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Abstract

Background: Contact-guided protein structure prediction methods are becoming more
and more successful because of the latest advances in residue-residue contact prediction.
To support the contact-driven structure prediction, effective tools that can quickly build
tertiary structural models of good quality from predicted contacts need to be developed.
Results: We develop an improved contact-driven protein modeling method, CONFOLD2,
and study how it may be effectively used for ab initio protein structure prediction with
predicted contacts as input. It builds models using various subsets of input contacts to
explore the fold space under the guidance of a soft square energy function, and then
clusters the models to obtain top five models. CONFOLD2 is benchmarked on various
datasets including CASP11 and 12 datasets with publicly available predicted contacts
and yields better performance than the popular CONFOLD method.
Conclusion: CONFOLD2 allows to quickly generate top five structural models for a
protein sequence, when its secondary structures and contacts predictions at hand.
CONFOLD2 is publicly available at
https://github.com/multicom-toolbox/CONFOLD2/.

Background 1

The most successful ab initio protein structure methods, i.e. fragment-assembly based 2

methods, require generating a lot of decoys to deliver accurate predictions. Methods 3

that can build models faster and are more residue contact sensitive are needed to realize 4

the promise of ab initio protein structure prediction driven by the recent advances in 5

contact prediction [1, 2]. The CONFOLD method [3] can build high quality secondary 6

structures (including beta-sheets) and correct tertiary structures when predicted 7

contacts are accurate. It is integrated into other protein structure prediction methods 8

like CoinFold [4] and PconsFold2 [2]. In this paper, we develop an improved version of 9

CONFOLD by incorporating a soft-square energy function into CONFOLD, building 10

models using multiple sub-sets of contacts, adding model selection capability, and 11

rigorously testing it on various datasets including the Critical Assessment of protein 12

Structure Prediction (CASP) 11 and 12 datasets. CONFOLD2 also addresses a major 13

limitation of the CONFOLD method, i.e. generating a decoy of 200 models and not 14

producing top one or top five models. Compared to fragment-assembly methods that 15

need to generate thousands of model decoys [5], CONFOLD2 explores the fold space by 16

generating just a few hundred model decoys, and hence it runs relatively fast. 17
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Implementation 18

Recently, it is found that energy functions that do not penalize unsatisfied predicted 19

contacts after certain distance threshold yield more accurate model reconstruction [5–7]. 20

Different contact energy functions like FADE [5], square-well function with exponential 21

decay [6], and modified Lorentz potential [7] applied to contact-guided protein folding 22

have been found to work best for various folding algorithms, mostly fragment-assembly 23

based methods. When distance geometry based approaches are used to fold proteins 24

with restraints, it has been shown that soft-square function performs best, with the 25

‘rswitch’ parameter to be tuned [8]. 26

Econtact = min(ceil, w)

{
a+ b

∆softexp , R ≥ d+ dplus + rsw

∆exp, R < d+ dplus + rsw

(1)

Error(∆) =


R− (d+ dplus), R ≥ d+ dplus

(d− dminus) −R, R < d− dminus

0, otherwise

(2)

We replaced CONFOLD’s [3] soft-square asymptotic energy function (designed 27

originally for the experimental NOE restraints) with the soft-square function 28

(Equation (1)), where the error is defined in Equation (2). The parameter d, dminus, 29

and dplus define the interval [d-dminus, d+dplus], where the error is zero. For contacts 30

predicted to be less than 8Å distance, we set d, dminus, and dplus to 3.6, 0.1, and 4.4 31

respectively. The switching parameter rsw defines the boundary where the square error 32

function starts to taper into a constant error (see Figure1). R is the actual distance 33

between Cβ atoms of the predicted contact residue pair in the model. The exponents, 34

‘exp’ and ‘softexp’ are both set to 2. Since the contact weight multiplies the energy 35

term, the maximum weight (ceil) that any pair of predicted contacts can have is set to 36

