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Abstract

Heuristics based on physical insight have always been an important part of structure determination. However, recent
efforts to model conformational ensembles and to make sense of sparse, ambiguous, and noisy data have revealed the
value of detailed, quantitative physical models in structure determination. We review these two key challenges, describe
different approaches to physical modeling in structure determination, and illustrate several successes and emerging
technologies enabled by physical modeling.

Highlights

• Quantitative physical modeling is emerging as a key
tool in structure determination

• There are different approaches to incorporate physi-
cal modeling into structure determination

• Modeling conformational ensembles and making sense
of sparse, noisy, and ambiguous data are two chal-
lenges where physical modeling can play a prominent
role

Introduction

Heuristics derived from physical insight have always
played an import role in biomolecular structure determi-
nation, but more rigorous quantitative physical models
are increasingly used to transform experimental data into
structures and ensembles. These physical approaches be-
come more important as the biomolecular system of study
becomes more flexible and conformationally heterogeneous
(Figure 1), and as experimental data becomes sparse, am-
biguous, or noisy (Figure 2). Systems with these charac-
teristics have recently come into focus, due to both the
recognition of the importance of conformational hetero-
geneity and the emerging range of experimental techniques
that can provide incomplete information about protein
structures [1–5].

Physical modeling has become increasingly powerful in
recent years, driven by improvements in computer power,
improved physical models of protein structure [6–8], and
improved algorithms for conformational [9–12] and data-
driven [13–17] sampling.

Combined with advances in experimental methodology,
these developments are leading to a new era in structural
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biology where physical modeling plays a pivotal role [18–
20]. Here, we outline two challenges where physical mod-
eling can make contributions to structure determination,
overview some recent successes, and provide a perspective
on emerging areas where physical modeling can play a key
role.

There are several emerging challenges in structural
biology.

Challenge 1: Modeling Conformational Ensembles

When we refer to “the structure” of a biomolecular sys-
tem, we are actually referring to some continuous cloud of
structures in the neighborhood of a representative struc-
ture. While historically this single structure viewpoint has
dominated in structural biology, there is increasing recog-
nition of the importance of heterogeneity and dynamics,
enabled by significant improvements in experimental tech-
niques and computational capability.

Nearly all measurements in structural biology are en-
semble averages, where the observed signal comes from the
average across many molecules. The challenge of interpret-
ing such averaged data increases as the conformational en-
semble becomes more heterogeneous. A simple thought ex-
periment illustrates the central concept (Figure 1), where
three systems have the same average for some observable,
but different conformational distributions. One system
(orange) is tightly clustered, where the average conforma-
tion provides an excellent representation of the ensemble.
Another system (green) has a broad distribution, where
the average conformation is only somewhat representa-
tive. The final system (blue) has a multimodal distribu-
tion, where the average conformation is improbable and
not representative of the underlying ensemble at all. As
the experimental average is the same in each case, model-
ing is critical to making correct inferences about the en-
semble.
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Figure 1: Most experiments measure ensemble averages, which poses
a challenge as systems become more flexible, heterogeneous, and dy-
namic. This figure illustrates a thought experiment, comparing three
different ensembles with the same average for some observable, but
different conformational ensembles.

Challenge 2: Making sense of Sparse, Ambiguous, and
Noisy Data

An increasing variety of experimental methods can pro-
vide incomplete information about the structure of a bio-
molecule or complex [1–5]. The appeal of these approaches
is that they are often applicable to a wide range of sys-
tems, including those where traditional approaches have
proven intractable. However, these experiments often pro-
vide only an incomplete picture of the structure.

Figure 2 shows several common pathologies. First,
the data may be sparse, often only providing informa-
tion about a few degrees of freedom, e.g. an EPR ex-
periment might measure a single distance between probes.
Second, the data may be ambiguous, where there are mul-
tiple molecular features that could explain a particular
signal, e.g. an NMR experiment might tell us that two
protons are close together, but not specifically which ones.
Finally, experimental data is almost always corrupted by
noise, which must be interpreted as such to avoid over-
fitting. Noise comes in many forms, ranging from simple
additive noise (often modeled by an appropriate distribu-
tion, e.g. Gaussian noise) to more challenging cases where
experimental artifacts lead to the presence of false-positive
and false-negative signals.

