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Abstract 

 

The transcriptome and proteome encode distinct information that is important for characterizing heterogeneous biological 

systems. We demonstrate a method to simultaneously characterize the transcriptomes and proteomes of single cells at high 

throughput using aptamer probes and droplet-based single cell sequencing. With our method, we differentiate distinct cell 

types based on aptamer surface binding and gene expression patterns. Aptamers provide advantages over antibodies for 

single cell protein characterization, including rapid, in vitro, and high-purity generation via SELEX, and the ability to 

amplify and detect them with PCR and sequencing.  

 

 

Introduction 

 

Cellular differentiation restricts the genetic programs that 

cells may execute, endowing distinct functions and 

phenotypes [1, 2]. This enables important abilities, like the 

generation of tissues and organs; however, dysregulation of 

this system can lead to diseases, like cancer [3]. On the 

microscopic level, important biological structures comprise 

heterogeneous ensembles of cells working in coordination 

[4-7]. The immune system, for example, uses multiple cell 

types to elicit a response to exogenous threats, prevent 

autoimmunity, and establish long-term memory [8]. In 

cancer, heterogeneity occurs in advanced malignancies and 

imposes a significant barrier to cure by often ensuring that 

a fraction of cancer cells resist treatment [9-11]. For 

heterogeneous systems, mixed, multicell measurements do 

not allow resolution of different cells into their functional 

groups. High throughput single cell transcriptome 

sequencing [12-14] is an effective tool for deconvoluting 

heterogeneity because it provides ample information to 

identify cell type [15] and infer cell state and function [16]. 

Moreover, it leverages the capacity of modern sequencing 

to analyze tens-of-thousands of cells per experiment, 

allowing analysis of populations [17-19]. Nevertheless, 

gene expression is dynamic and can change due to 

biologically important or trivial events, making data 

interpretation challenging. Indeed, there is often poor 

correlation between transcript count and protein 

abundance, particularly when measured in single cells [20, 

21].  
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As the extreme boundary of cells, the membrane 

carries a molecular fingerprint useful for identifying cell 

type and function. This information is often 

complementary to gene expression data, being encoded in 

the proteome and, thus, containing features not otherwise 

observable, like post-translational protein modifications. 

Consequently, for cell type discrimination, surface 

profiling with antibodies and fluorescence-activated cell 

sorting (FACS) is the gold standard to classify cells into 

their myriad types via well-characterized biomarkers [22, 

23]. However, the approach requires that each antibody be 

labeled with a unique fluorophore, limiting multiplexing to 

tens of antibodies. By swapping fluorophores with mass 

tags and using a mass spectrometer for the readout, over a 

hundred antibodies can be used [24, 25], although this is 

still far short of the tens-of-thousands of genes, splice-

forms, and post-translational modifications actively used 

by organisms and available for characterization by 

antibodies. Ab-seq replaces the mass tags with nucleic acid 

sequence tags, using droplet-based single cell sequencing 

for the readout [26]. Because a sequence tag is encoded by 

its full nucleobase set, an astronomical number of sequence 

combinations are available for unique antibody labeling, 

shattering the multiplexing barrier. Moreover, the 

microfluidic approaches used to sequence single cell 

mRNA can be applied to the tags, allowing simultaneous 

surface and transcriptome profiling of single cells at high 

throughput [27, 28]. While this provides exciting 

opportunities for characterizing cells with paired gene 

expression and protein data, it requires access to high-

affinity antibodies. Effective antibodies are available for 

common targets, but uncommon ones require custom 

generation, an involved process necessitating antigen 

purification [29, 30]. Antigen purification can be costly and 

labor intensive, and may not be possible depending on the 

native structure of the antigen [31, 32]. Once obtained, the 

antibodies must be conjugated to sequence tags, an 

additional step that can impact affinity. To enable simple 

and effective single cell surface profiling, an optimal 

approach would obviate the need for custom antibody 

generation and tag conjugation.  

