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Abstract	
Kinases	are	ubiquitous	enzymes	involved	in	the	regulation	of	critical	cellular	pathways	and	
have	been	implicated	in	several	cancers.	 	Consequently,	the	kinetics	and	thermodynamics	
of	prototypical	kinases	are	of	interest	and	have	been	the	subject	of	numerous	experimental	
studies.		In-silico	modeling	of	the	conformational	ensembles	of	these	enzymes,	on	the	other	
hand,	 is	 lacking	 due	 to	 inherent	 computational	 limitations.	 Recent	 algorithmic	 advances	
combined	 with	 homology	 modeling	 and	 parallel	 simulations	 allow	 us	 to	 address	 this	
computational	 sampling	 bottleneck.	 Here,	 we	 present	 the	 results	 of	molecular	 dynamics	
(MD)	studies	for	seven	Src	family	kinase	(SFK)	members	Fyn,	Lyn,	Lck,	Hck,	Fgr,	Yes,	and	
Blk.	We	 present	 a	 sequence	 invariant	 extension	 to	 Markov	 state	models	 (MSMs),	 which	
allows	 us	 to	 quantitatively	 compare	 the	 structural	 ensembles	 of	 the	 seven	 kinases.	 Our	
findings	 indicate	 that	 in	 the	 absence	 of	 their	 regulatory	 partners,	 SFK	 members	 have	
similar	in-silico	dynamics	with	active	state	populations	ranging	from	4-40%	and	activation	
timescales	in	the	hundreds	of	microseconds.	Furthermore,	we	observe	several	potentially	
druggable	intermediate	states,	including	a	pocket	next	to	the	ATP	binding	site	that	could	be	
potentially	 targeted	 via	 a	 small	molecule	 inhibitors.	 These	 results	 establish	 the	 utility	 of	
MSMs	for	studying	protein	families.	
	 	
	
Introduction	
	
Protein	 kinases	 are	 important	 pharmaceutical	 targets1,2	 due	 to	 their	 regulatory	 roles	 in	
biochemical	 pathways	 in	 eukaryotic	 cells3.	 They	 control	 a	 slew	 of	 signaling	 cascades	 by	
catalyzing	 the	 transfer	 of	 γ-phosphate	 from	 adenosine	 triphosphate	 (ATP)	 to	 target	
substrates4.	Kinases	are	thought	to	account	for	up	to	2%	of	all	encoded	genes5.	Given	their	
physiological	 role,	 kinase	 functionality	 within	 cells	 is	 tightly	 monitored.4,6	 Mutations,	
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truncation,	and	overexpression	of	kinases	have	been	phenotypically	linked	to	various	kinds	
of	cancers7–9,	viral	 infections10,	and	other	diseases11.	The	kinetics	and	thermodynamics	of	
several	 prototypical	 kinases	 such	 as	 protein	 kinase	 A	 (PKA)12,	 Src13–16,	 Abl6,17,18,	 EGFR19,		
and	 Aurora7	 kinases	 have	 been	 extensively	 studied	 by	 diverse	 experimental	 techniques	
including	 crystallography14,20,	 small	 angle	 X-ray	 scattering(SAXS)16,	 nuclear	 magnetic	
resonance(NMR)2.		
	
Members	of	the	Src	family	of	tyrosine	kinases	(SFK)	regulate	signal	transduction	of	cellular	
receptors9.	 They	 are	 ubiquitously	 expressed	 with	 several	 established	 oncogenic	
truncations	and	mutations9.	For	example,	Fyn	kinase	is	required	for	proper	cell	growth21.	
Aberrant	 Fyn	 signaling	 has	 also	 been	 implicated	 in	 the	 pathogenesis	 of	 Alzheimer's	
disease11,21	and	Dengue	virus	RNA	replication10.		
	