Overcoming the dual challenges of modeling ensembles
and making sense of sparse, ambiguous, and noisy data re-
quires a synergistic combination of experiment, statistical

(a) Sparse: many possible structures agree with data.

(b) Ambiguous: signal can be explained by multiple
 molecular features.

(c) Noisy: some signals are spurious and do not
 correspond to true molecular features. 
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Figure 2: Conceptual illustration of the challenges faced in inte-
grative structural biology and other applications where the data is
sparse, ambiguous, and noisy.

inference, and physical modeling.

What do we mean by physical modeling?

The term “physical modeling” encompasses many ap-
proaches, ranging from physically-motivated heuristics to
models rooted in rigorous statistical mechanics. The for-
mer have always been an integral part of biomolecular
structure determination, while the latter are becoming in-
creasingly important in modern structural biology.

Heuristic approaches are motivated by physical consid-
erations and empirical observations. One example is the
use of stereochemical restraints during the refinement of X-
ray crystal structures [21] that prevent physically impossi-
ble bond lengths and overlap between atoms, even though
these unrealistic features might lead to näıve improve-
ments in the agreement with experimental data. These
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heuristics are not a comprehensive physical description of
biomolecular structure—clearly, one could not hope to pre-
dict the correct fold of a protein using only simple stereo-
chemical restraints.

Conversely, statistical mechanics is a rigorous, com-
prehensive theory that connects the probability p(~r) of
observing a particular conformation with the potential en-
ergy V (~r) through the Boltzmann distribution:

p(~r) = Z−1 exp

[
−V (~r)

RT

]
, (1)

where R is the gas constant, T is the absolute tempera-
ture, and Z is a normalization constant called the partition
function.

Typically, the potential energy is modeled using an
empirical approximation called a force field [6, 7]. Sam-
ples from p(~r) are generated using molecular dynamics or
Monte Carlo simulations, often augmented by various en-
hanced sampling algorithms [10, 12, 13, 22].

Rosetta is another widely used example of physical
modeling [8]. Although the underlying philosophy and pa-
rameterization of Rosetta differ substantially from those
of statistical mechanical models, the underlying goal is es-
sentially the same—to reproduce the conformational land-
scape of a biomolecular system of interest.

There are different approaches to incorporating
physical models into structure determination.

The aim of integrative structural biology is to construct
a structural model of a biomolecular system from one or
more experimental datasets, which is a problem of sta-
tistical inference that can be approached from a variety
of perspectives, including maximum likelihood, maximum
entropy, maximum parsimony, and Bayesian approaches.

The likelihood, L(θ|D) ∼ P(D|θ), is central to many
methods, where D is the observed data and θ is a set of
parameters specifying the structural ensemble, e.g. atomic
coordinates and B-factors. This probabilistic relationship
encapsulates the experimental measurement and relates
the model to experimental observables. The likelihood
function is often evaluated on single structures. However,
newer ensemble refinement methods [23–25] use likelihood
functionals to evaluate distributions of structures, which,
as described later, is more suitable for conformationally
heterogeneous ensembles.

Maximum likelihood (ML) methods seek to find the
single set of parameter values with maximum likelihood.
Näive ML methods rely entirely on the data, making these
methods sensitive to noise and notoriously prone to over-
fitting. To mitigate this, ML methods are often augmented
by ad hoc penalty terms motivated by physical consider-
ations, e.g. the use of restraints on crystallographic B-
factors which ensure that variations in flexibility between
nearby atoms are physically plausible [26]. However, even
after augmentation with penalty terms, ML methods are

still prone to over-fitting as the data to parameter ratio
becomes increasingly poor.

In contrast to ML, maximum entropy (MaxEnt) meth-
ods seek to find a distribution of parameters, p(θ|D), to
explain the observed data. Although there are many possi-
ble distributions that could match the observed data, there
is a unique maximum entropy distribution [27, 28], provid-
ing a powerful basis for statistical inference. An ensemble
generated using Eq. 1 alone may not agree with experi-
ment. MaxEnt methods seek to minimally perturb (in a
well-defined MaxEnt sense) this ensemble, either through
biasing [23–25] or reweighting [29, 30], to bring the results
into agreement with experimental measurements.