Here, we present Apt-seq, an approach to 

simultaneously profile the surfaces and transcriptomes of 

single cells using aptamers and single cell sequencing. Like 

 
Fig. 1: Principle of the Apt-seq workflow. a A heterogeneous cell sample is incubated with a diverse aptamer library containing a poly-A 

sequence on its 3'-end. b Cells expressing epitopes of interest are decorated by the corresponding aptamers in the library and non-binding 

aptamers are washed away. c Single cells of the washed cell suspension are co-encapsulated with beads carrying a unique DNA barcode in a 

microfluidic device. d Each droplet contains lysis solution to lyse cells. Aptamers and mRNA molecules can hybridize with the barcoding beads 

by means of their poly-A sequence. Using the barcode bead as a primer in reverse transcription and DNA polymerase reactions, the droplet-

specific unique barcode is fused to the mRNA and aptamer, providing a cell specific identifier. e Pooling all beads after barcode fusion, 

sequencing their content in parallel, and deconvoluting aptamers and mRNAs, allows evaluation of epitope profiles in single cells f. g Since the 

cell-specific barcode is shared between aptamers and transcripts, the epitope data can be combined with the single cell transcriptome for further 

interdependent analysis. 
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antibodies, aptamers are affinity probes capable of specific 

binding to target epitopes [33-36], and aptamer binding can 

be multiplexed. Unlike antibodies, aptamers are nucleic 

acids in which the nucleobase sequence provides an 

intrinsic tag that can be read out via DNA sequencing, 

obviating the need for additional tag conjugation. 

Moreover, specific, high-affinity aptamers can be readily 

and inexpensively obtained with in vitro systematic 

evolution of ligands by exponential enrichment (SELEX) 

[34, 36, 37]. SELEX can be applied directly to living cells, 

avoiding antigen purification, and shortening the process 

from months to weeks [38-40]. This simplifies affinity 

reagent generation and enables new surface 

characterization only accessible to aptamers [41]. We 

demonstrate Apt-seq by using it to discriminate between 

cells based on aptamer binding and differences in gene 

expression. 

 

Results 

 

Aptamers allow single cell surface profiling via droplet 

barcoding and sequencing. Aptamers are nucleic acids 

that adopt a three-dimensional fold and bind specifically to 

protein epitopes and small molecules [34, 36]. Like 

antibodies, they can be used in combination for 

multiplexed characterization [42], while being easily 

identified via nucleic acid sequencing. To allow 

simultaneous sequencing of cell mRNA and aptamers, we 

polyadenylate the aptamers to mimic the structure of 

mRNA; this allows both to be captured and sequenced 

using identical poly-thymine primers (Fig. 1a). To label the 

cells with aptamers, the mixed aptamer library is incubated 

with a cell suspension, and unbound aptamers washed 

away (Fig 1b). To barcode the cells, we employ Drop-seq, 

a high throughput microfluidic approach [13], although 

other barcoding methods can also be used [12, 43-45]. In 

Drop-seq, cells are isolated in droplets with barcoded beads 

and lysis buffer (Fig. 1c) [13]. Upon lysis, aptamers and 

mRNA hybridize to poly-thymine barcode sequences on 

the beads (Fig. 1d), followed by demulsification, washing, 

and nucleic acid amplification [12, 46-48]. Amplification 

conjugates a unique barcode sequence to all aptamers and 

transcripts of a single cell, allowing material for many cells 

to be pooled, sequenced, and computationally 

deconvoluted by barcode. This provides, for every cell, 

paired aptamer and transcript reads (Fig. 1e) that are 

separated in silico (Fig. 1f and 1g). 

 

Polyadenylation does not impair aptamer function. For 

Apt-seq to be effective, the poly-adenylation required for 

paired transcriptome sequencing must not perturb aptamer 

binding [49]. To confirm this, we construct a library of five 

aptamers, TC01, TD05, TD08, TD09, and TE02, reported 

to bind Ramos cells with Kd from 0.8 nM to 74.7 nM [50]. 

