correction. Overall, these results 

demonstrate that CRISPRcleanR allows for the accurate detection of cancer driver gene dependencies 

in CRISPR-KO datasets, including cancer genes residing within CN-amplified regions. 
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Code availability and overview 

CRISPRcleanR is implemented as an R [28] package and as an interactive Python package 

with full documentation, tutorials, built in datasets to reproduce the results in this manuscript, and is 

publically available (R package: https://github.com/francescojm/CRISPRcleanR and Python package: 

https://github.com/cancerit/pyCRISPRcleanR). The Python implementation is dockerized making it 

platform independent and usable in cloud environments 

(https://dockstore.org/containers/quay.io/wtsicgp/dockstore-pycrisprcleanr). CRISPRcleanR includes 

core functions for processing raw sgRNA count files for generating corrected sgRNA logFC values 

and corrected sgRNA counts for downstream analyses. CRISPRcleanR also includes functions to 

measure and visualise the extent and effect of the performed correction, the ability to detect CN-

amplified non-expressed genes (which can be used as positive controls), and classification 

performances for a priori known sets of essential/non-essential genes pre- and post-correction.   

 

Discussion  

In this study, we report CRISPRcleanR, a computational tool that detects genomic segments 

of gene-independent responses to CRISPR-KO in an unsupervised manner, and applies a segment-by-

segment correction at the sgRNA-level for both fold-changes and read counts. The correction 

substantially reduces false-positive calls without altering true essentiality profiles and preserves 

known cancer gene dependencies within and outside of biased segments. CRISPRcleanR works on 

multiple genome-wide sgRNA libraries, and resulting corrected sgRNA logFC and read counts are 

compatible with downstream analyses performed by methods such as BAGEL or MAGeCK to 

statistically assess screen hits. CRISPRcleanR works efficiently irrespective of the sample size of the 

analysed dataset, even in single sample experiments. 

  Our motivation for developing CRISPRcleanR came from the observation that biases in gene 

essentialities observed in CRISPR-KO screens did not always show a linear correlation to their CN 
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status, although biased segments are frequently associated with CN alteration. Additionally, in most 

of the cell lines analysed, variation in the mean logFCs of segments with the same CN were often 

greater than those between segments with different CN. Some cell lines showed greater bias in 

segments with lower CN. We even identified multiple instances of discontinuous bias on sgRNA 

logFCs within a particular CN segment, and biased responses within segments that are not CN-

amplified. These observations argue for the development of methods such as CRISPRcleanR, which 

are independent of CN values for the analysis of CRISPR-KO screening data, and indicate that biased 

responses are not solely due to the amount of DNA damage and may also be caused by additional 

factors, such as local genomic structural variation (as recently reported in [29]). 

  CRISPRcleanR detects biased segments using sgRNA-level logFC in an unsupervised 

manner, eliminating the requirement for cell line CN information. This simplifies the analysis and is 

advantageous when reliable CN information is not available for a cell line; for example, when using a 

newly derived cancer cell model. In addition, cancer genomes are dynamic and continuously 

evolving, causing genetic variation between different clones of the same cell line. Genetic drift may 

occur during prolonged in vitro cell culture, due to different growth conditions (e.g. media 

composition), or in response to selective pressure (e.g drug treatment) and genetic manipulation (e.g. 

gene-editing). Thus, the genomic heterogeneity of cancer cells, even within clones of the same cell 

line, may confound CN-based correction methods when relying on pre-existing CN data, and 

negatively impact identification of gene essentialities. Furthermore, the performance of different copy 

number calling algorithms is variable and depends on the underlying genomic data available, and as a 

result this can be a further confounding factor when using CN-based correction methods. 

CRISPRcleanR overcomes these limitations by effectively correcting for biases in CRISPR-KO 

screens without requiring additional information about the cell models screened, and without making 

assumptions about the underlying cause of bias. 

 

Conclusion 
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CRISPRcleanR is a flexible tool implemented as R and Python packages to correct gene-

independent bias found in whole-genome CRISPR-KO screens in an unsupervised manner at a single 

sample level. CRISPRcleanR facilitates the analysis of CRISPR-KO screens in cancer cells to identify 

essential genes. 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 1, 2018. ; https://doi.org/10.1101/228189doi: bioRxiv preprint 

https://doi.org/10.1101/228189
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

Methods 

Plasmids, cell lines and reagents 

Cells were maintained in culture media as indicated in Supplementary Table S1 in a 5% 

CO2 humidified incubator at 37 °C.  The plasmids used in this study were from the mutagenesis 

toolkit described in [6] and are available through Addgene (Cas9 - 68343; CRISPR sgRNA library - 

67989). Plasmids were packaged using the Virapower (Invitrogen) system as per manufacturer’s 

instructions. 