Maximum parsimony methods [20, 31] have many simi-
larities with MaxEnt approaches. A key distinction is that
maximum parsimony aims for simple models, e.g. describ-
ing an ensemble with a minimal number of representative
conformations.

The Bayesian approach offers a different perspective [32]
that partially encompasses both MaxEnt and maximum
parsimony methods. Bayes theorem is a simple and ele-
gant statement,

p(θ|D) ∝ L(D|θ)p(θ), (2)

which combines prior understanding with new information
in a statistically consistent way. The quantity of interest
is the posterior distribution, p(θ|D), which is obtained by
combining the likelihood function, L(D|θ), with the prior,
p(θ).

Bayesian methods differ from ML in several key re-
spects. First, the prior, often given by Eq. 1, represents
our knowledge of protein structures in the absence of data.
The prior, rather than ad hoc penalty terms, provides a
means to make sense of otherwise sparse, ambiguous, or
noisy data. Second, Bayesian methods generate an en-
semble from the posterior distribution, rather than a sin-
gle sample, as in ML. The assumption of maximum en-
tropy [27, 28] underlying Eq. 1 leads to ensembles that
are as broad as possible given both the data and energetic
considerations from the prior, which mitigates over-fitting.
Finally, the prior may include “nuisance parameters”, like
the level of noise corrupting a particular observable. Dur-
ing sampling, these parameters are jointly inferred with
the other parameters describing the model, leading to a
statistically consistent ensemble without the need to spec-
ify the exact values of nuisance parameters.

The lines between these different approaches are often
blurred, and many methods do not clearly fall into any
of the categories. These are often more ad hoc combina-
tions of physically-motivated scoring functions and sam-
pling strategies that do not produce a well-defined ensem-
ble. However, although these methods have less rigorous
statistical underpinning, they are often quite successful.
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The term “ensemble” is highly overloaded in struc-
tural biology.

In statistical mechanics, an ensemble has a specific
technical meaning: the probability distribution over all
possible configurations of a system under specified condi-
tions. Unfortunately, in structural biology, it has become
common to refer to almost any collection of conformations
as an ensemble, which can be confusing. There are several
key characteristics of these pseudo-ensembles that must
be considered. Does the likelihood consider only individ-
ual structures, or properties of the distribution as a whole?
Do the structures sampled come from a well-defined distri-
bution, e.g. a Boltzmann distribution, or are they simply
a set of low-energy conformations, e.g. as in traditional
NMR refinement? How are experimental errors handled?
What priors are used? What is sampled over?—is it just
atomic coordinates, or are there other parameters like er-
ror magnitudes? It is only through consideration of these
questions that the correct interpretation of the “ensemble”
can be arrived at.

Maximum entropy and related methods can be ro-
bust against over-fitting.

Maximum likelihood methods become prone to over-
fitting as the data to parameter ratio becomes poor. For
example, it is uncommon to see multi-copy refinement
of X-ray crystal structures, where heterogeneity is rep-
resented using multiple copies of the system [33], as the
data to parameter ratio decreases linearly with number
of copies. Phillips and co-workers undertook a system-
atic study of 50 experimental structures, and found that
adding up to, on average, ∼ 10 copies yielded improved
models [34]. However, ensembles from maximum entropy
or Bayesian methods can easily have thousands of models.
How are these models not grossly over-fit?

The key to understanding this apparent paradox is to
realize that the atomic coordinates are not free parame-
ters in maximum entropy and related methods. Consider
a simple maximum entropy reweighting procedure [30].
First, an unbiased ensemble is generated using Eq. 1, say
with 1000 conformers, giving 1000 × 3 × Natoms coordi-
nates. But these coordinates are now fixed, and instead the
weights for each conformation, 1000 in total, are used to
bring the computed averages into accordance with exper-
imental observations. However, even these 1000 weights
are not free parameters, as the maximum entropy principle
prescribes a particular set of weights that simultaneously
maximize entropy and bring compute average quantities
into agreement with their experimentally observed coun-
terparts. In practice, there is one Lagrange multiplier to
be determined for each experimental observation, so the
data to parameter ratio is essentially one-to-one, regard-
less of the number of conformers in the ensemble. Similar
ideas apply to the ensemble refinement schemes discussed
in the next section.

Physical modeling offers solutions to several key
challenges in structural biology.