We also include TE17, sgc3b, and sgc8a aptamers that do 

not bind Ramos cells [42, 50, 51]. TD05, sgc3b, and sgc8a 

have reported protein targets, the membrane bound IgM, L-

selectin, and PKT7, respectively [52-54]. To assess the 

impact of the poly-A tail on aptamer fold, we use 

RNAstructure [55], a secondary structure prediction 

algorithm, and predict the same fold for the aptamers with 

and without poly-A tail (Fig. 2a). To assess whether the 

tails interfere with binding, we synthesize all eight 

polyadenylated aptamers and apply them to Ramos and 

control 3T3 cells. The aptamers are incubated at equal 

molar concentration with either cell line, followed by five 

wash cycles and concentration estimation in the final wash 

supernatant and final cell suspension by qPCR. In 

 
Fig 2: Influence of the 3'-poly-A tail on aptamer structure and function. a Predicted secondary structure of the aptamers 

TD05 and TD09 with and without poly-A tail. b The functionality of the aptamers TC01, TD05, TD08, TD09, TE02, 

TE17 and sgc8a, all modified with a 3'-poly-A tail is evaluated based on their ability to bind to Ramos or 3T3 cells. The 

concentration of the aptamers is estimated in the supernatant and cellular fraction after five wash cycles by qPCR. Each 

bar represents the mean of a technical triplicate and uncertainty is given as one sample standard deviation. 
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agreement with previous studies, TD05, TD08, and TE02 

are highly enriched in Ramos cell suspensions, while TD09 

is moderately enriched. In contrast, TC01, TE17, and sgc8a 

are not enriched in Ramos cells, as expected (Fig. 2b) 

(Supplementary Fig. 1). Sgc3b remains below the detection 

limit for either cell line. Notably, although sgc8a is a 

reported binder of human T-cells [42], it enriches in mouse 

3T3 cells. However, a previous study showed that both 

sgc8 and a PKT7 binding antibody can interact with other 

cell lines presumably devoid of PKT7 [56]. We conclude 

that poly-adenylating the aptamers does not affect fold or 

binding and that all except TC01 perform as previously 

reported in our hands. 

 

Apt-seq provides independent information from 

RNAseq for inferring cell type. Inferring cell type from 

RNAseq data can be challenging due to the dynamic, 

complex, and multidimensional nature of gene expression. 

An advantage of Apt-seq is that it allows independent 

confirmation of cell type by aptamer binding. This can be 

used to support inferences from transcriptome data, or 

provide additional information for differentiating between 

related cells and states. To illustrate these benefits, we 

perform combined aptamer and transcriptome sequencing 

of suspended Ramos and 3T3 cells. After incubation and 

washing of the aptamers, we barcode the cells with Drop-

seq. Drop-seq uses template switching to generate defined 

3'-ends on cDNA, enabling subsequent PCR amplification. 

After amplification, cDNA is tagmented to generate ~500 

bp fragments containing necessary sequencing handles. 

Aptamers lack the 5'-cap of mRNA and, thus, template 

switching is non-processive, preventing addition of the 

handles by this route. However, our aptamers are 

constructed with known flanking sequences, which we use 

for amplification and handle attachment. Additionally, the 

aptamers are short (below 200 bp), so that amplicons can 

be sequenced without tagmentation (Methods, 

Supplementary Table 1 and 2). These simplifications allow 

efficient, joint processing of aptamers and mRNA in the 

same barcoding reaction.  

After barcoding, the nucleic acids of many cells 

are pooled and sequenced. We aim for about 200 cells and 

perform limited Illumina MiSeq sequencing collecting ~12 

million paired-end reads. We computationally group reads 

to single cells using barcodes, and then to single molecules 

using unique molecular identifiers (UMIs). After 

processing, we obtain high-quality transcriptome and 

aptamer data for 58 cells, with >4500 unique reads per cell. 

More cells can be obtained by sequencing deeper and 

collecting more beads [13]. As expected, most reads belong 

to the transcriptome, and a smaller fraction to surface-

bound aptamers (Fig. 3a). The aptamer profiles segregate 

into two groups, with TD08 and TE02, and to a lesser 

degree TD05 and TD09. The aptamer sgc8a is 

predominantly anticorrelated with this group. We obtain 

few reads for TC01, TE17, and sgc3b (Fig. 3b), consistent 

with our multicell qPCR results (Fig. 2b). Based on the 

qPCR results and because TD05 is a binder of the 

immunoglobulin heavy chain, we expect the first 

rectangular block to represent Ramos and the second 3T3 

cells. Because these cells are from different species, cell 

type can be inferred by direct sequence analysis of cDNA. 