1000, and ‘w’ is the weight of each contact pair and is set to 1. The most important 37

parameter affecting the quality of reconstruction is rsw and we optimized it to be 1.8. ‘a’ 38

and ‘b’ are constants determined at run-time such that the function is smooth at rsw 39

equal to 1.8. Our soft-square contact energy term is calculated either using a square 40

error function or approximately constant error function based on a switching parameter 41

- rsw. It defines a threshold until which the error increases as a square error function 42

and beyond which the error tapers to a constant error. Figure1 demonstrates how the 43

switching parameter affects the overall energy calculations. 44

Using the soft-square function as contact energy term, CONFOLD2 initially predicts 45

200 models using various subsets of input contacts, and selects five top models by 46

clustering them. To effectively explore the fold space captured by the predicted 47

contacts, we prepare 40 different subsets of input contacts by selecting top xL contacts, 48

where x = 0.1, 0.2, 0.3, . . . , 4.0 and L is length of the protein, and build 20 models for 49

each subset. For each of this subset of contacts, top 5 models in the second stage of 50

CONFOLD modeling are selected based on the contact energy score, resulting in a total 51

of 200 models. Next, to filter out unfolded models, we rank these 200 models by 52

calculating their contact satisfaction score using top L/5 long-range contacts, and filter 53

out the bottom 150 models. The remaining 50 models are clustered into five clusters by 54

calculating their pairwise structural similarity measured by TM-score. We select the five 55

models closest to the centroids of these five clusters as the top five predictions with the 56

rank determined by the satisfaction score of the top L/5 long-range contacts. 57

SCRATCH suite [9] is used to predict three-state secondary structure and 58

Maxcluster [10] to compute pairwise model similarity for clustering. 59
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Figure 1. Behavior of the contact energy term for various rsw values. For this demonstration desired distance
is set to 10 Å with a lower-bound of 0 Å and upper-bound of 5 Å, i.e. the desired distance between the pair
of restrained residues is 10.0 Å and 15.0 Å. The “Existing” energy calculations refers to the old energy term
implemented in CONFOLD method. The plot shows that depending upon the switching parameter, rsw, the
energy calculations can taper early at around 1 or 2 Å for rsw = 2 or at more than 25 Å for rsw = 6.

Results 60

As the first benchmark, we compared the performance of CONFOLD2 with the original 61

CONFOLD method [3] on the 150 proteins in the PSICOV dataset [11] using the 62

contacts predicted using PSICOV [11] (see Table1). The original CONFOLD method 63

generates top 200 models and provides no ranking of the reconstructed models, so we 64

compare the two methods using best-of-200 models. On the PSICOV dataset, when 65

best of 200 models are evaluated, CONFOLD2 achieves a mean TM-score of 0.57 66

compared to 0.55 of CONFOLD. This improvement in CONFOLD2 is statistically 67

significant per paired t-test with a p-value of 4 x 10-8 (see Suppl. Table S1 for a 68

detailed comparison). 69

Next, to evaluate our model selection technique (selecting top five models from 200) 70

we compared our approach of model selection using clustering with the model ranking 71

using contact satisfaction score only. On the same dataset, when we selected top five 72

models using contact satisfaction score of top L/5 or L/2 long-range contacts, we 73

achieved best-of-top-five TM-score of 0.50. The rationale for using top L/5 or L/2 74

contacts (instead of L or more) is that these subsets are found to best reflect the 75

accuracy of the predicted contacts [12]. In contrast, when we filter out the bottom 150 76

models, cluster the remaining 50 into five clusters, and select the cluster centroids, we 77

obtain best-of-top-five TM-score of 0.52, suggesting that the clustering approach is 78

effective in selecting models built from contacts. As summarized in Table1, we also 79

reconstructed models for the PSICOV-150 dataset using contacts predicted by 80

MetaPSICOV [13] and obtained a mean TM-score of 0.62 when best of top-five models 81

are evaluated (see Supp. Table S1 for detailed results), indicating that the improved 82

contact prediction leads to the better tertiary structure reconstruction. 83

Finally, using CONFOLD2, we predicted models for the protein sequence targets in 84
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Table 1. Summary of the performance of CONFOLD2 on PSICOV, CASP11, and CASP12 datasets. Mean
contact precision of top L/5 for (i) all (short-range, medium-range, and long-range: PSR+MR+LR) contacts, and
(ii) long-range contacts (PLR) is reported for all the datasets. The TM-score of the best-of-200 and best-of-5
models reconstructed by CONFOLD2 are also presented. Results for single-domain and multi-domain subsets of
the CASP11 and CASP12 datasets are also reported separately.