 

Genome-wide mutant library and screen 

Cells were first transduced with lentivirus carrying Cas9 in T75 flasks at ~80% confluence in 

the presence of polybrene (8 µg/ml).  The following day, lentiviral containing medium was replaced 

with complete medium.   Blasticidin selection was started on day 4 post transduction at a 

concentration determined from a titration in the parental cell line. Cas9 activity was assessed 

following selection using the Cas9 functional assay as described in [6] and a cut-off of 80% activity 

was applied (median = 89% activity across all cell lines). Cas9-expressing cells were maintained in 

blasticidin prior to transduction with the sgRNA library.  Transduction with sgRNA library was 

carried out at ~80% confluency with 3.3 x 107 cells in T150 or T525 (triple layer) flasks, depending 

on cell size and surface area required, in technical triplicates.  Cells were transduced with a 

predetermined viral amount that gives rise to ~30% transduction, measured by BFP expression by 

cytometry, to ensure approximately 1 viral particle entering each cell based on a Poisson distribution 

model. Based on these initial cell numbers and transduction efficiency, the coverage of the sgRNA 

library (i.e. the number of cells containing each sgRNA) in each replicate was 100x. Puromycin 

selection commenced at day 4 to select for cells that had successful lentiviral integration. Actual 

library transduction efficiency and puromycin selection was analysed using flow cytometry before 
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and after puromycin selection, respectively. A minimum number of 5.0 x 107 cells were maintained at 

all times to ensure library representation was maintained. The cells were harvested 14 days post 

transduction and dry pellets were stored at -80 ºC. 

Extraction of genomic DNA, PCR amplification of sgRNAs and Illumina sequencing of 

sgRNAs were carried out as described previously [3,6].  The number of reads for each sgRNA was 

determined using a script developed in-house. 

  

Data pre-processing and availability 

sgRNA counts from both Project Score and Project Achilles (downloaded from: 

https://depmap.org/ceres/) were normalised assembling one batch per cell line, including the read 

counts from the matching library plasmid and all final read counts replicates, with a median-ratio 

method [30] to adjust for the effect of library sizes and read count distributions, after filtering out 

sgRNAs with less than 30 reads in the plasmid. Depletions/enrichments for individual sgRNAs were 

quantified as log2 ratio between post library-transfection read-counts and library plasmid read-counts. 

Finally, sgRNAs were averaged across replicates. This was performed executing the 

ccr.NormfoldChanges function of the CRISPRcleanR R package. 

 

Transcriptional and copy number data 

Genome-wide substitute reads with fragments per kilobase of exon per million reads mapped 

(FPKM) for the 15 cell lines considered in this study were derived from the dataset described in [31]. 

Genome-wide gene level copy number data, derived from PicNic analysis of Affymetrix SNP6 

segmentation data (EGAS00001000978) for the cell lines in the Genomics of Drug Sensitivity 1,000 

(GDSC1000) cancer cell line panel [13], were downloaded from the GDSC data portal (dataset 

version: July 4th 2016), http://www.cancerRxgene.org.  This dataset is also available at 

ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-6.0/Gene_level_CN.xlsx. For each 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 1, 2018. ; https://doi.org/10.1101/228189doi: bioRxiv preprint 

https://doi.org/10.1101/228189
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

gene, the minimum copy number of any genomic segment containing coding sequence was 

considered. Additionally, gene level Gistic [25] scores obtained by processing Affymetrix SNP array 

data in the Cancer Cell Line Encyclopaedia [32] repository were downloaded from cBioPortal [33] 

(http://www.cbioportal.org/study?id=cellline_ccle_broad#summary). 

 

Analysis of gene-independent responses in cancer cell lines 

For each cell line, segments of equal CN were identified by using CN data from the GDSC 

data portal [13,14] (as detailed below), and assigned a mean-logFC value by averaging across all of 

the sgRNAs targeting a segment. A CN bias starting point was computed for each cell line as the 

copy number value n > 2 such that statistically significant differences, as quantified by a Welch’s t-

test, were observable between the mean-logFCs of segments of n CNs and those of segments of 2 CN. 