To verify our aptamer results, we thus evaluate the 

transcript reads of each cell. We order the transcriptome 

data using the same y-axis as the aptamers and again 

observe a clear block segregation, indicating that the gene 

 
Fig 3: Mixed human-mouse two cell type experiment. a The number of unique aptamer reads per cell is drawn on the 

left. On the opposite side, all unique mRNA reads are displayed. The cells are ordered from bottom to top according to 

the number of assigned human mRNA reads divided by the total number of assigned mRNAs in decreasing order. b 

Two-dimensional histogram of counts per aptamer and cell. The order of the cells is the same as in a. c Two-dimensional 

histogram of the transcript counts for the 200 most variable transcript equivalence classes. The maximum read number is 

truncated at 100. The order of the cells is the same as in a and b. d Barnyard plot of the two cell transcriptome data. The 

first two principal components of the cell versus aptamer read matrix are superimposed in color space. Color code is 

given in the insert. The relative contribution of each aptamer to the first two principal components is given. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2017. ; https://doi.org/10.1101/228338doi: bioRxiv preprint 

https://doi.org/10.1101/228338
http://creativecommons.org/licenses/by/4.0/


5  

expression of the two cell types is differentiated as 

expected. Based on transcript sequences, we confirm that 

the lower block corresponds to the human Ramos and the 

upper block to the mouse 3T3 cells (Fig. 3c).  

To confirm the relationship between expected 

aptamer and gene expression data, we construct a barnyard 

plot, displaying each cell as a 2D coordinate corresponding 

to the number of human and mouse transcripts identified 

within its barcode cluster (Fig. 3d). We extract the 

principal components of the aptamer read per cell matrix 

by calculating a singular value decomposition (SVD) (Fig. 

3d, upper-left). This yields two eigenvector principle 

components, describing how the aptamers tend to correlate 

with each other. In agreement with the observed block 

structure of the aptamer profiles, we obtain an all positive 

first eigenvector with major contribution of the aptamers 

TD05, TD08, and TE02 (Fig. 3d, upper right) and a second 

eigenvector consisting primarily of sgc8a (Fig. 3d, lower-

right). These eigenvectors are strongly anticorrelated, 

indicating that the aptamers cluster cleanly based on cell 

type. We use these eigenvectors to define a two-parameter 

coloring scheme, coloring each data point corresponding to 

a cell in the coordinate space according to its amplitudes 

along the two eigenvectors. Cells containing mostly human 

transcripts have amplitudes primarily along the first 

eigenvector (blue, Fig. 3c upper-right), while cells 

containing mostly mouse transcripts have amplitudes 

primarily along the second eigenvector (purple, Fig. 3d, 

lower-right). These results demonstrate that transcriptional 

signatures cluster with known patterns of aptamer binding 

and, more broadly, that aptamers can be used to label 

specific cell types in a format that can be read out with 

mRNA sequencing data.  

 

Discussion 

 

While single cell mRNA profiling provides a 

valuable snapshot into the inner workings of cells, it is just 

one of many characterizations of the cellular space. 

Inaccessible from transcriptome data, the proteome 

contains traces of post-translational regulatory events and 

exhibits different temporal dynamics [57, 58]. Tapping into 

both domains, Apt-seq provides a strategy for highly 

multiplexed, single cell surface profiling simultaneous with 

the transcriptome. Because Apt-seq uses polyadenylated 

aptamer probes, it is compatible with most common single 

cell transcriptome sequencing methods, including Drop-

seq, InDrops, and their commercial variants.  

Apt-seq mirrors Ab-seq, and its successors CITE-

seq and REAP-seq, in that it allows combined surface and 

transcriptome profiling of tens-of-thousands of single cells 

at high throughput [26-28]. However, aptamers provide 

practical and functional advantages over antibodies. In 

practical terms, aptamers are faster and cheaper to generate 

against many novel targets than antibodies. The in vitro 

SELEX process can be performed directly on living cells, 

obviating the need for antigen purification, which is not 

possible for many targets. Thus, Ab-seq may be preferred 

when the marker is best detected by a readily-available 

antibody, while Apt-seq may be superior for novel targets. 