Challenge 1: Modeling Conformational Ensembles

The form of the likelihood function is of critical impor-
tance in ensemble refinement. If the likelihood function
considers only single structures, there is little hope of re-
producing the correct ensemble, as the likelihood function
“cannot see the big picture”. Single structure-based likeli-
hoods have the effect of forcing all structures to satisfy the
average data, rather than reflecting the true distribution
(blue vs orange systems in Figure 1). However, in many
cases an “ensemble” of structures is still produced. For ex-
ample, Bayesian single copy refinement [30] will produce
an ensemble of structures, but the resulting heterogeneity
arises from the non-zero temperature and sampling over
nuisance parameters, rather than necessarily reflecting the
true underlying ensemble.

A variety of replica-based approaches use restraints
that couple the behavior of many replicas or copies of the
system to the measured averages from experiment, as re-
cently reviewed in [19, 20].

Replica-averaged ensemble approaches simulate several
replicas of the system in parallel, which are coupled through
a harmonic potential that restrains properties averaged
over all replicas to the corresponding experimental quan-
tities [35]. While successful [36–39], these methods lack a
formal connection to maximum entropy or Bayesian prin-
ciples.

Pitera and Chodera [23] derived an expression for the
maximum entropy biasing potential to bring calculated av-
erages from a single simulation into agreement with exper-
iment. This formulation is difficult to use in practice, as
it requires determining Lagrange multipliers through trial
and error. Nevertheless, Pitera and Chodera were able to
identify an important link between their maximum entropy
formalism and replica-averaged restraints—as the number
of replicas and the harmonic force constant both increase,
the replica-averaged ensemble approach converges to the
correct MaxEnt distribution. This link was made rigorous
in several follow up papers [24, 25] and now forms the back-
bone of a number of approaches. Hummer and co-workers
introduced a Bayesian ensemble refinement method BioEN,
a combination of replica ensemble refinement and the En-
semble Refinement of SAXS (EROS) method, combining
the principles of both restraining and reweighing [30].

Ensemble heterogeneity explains much of the difficulty
in characterizing intrinsically disordered proteins (IDPs)
experimentally, as they are ensembles of inter-converting
conformations [40, 41]. The Bayesian weighting method is
an approach for characterizing an ensemble of IDPs where
the weights are defined using a Bayesian estimate from
calculated chemical shift data [42]. This method has been
successful in determining the relative fractions of mutated
structures in an ensemble for aggregative proteins [43].
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Challenge 2: Making sense of Sparse, Ambiguous, and
Noisy Data

Data from some experimental techniques can often be
sparse, ambiguous, and noisy, due to inherent limitations
of the technique, or the number and difficulty of the exper-
iments that must be performed. Nevertheless, such data
can still be highly valuable in inferring the structures of
biomolecules and complex. A number of computational
methods have been developed over the past decade which
can translate such low information data into meaningful
structural models.

High ambiguity driven biomolecular docking (HAD-
DOCK), is a data-driven docking approach, that can take
highly ambiguous data from different sources and con-
vert them into distance restraints to guide docking pro-
cesses [44, 45]. Among its many applications, HADDOCK
has been used to study protein complex interfaces using
cryo-EM data [46] and protein ligand complexes using sparse
intermolecular NOEs [47].

The Integrative Modeling Platform (IMP), is a flexi-
ble software suite aimed at integrative structural biology,
which facilitates development of integrative applications,
models and methods, and allows incorporation of data
from diverse sources [15]. Among many applications, pro-
tein complex structures have been defined with IMP using
in vivo FRET data through a Bayesian approach [48], and
using a combination of cross-linking data with biochemical
and EM localization data [49].

Rosetta is an extensive software suite aimed at pro-
tein structure prediction and molecular design. There
are several applications of Rosetta with sparse experimen-
tal data, where Monte Carlo-based fragment assembly is
guided towards native structures by data [50]. Backbone
chemical shifts and distance restraints have been used to
guide structure determination [51]. Also, paramagnetic
relaxation enhancement (PRE) [52], pseudo-contact shift
(PCS) [53], and residual dipolar coupling (RDC) [54] re-
straints have been used to similar effect. Recently, the
RASREC (resolution-adapted structural recombination) al-
gorithm was developed, which yields better models with
narrower sampling [17, 55]. RASREC enriches the struc-
ture pool by re-using structural features that were fre-
quently observed in previous runs. It requires fewer re-
straints, and develops models that are closer to the native
structure, including for NMR on deuterated samples up to
40 kDa [56, 57].