A CN bias critical point was computed for each cell line as follows. For each CN value n = 3, …, m-1 

(with m = maximal segment CN value observed in the cell line under consideration), two univariate 

linear models were fitted, considering segment CN values as observations of the independent variable 

and the corresponding average segment mean-logFCs as those of the dependent one. The first model 

P(n) was fitted using CN values in {2, …, n} and corresponding average segment mean-logFCs, while 

the second one L(n) was fitted using CN values in {n+1, ..., m} and corresponding average segment 

mean-logFCs. The bias critical point was then defined as the value n providing the large absolute 

difference between the slopes of the corresponding fitted models P(n) and L(n). 

 

Calling significantly depleted sgRNAs and genes based on log fold-

changes 

All sgRNA were ranked by average logFCs derived from screening an individual cell line. 

This ranked list was used to classify sgRNAs targeting genes from two gold-standard reference sets of 
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FE and non-essential genes [15,21]: from now the essential-sgRNAs (𝐸) and the non-essential-

sgRNAs (𝑁). For each rank position 𝑘, a set of predictions 𝑃(𝑘) = 𝑠 ∈ 𝐸 ∪ 𝑁: 𝜚(𝑠) ≤ 𝑘 , with 𝜚(𝑠) 

indicating the rank position of 𝑠, was assembled and corresponding Precision (or Positive Predicted 

Value, 𝑃𝑃𝑉(𝑘)) was computed as: 

 

𝑃𝑃𝑉(𝑘) = 𝑃(𝑘) ∩ 𝐸 / 𝑃(𝑘) . 

 

Subsequently the largest rank position 𝑘∗ corresponding to a 0.95 Precision (equivalent to a False 

Discovery Rate (FDR)  = 0.05) was determined as  

 

𝑘∗ = max!!!! {1 − 𝑃𝑃𝑉(𝑘) ≤ 0.05}. 

  

Finally, a 5% FDR logFCs threshold 𝐹∗ was determined as the logFCs of the sgRNAs 𝑠 such that 

𝑘 𝑠 = 𝑘∗, and all the sgRNAs of the entire library with a logFC < 𝐹∗ were considered significantly 

depleted at this FDR level. 

To call depletion significance at a gene level, the same procedure was followed but averaging 

logFCs of sgRNAs targeting the same gene prior to the analysis, and considering ranks and 

positive/negative sets of genes instead of sgRNAs. 

  

For the follow up analyses on the effect of correcting sgRNA treatment counts (computed as 

detailed below) we used the test function of the MAGeCK python package, indicating none as the 

value of the parameter specifying the normalisation method to use prior to the analysis, as a median-

ratio normalisation was already applied to the analysed count files prior CRISPRcleanR correction. 

 

Receiver Operating Characteristic analyses 

Across the different analyses, standard ROC indicators were computed considering as 

prediction sets significantly depleted sgRNAs (or genes) at a fixed level of 5% FDR (computed as 

detailed in the previous section or output by the MAGeCK tool), or genome-wide profiles of 
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essentiality (as ranked lists of sgRNA logFCs, in some instances averaged on a per gene basis) to 

compute overall indicator curves, and using different positive/negative control sets (detailed below). 

To this aim, we made use of functions included in the pROC R package [34]. 

  

For the positive controls, sets of a priori essential genes were assembled by downloading 

relevant gene signatures from the MSigDB [16] (Supplementary Table S6). A list of ribosomal 

protein gene was derived from [17]. The consensual signatures resulting from this curation are 

available as individual data objects in the CRISPRcleanR R package. 

 

Segmentation analysis and logFC correction 

Genome-wide essentiality profiles in the form of lists of sgRNAs logFC were sorted 

according to the genomic coordinates of the individual sgRNAs (library annotation and coordinates 

derived from [6]) using the function ccr.logFCs2chromPos of the CRISPRcleanR R package. Then, a 

circular binary segmentation algorithm [18,19] was applied using the ccr.GWclean function of the 

CRISPRcleanR R package, with a significance threshold to accept change-points p = 0.01, 10,000 

permutations for p-value computation, a minimal number of 2 markers per region, and making use of 

the function segment from the DNAcopy R package [20] with other parameters set to default values. 