Additionally, while antibodies require tag conjugation, 

aptamers can be used directly, since they are already 

sequenceable nucleic acids. In addition, patents on the 

original SELEX method have expired and new protocols 

have emerged that should expand the library of high-

quality, specific aptamers [37, 59-61]. Moreover, aptamers 

can be synthesized with higher purity and reliability than 

antibodies through established chemical synthesis 

pipelines; this may allow aptamers to overcome the poor 

reproducibility that has plagued antibodies, and potentially 

achieve higher experimental reliability. 

Apt-seq provides new capabilities for high 

throughput single cell characterization. In addition to 

scaling numbers of cells sequenced per sample, there is an 

increasing interest in scaling the number of samples 

sequenced in total. Ideally, many samples would be pooled 

and sequenced on a single run, but the need to index each 

one necessitates microfluidic barcoding of every sample, 

an expensive and labor-intensive process. Apt-seq can 

address this by labeling samples with unique surface 

aptamers that can be used independent of transcriptome 

data to batch samples together in one microfluidic 

barcoding run. Since after cell washing the free aptamer 

concentration is orders of magnitude below their 

dissociation constant, there should be minimal cross 

contamination between samples. 

Aptamers and antibodies can bind internal epitopes 

of cells using fixation and permeabilization protocols; 

however, such binding may be better with the smaller 

aptamers, having a hydrodynamic diameter of ~2 nm 

compared to ~15 nm for antibodies [41, 62]. Indeed, many 

aptamers are readily internalized and staining of 

intracellular compartments can be more effective than with 

antibodies [63-65]. This will be important for combining 

intracellular proteomic and transcriptomic readouts [66]. 

Aptamers also enable measurement opportunities not 

possible with antibodies. For example, a raw aptamer 

library produced by cell-SELEX can be directly applied to 

cells, allowing different cell types to be inferred based on 

aptamer spectrum, rather than assembling an aptamer 

library from known binders. This should allow 

differentiation between cells even when distinct biomarkers 

are not known a priori. Additionally, multidentate, 

bispecific, or multipiece aptamers can be constructed by 

combining binding sequences in the same aptamer [67, 68], 

allowing assessment of epitope proximity in a way 

currently accomplished with fluorescence or proximity 

ligation assays, but in a format that can be highly 

multiplexed and performed simultaneously with cell 

surface and transcriptome profiling. Furthermore, 
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riboswitch-like aptamers have a unique ability to bind 

small molecules and, thus, Apt-seq opens new possibilities 

for adding cellular metabolite characterization to 

simultaneous protein and nucleic acid measurements in 

single cells [69].  

 

 

Methods 

 

Aptamer structure prediction 

The aptamer structure was predicted by the RNAstructure 

web-server 

(https://rna.urmc.rochester.edu/RNAstructureWeb/) with 

default parameters. 

 

Cell cultures 

Ramos and 3T3 cells were cultured at 37oC in RPMI-1640 

medium supplemented with antibiotics and 5% fetal bovine 

serum (FBS) in the presence of 5% CO2. 

 

Aptamer staining 

Aptamers (from IDT) were folded as described before [50]. 

Briefly, they were diluted to 0.5 μM in aptamer folding 

buffer (F) (1x PBS, 5 mM MgCl2, 4.5 gl-1 glucose) and 

heated to 95oC for five minutes then cooled on ice for 10 

min. The folded aptamers were pooled at a concentration of 

62.5 nM each as stock solution. 

3T3 and Ramos cells were resuspended in aptamer binding 

buffer (B) (buffer F supplemented with 1 mg/ml BSA and 

0.1 mg/ml salmon sperm DNA). For the qPCR experiments 

either 3T3 or Ramos cells were diluted to about 6x105 

cells/ml and incubated with 31.25 nM of each aptamer. 

Cells were washed five times by centrifugation and 

resuspension cycles. For the single cell experiment 106 

Ramos cells where mixed with 3*105 3T3 cells and 31.25 

nM of each aptamer in 1 ml buffer (B). The cell suspension 

was incubated for 30 min on ice and washed in ice cold 

buffer (B) for five centrifugation and resuspension cycles. 

 

Quantitative PCR 

For each qPCR replicate either a suspension of about 4200 

aptamer-stained cells or, in controls, the corresponding 

volume of supernatant was loaded. Aptamer specific 

primers (from IDT) were used to amplify individual 

sequences (Supplementary Table 2). Signal was detected 

on a QuantStudio5 (Applied Biosystems) qPCR machine 

with Syber green as reporter. A control experiment was 

performed to assess background priming on non-target 

aptamers and was found to be negligible (data not shown). 