A newer approach based on Bayesian inference, Metain-
ference, can address statistical and systematic errors in
data produced by high-throughput techniques, and can
handle experimental data averaged over multiple states [14].
It is suitable for studying structural heterogeneity in com-
plex macromolecular systems. A combination of Metain-
ference and Parallel-bias Metadynamics (PBMetaD), an
accelerated sampling technique, provides an efficient way
of simultaneously treating error and sampling configura-
tion space in all-atom simulations [9]. Coupling Metain-
ference and Metadynamics has been particularly successful

in characterizing structural ensembles of disordered pep-
tides [58, 59].

Modeling Employing Limited Data (MELD) is a Bayesian
approach that combines statistical mechanics (Eq. 1), de-
tailed all-atom physical models [7], and enhanced sampling
to infer protein structures from sparse, ambiguous, and
noisy data [13]. MELD was specifically designed to be
robust in the presence of false-positive signals, and has
been applied to EPR, NMR, and evolutionary data [13],
de novo prediction of protein structures based on simple
heuristics [60, 61], and mutagenesis guided peptide-protein
docking [62, 63].

Physical modeling is enabling emerging techniques
in structural biology.

Advances in physical modeling will be key to enabling
technologies for new approaches to structure determina-
tion. Below we outline just a few—of many—emerging
techniques where the ability to model ensembles and to
successfully treat sparse, ambiguous, and noisy data will
be critical.

Chemical cross-linking detected by mass spectrometry
is emerging as a potentially powerful tool in structure de-
termination. Developments have focused on improvements
in instrumentation [4, 64], cross-linking chemistries [65–
67], and data analysis [65, 66, 68, 69]. These techniques
are extremely sensitive, but the data can be highly ambigu-
ous and both false-positive and false-negative signals are
common. Such data has recently been used as restraints
to guide Monte Carlo [70], molecular dynamics [71], and
integrative modeling [68, 69] approaches. The use of cross-
linking restraints for structure prediction was recently as-
sessed during the 11th round of Critical Assessment of
Structure Prediction [72, 73] and various shortcomings—
both in experiment and modeling—were identified.

X-ray diffuse scattering experiments can produce infor-
mation about correlated motions in proteins that is com-
plementary to the information obtained from the more
typically analyzed Bragg scattering [74, 75]. Wall and
co-workers found good agreement between long molecular
dynamics simulations and measured diffuse scattering [75],
even in the absence of any fitting. The development of suit-
able ensemble refinement schemes would bring the models
into even better agreement with experiment and would
provide a powerful new tool for studying correlated mo-
tions of proteins.

Recent work has demonstrated the utility of paramag-
netic relaxation enhancement measurements in solid-state
NMR [76, 77]. These experiments provide less structural
information than traditional protein NMR experiments,
but, combined with suitable computational modeling, rep-
resent an increasingly viable avenue for structure determi-
nation [52, 77].

Transition metal ion FRET (tmFRET) measures the
distance between small-molecule fluorophores and a non-
fluorescent transition metal. Because it provides short
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range distances, and because different metals have dif-
ferent absorptions, the method is tunable for a range of
distances (10–20 Å) [78] and has been used to study mem-
brane proteins [79].

Finally, recent work has demonstrated the possibil-
ity of inferring residue–residue contacts from coevolution
analysis of homologous sequences [80–82], commonly re-
ferred to as evolutionary couplings. Baker and co-workers
were recently able to create models for 614 protein families
with unknown structures [83], several of which had folds
that are not in the Protein Data Bank. Montelione and
co-workers combined evolutionary couplings with sparse
NMR data, which provide complementary restraints for
modeling, to correctly determine structures for proteins
up to 41 kDa [3].

Conclusion and future perspectives

Physical insight has always been integral to structural
biology, but the dual challenges of modeling ensembles and
making sense of sparse, ambiguous, and noisy data mean
that quantitative physical models will become an increas-
ingly important part of modern structural biology. Driven
by faster computers, advances in theoretical understand-
ing, and better algorithms, detailed physical modeling is
enabling new methods in structural biology, which are es-
sential to addressing exciting biological questions.
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