 Subsequently, sgRNA included in a segment had their logFCs mean-centered (across that 

segment) if collectively targeting at least n = 3 different genes, without pre-filtering any essential gene 

(differently from the sliding window approach used in [9]).  This correction assumes that the true 

signal of loss/gain-of-fitness effect exerted by knocking-out a CN amplified gene sums up to a 

possible gene-independent impact on cellular fitness induced by targeting with CRISPR-Cas9 the 

chromosomal segment where that gene resides. By subtracting the logFCs mean to the sgRNA in the 

same detected biased segment, the gene-independent effect is flattened letting true fitness signals 

emerge. The  possibility of using a median-based centering as a more robust alternative when the data 

is particularly noisy and/or many outliers are present (verifiable through a preliminary inspection of 
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the uncorrected logFCs), for example due to dysfunctional or especially toxic sgRNAs, is also present 

in the implementation of CRISPRcleanR.  

The minimal number n of targeted genes that a biased segment should contain in order to be 

corrected was adaptively determined by executing different trials of segments' detection and 

correction varying 𝑛 ∈ 2,3,5,10  and excluding/not-excluding from the analysis sets of a priori known 

essential genes assembled from MSigDB (as detailed in the previous section), collectively the filter 

set. Removing the filter set from a reference set of the FE genes yielded a test set. Areas under the 

recall curve (AURCs) were then computed evaluating the classification performances using as 

positive controls the test set, CN amplified genes, and CN amplified non-expressed genes (determined 

for each cell line) were then computed, across each trial using targeting sgRNAs’ logFCs before/after 

correction. For each of the positive control sets, reduction of recall (recall) were computed by 

comparing AURCs obtained before/after CRISPRcleanR correction. 

  

Results showed that n = 3 provided the largest reduction of recall (Supplementary Fig. S5) 

of CN amplified and CN amplified non-expressed genes, and the lowest reduction of recall of the test 

set. Most importantly, this was observed invariantly with respect to removing/not-removing the filter 

set prior the analysis. As a conclusion, all the corrections presented in this manuscript were executed 

with this setting (n = 3 and without pre-filtering any gene). CRISPRcleanR package uses these 

settings by default, although offering to the user the possibility of changing them. 

 

Comparison of results across different libraries 

Data from the mutagenesis of the HT-29 cell lines with the Brunello and Whitehead libraries 

were downloaded from the supplementary material of [24] and processed as described in the section 

Data pre-processing and availability. Correction outcomes were computed as detailed in Receiver 

Operating Characteristic analyses. 
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Correction of sgRNA counts 

We derived CRISPRcleanR corrected treatment count values for individual experiment 

technical replicates from the corresponding CRISPRcleanR corrected sgRNAs’ logFCs. To this aim, 

for each individual sgRNA, we first compute a CRISPRcleanR corrected treatment count averaged-

across-replicate (first 7 formulas below), then we computed corrected treatment counts for individual 

replicates from this averaged value partitioning it across replicates proportionally to original 

(uncorrected) count values. 

 

Formally, for each individual single guide RNA, a corrected treatment count ti was computed 

observing that: 

  

 𝑁 = 𝐸 log!
!!
!

 

  

with  N = CRISPRcleanR corrected logFCs for the sgRNA under consideration, 𝑖 = 1,… , 𝑛, where n = 

number of treatment replicates, and c = counts of the sgRNA in the plasmid, and E indicates the mean 

function. 

This implies 

 𝑁 = !"#!(!!  !)!
!!!

!
 

  ⟹ 𝑛𝑁 = log2 𝑡𝑖
𝑛
𝑖=1 − log2 𝑐

𝑛
𝑖=1 = log2 𝑡𝑖

𝑛
𝑖=1 − 𝑛 log2 𝑐 

 ⟹ 𝑛𝑁 + 𝑛 log2 𝑐 = log2 𝑡𝑖
𝑛
𝑖=1 . 

 

Assuming, for simplicity that all the 𝑡! are the same (= t), 

 

 𝑛𝑁 +  𝑛 log! 𝑐 = 𝑛 log! 𝑡! 

 ⟹  2!!!"#! ! = 𝑡 

 ⟹ 𝑡 = 𝑐2𝑁 = 𝐸(𝑡). 
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To derive the corrected counts for the individual replicates (which are obviously different from each 

other) from their mean, we keep constant the proportions seen in the uncorrected counts with respect 

to the sum of the counts across replicates: 

   

 𝐸 𝑡 = !!!
!!!
!