Amplification standard curves were measured for all 

aptamer primer pairs in triplicate. The model C(n) = C0b
n, 

where C(n) corresponds to the concentration after n PCR 

cycles and C0 to the start concentration, was log 

transformed and fit by linear regression to obtain the 

amplification rate b and the detection concentration C(nCt), 

which is reached at the cycle threshold (Ct). Both 

calculated constants were used to estimate the aptamer 

concentration in the experiment. Uncertainty in the 

constants was propagated and final uncertainty of the 

concentration estimates is presented as one sample 

standard deviation with applied Bessel's correction. 

 

Single cell experiment 

The aptamer-stained cell suspension was diluted in ice cold 

PBS containing 0.1% BSA to a final concentration of 

1.06*105 cells/ml. 

Single cell experiments were performed as described by 

[13] (online protocol: http://mccarrolllab.com/dropseq/), 

with the following modifications. About 2000 beads were 

used for further processing, corresponding to about 100-

200 cells. After reverse transcription with Maxima H 

Minus Reverse Transcriptase (Thermo Fisher), which 

produces barcoded cDNA-mRNA hybrids and barcoded 

double-stranded aptamers, we amplified both libraries 

together by 13 cycles of PCR. DropSeq uses template 

switching to introduce the sequence 

ACTCTGCGTTGATACCACTGCTT at the 3'-end of the 

cDNA which allows use of a single primer (smart PCR) 

(Supplementary Table 2) to amplify the complete barcoded 

construct. Since template switching is much more efficient 

on 5'-capped mRNA, it only rarely happens on aptamers. 

Therefore, we use a specific reverse primer for each 

different aptamer flanking region (Supplementary Table 1), 

which we add to the PCR mix at a ratio of 1:20 compared 

to the smart PCR primer. Next DropSeq uses tagmentation 

(Nextera) to trim the transcripts to a mean length of about 

500 bp and to introduce the sequence overhang 

GTCTCGTGGGCTCGG. Since the length of the aptamers 

is significantly shorter, tagmentation is not expected to act 

on them. To enable downstream joint processing of 

aptamers and transcripts we introduced the tagmentation 

overhang as part of the aforementioned specific primers. 

We processed the sample further as described [13]. The 

cDNA library was sequenced on a MiSeq device (Illumina) 

with a MiSeq Reagent Kit v3 (Illumina) in paired-end 

mode. 

 

Sequencing and data analysis 

The python scripts for the evaluation of InDrops 

experiments [70] was adjusted to be applicable to the 

barcoding scheme of the DropSeq experiment. Without 

attempting any error correction, in a first pass all cellular 

barcodes with a count above 2000 where retained, which 

yielded 210 distinct barcodes. The corresponding 

sequences, containing transcripts and aptamers, were 

evaluated with Kallisto in the UMI-aware mode to generate 

a pseudo-alignment and to map transcripts to equivalence 

classes [71, 72]. To reduce the influence of stochastic 

fluctuations in the data, cells were only included for further 

analysis if they yielded a minimum of 4500 unique 
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transcript reads; 58 cells passed this filter. For display 

purpose, the 200 equivalence classes with the highest 

variance were selected (Fig. 3c). A barnyard plot was 

generated based on equivalence classes that could be 

unambiguously assigned to either mouse or human only 

(Fig. 3d). Aptamer sequences were identified separately by 

the program cutadabt [73]. For each aptamer three 

overlapping 20mers were generated and each of these 

fragments was used as a cutadabt query and tested against 

all sequences. If a sequence contained a consecutive 20mer 

that matched the query with at most one base mismatch, 

the sequence was considered a read of that aptamer. The 

identified aptamer sequences were collapsed based on their 

UMI. SVD was calculated based on the mean-centered 

normalized cells versus aptamers count matrix. The color 

of the x-coordinate in the barnyard plot corresponds to the 

amplitude of the first eigenvector (cyan) and the y-

coordinate to the inverse amplitude of the second 

eigenvector (magenta) (Fig. 3d). 
 

Data availability 

The data that support the findings of this study are 

available from the corresponding author upon reasonable 

request. 
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