Dataset Contact Precision (L/5) TM-score of Models
Method PSR+MR+LRPLR Best-of-200 Best-of-5

PSICOV-150 PSICOV 72.6 64.0 0.57 0.52
PSICOV-150 MetaPSICOV 88.4 77.2 0.65 0.62

CASP12 All Raptor-X 71.3 58.6 0.46 0.41
CASP12 Single Domain Raptor-X 70.6 58.6 0.49 0.44
CASP12 Multi-Domain Raptor-X 72.0 58.7 0.44 0.38

CASP11 All CONSIP2 71.8 50.2 0.46 0.41
CASP11 Single Domain CONSIP2 75.8 57.4 0.52 0.48
CASP11 Multi-Domain CONSIP2 67.7 42.4 0.40 0.34

CASP11 and CASP12 datasets with contacts predicted by the most accurate predictor 85

in each of the CASP experiments – CONSIP2 [14] in CASP11 and Raptor-X [15] in 86

CASP12 (see Table1). The average TM-score of the reconstructed models for both 87

CASP11 and 12 datasets is 0.46 when best-of-200 models are evaluated and 0.41 when 88

best-of-five models are evaluated. 89

Discussion 90

Observing the lower reconstruction accuracy for the CASP datasets compared to the 91

PSICOV dataset, we investigated if the performance was affected by multi-domain 92

proteins because we build models for the whole targets first and evaluated them at 93

domain level. As shown in Table1, the reconstruction accuracy is higher for single 94

domain proteins than multi-domain proteins (see Supp. Table S2 and S3 for details). 95

Yet, the reconstruction accuracy for single domain proteins is still lower than that of the 96

PSICOV dataset. For the further investigation, from the single domain proteins in both 97

CASP11 and 12 datasets, we removed some proteins with low accuracy contact 98

predictions so that both datasets have the mean contact precision of top L/5 long-range 99

contacts the same as that of the PSICOV dataset, i.e. precision = 64%. On such 100

reduced datasets, the average TM-scores of the best-of-200 models for CASP11 and 12 101

proteins are 0.55 and 0.52 respectively, which are slightly lower than the mean TM-score 102

for PSICOV dataset (0.57). Since TM-score of 0.5 is the threshold if the topology of a 103

protein structure is correctly predicted, for all three datasets, it can be concluded that 104

the fold of single domain proteins can be reconstructed correctly (TM-score ≥ 0.5) on 105

average if the precision of predicted long-range contacts is at least 64%. Although the 106

sequence lengths of the domains in the CASP datasets are much higher than the 107

PSICOV-150 dataset, which have up to 500 residues, we did not find any substantial 108

correlation between the domain length and the reconstruction accuracy. 109

Conclusions 110

We have developed CONFOLD2, a method for building three-dimensional protein 111

models using predicted contacts and secondary structures. It explores the fold space 112

captured in predicted contacts by creating various subsets of predicted contacts and 113
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builds decoy sets, and then clusters the decoys to obtain top five models. CONFOLD2 114

is significantly better than the original CONFOLD method. Structure predictions using 115

some recently available contact prediction datasets, show that the for most protein 116

sequences CONFOLD2 is able to capture the structural fold of the protein. 117

Availability and requirements 118

Project name: CONFOLD2 119

Project home page: https://github.com/multicom-toolbox/CONFOLD2 120

Operating systems: Platform independent 121

Programming language: Perl 122
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(included), and DSSP (included) 124

License: GNU GPL 125

Any restrictions to use by non-academics: None 126
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