 

 ⟹ 𝑛𝐸 𝑡 = 𝑡𝑖𝑛
𝑖=1  

 ⟹ 𝑡𝑖 = 𝑛 𝐸 𝑡 𝑡𝑖
∗

𝑇∗
= 𝑛𝑐2𝑁 𝑡𝑖

∗

𝑇∗
 

 

where 𝑡!∗ is the count of the sgRNA under consideration before correction in the i-th replicate and 𝑇∗ 

is their overall sum across replicates. 

 

CRISPRcleanR performances with respect to data quality 

Cell lines from Project Achilles were grouped into 10 equidistant bins based on the quality of 

the corresponding profiles of gene essentiality, in increasing order. Data quality was quantified by the 

recall at 5% FDR for MSigDB [16] essential genes based on uncorrected fold-change rank positions. 

For each bin a variation of Recall pre/post-CRISPRcleanR correction was quantified, for 9 predefined 

gene sets, encompassing prior known essential/non-essential genes, copy number amplified genes and 

non expressed genes, as detailed in the previous sections. 

 

Evaluation of CRISPRcleanR correction on fitness gene calling 

Gain/loss-of-fitness effect false discovery rate (FDR) scores were obtained by applying 

MAGeCK before/after CRISPRcleanR correction on the sgRNA counts from Project Score and 

Project Achilles. Percentages of attenuated fitness genes were computed as the ratio of genes with a 

significant gain/loss-of-fitness FDR (fitness genes), from the analysis of the uncorrected sgRNAs but 
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not from the analysis of the corrected ones, with respect to the whole set of screened genes or the set 

of fitness genes detected in the uncorrected data, respectively. Percentages of distorted fitness genes 

were computed as the ratio of fitness genes detected in the uncorrected data which where still detected 

as fitness genes in the corrected data but with an opposite effect. Similar ratios were computed for 

attenuated/distorted loss-of-fitness and gain-of-fitness genes individually. The loss-of-fitness genes 

attenuated post-correction were further partitioned sequentially into the following disjoint sets across 

cell lines: non-expressed (with an FPKM < 0.05), copy number amplified (with a Gistic score > 1 or a 

PicNic copy number value > 2), prior-known non-essential (according to [15]), mild-phenotype (with 

a depletion logFC in the uncorrected data, averaged across targeting sgRNAs, falling over the 4th 

quartile of the logFCs of all the loss-of-fitness genes). Only cell lines with good quality data (recall 

for essential genes from [15] at 5% FDR > 0.5) and all data type (GISTIC and PicNic copy number, 

and basal expression FPKMs) available were included in this analysis. 

 

 

Retention of cancer driver gene dependencies following CRISPRcleanR 

correction 

We performed a systematic unbiased case-by-case probing of putative oncogene addictions, 

by evaluating how corresponding dependencies are detected prior/post CRISPRcleanR correction, 

using data from Project Score and Project Achilles. From a list of 64 high confidence oncogenes [27], 

we considered those harbouring a cancer driver event (CDE), i.e. a cancer driver somatic mutation or 

a CN amplification as defined in [13], in at least one cell line of the two considered panels. For the 

Project Achilles, the analysis was restricted to 239 cell lines with genomic data available in [13]. The 

considered CN amplifications were at the chromosomal segment level and many of them included 

more than one oncogene. For each CDE observed in a given cell line, we then compared the loss/gain-

of-fitness effect of the involved oncogene(s) observed prior/post-CRISPRcleanR in that cell line, 

quantified as MAGeCK FDRs. For Project Score, this resulted into 57 tested dependencies involving 

29 CDEs (9 mutations and 20 CNAs encompassing multiple genes on the same segments). For Project 
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Achilles, this resulted into 507 tested dependencies: 37 CDFEs (26 mutations and 11 CNAs 

encompassing multiple genes on the same segments). 

 

List of Abbreviations 

 
AUPRC          Area Under the Precision/Recall Curve 
AURC            Area Under the Overall Recall Curve 
AUROC         Area Under the Receiver Operating Characteristic 
CCLE          Cancer Cell Line Encyclopedia 
CN                Copy Number 
CRISPR-KO   CRISPR Knock-Out 
DSB           Double Strand Breaks 
FE                 Fitness Essential 
FPKM            Fragments Per Kilobase of Exon per Million reads Mapped 
GDSC            Genomics of Drug Sensitivity in Cancer 
logFC            Log Fold Change 
MsigDB        Molecular Signature Database 
ROC              Receiver Operating Characteristics 
sgRNA          single guide RNA 
TPR               True Positive Rate 
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