While	different	kinases	have	been	studied	via	a	range	of	experimental	methods,	there	is	a	
large	degree	of	variance	in	the	kinase	sequences	studied	and	the	methods	employed,	which	
makes	 it	 difficult	 to	 systemically	 compare	 these	observables.	However,	 to	 effectively	 and	
precisely	target	kinases	via	small	molecule	inhibitors	requires	inference	of	the	differences	
and	 similarities	 between	 their	 structural,	 thermodynamics,	 and	 kinetic	 behavior	 at	 the	
ensemble	 level.	 	Understanding	of	 the	 SFK’s	 solution	 structural	 ensemble	 is	 lacking.	 	 For	
example,	 human	 Fgr	 and	 Blk	 have	 no	 reported	 crystal	 structures,	 only	 a	 single	 crystal	
structure	has	been	reported	for	Fyn22,	and	two	for	the	human	Lyn	kinase	domain.	On	the	
other	 hand,	Hck	 and	 Src	 each	have	 close	 to	 or	more	 than	 ten	 structures	 available.	 	 Such	
heterogeneity	 makes	 it	 difficult	 to	 systemically	 compare	 SFK	 despite	 their	 similarities.	
Members	 of	 SFK	 share	 a	 common	 architecture	 which	 includes	 several	 regulatory	
domains20,23,	connected	to	the	catalytic	domain	via	a	linker	region.		The	catalytic	domain	is	
functionally	 active24	 in	 the	 absence	 of	 its	 regulatory	 partners,	 and	 form	 primary	 drug	
targets14.	 	 Therefore,	 we	 chose	 to	 focus	 our	 efforts	 on	 the	 catalytic	 domain.	 The	 SFK	
catalytic	domain	(Figure	1)	is	primarily	composed	of	a	beta-sheet-rich	N-lobe	and	an	alpha	
helical	 C-lobe.	 The	 lobes	 are	 connected	 via	 the	 Hinge	 (Figure	 1,	 yellow/gold)	 and	 the	
Activation	loop	(Figure	1,	A-loop,	red).	The	A-loop	contains	a	highly	conserved	Asp-Phe-Gly	
(DFG)	motif	that	can	be	either	pointing	towards	the	ATP	binding	site3	(DFG	in)	or	rotated	
away	(DFG	out).	Since	all	of	our	present	simulations	were	run	in	the	presence	of	ATP,	we	
only	 observed	 dynamics	 within	 the	 DFG	 in	 state.	 The	 adenine	 and	 ribose	 rings	 make	
hydrogen	bonds	and	van	der	Waals	contacts	with	the	Hinge	residues	while	the	phosphate	
moieties	 chelate	 two	 magnesium	 ions,3	 which	 in	 turn	 are	 ligated	 by	 multiple	 residues	
within	 the	binding	pocket.	The	N-lobe	also	contains	a	conserved	helix	called	 the	catalytic	
helix	 (Figure	 1	 ,C-helix,	 orange).	 Sequence	 and	 structural	 alignment25,26	 have	 further	
highlighted	the	presence	of	two	non-contiguous	structural	motifs	called	the	regulatory	(R)	
and	 catalytic	 (C)	 spines,	 which	 are	 required	 for	 stabilizing	 the	 active	 state.	 Sequence	
alignment	 has	 also	 revealed	 a	 conserved	 glycine-rich	 loop,	 or	 P-loop	 (	 Figure	 1,	 green),	
which	 connects	 the	 β1	 and	 β2	 strands14,27.	 The	 loop	 typically	 has	 the	 Gly-X-Gly-X-X-Gly	
sequence	where	X	indicates	a	random	amino	acid.	The	P-loop	interacts	with	the	phosphate	
groups	on	ATP25	to	position	the	gamma	phosphate	for	catalysis28.		
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While	 the	 deactivation	 pathways	 for	 Src1,24,29,	 and	 other	 select	 kinases2,6,18,19	 have	 been	
extensively	 studied	 in	 the	 last	 few	years,	 it	 remains	 to	be	 seen	whether	 the	deactivation	
pathways	 proposed	within	 these	 prototypical	 systems	 can	 be	 extended	 to	 other	 kinases.	
Computational	 studies	of	SFK	dynamics	 is	 challenging	due	 to	 the	prohibitive	 time-cost	of	
running	and	analyzing	milliseconds	of	atomistic	simulations30.	Although	a	 few	 large-scale	
molecular	dynamics	(MD)	studies1,15	have	been	performed,	these	have	generally	relied	on	
biased	 reaction	 coordinates	 for	 mapping	 the	 thermodynamic	 landscape	 of	 kinases1,31–33.	
While	 these	 methods	 could	 potentially	 allow	 for	 faster	 converged	 sampling,	 there	 is	 an	
inherent	 risk	 of	 biasing	 the	 simulation	 results	 towards	 unphysical	 transition	 paths34.	
However,	 given	 recent	work	 in	 the	 development	 of	 reaction	 coordinate	 free	 Accelerated	
Molecular	Dynamics	 (AMD)35,36	 combined	with	 the	 ability	 to	 run	many	unbiased	parallel	
simulations	 on	 distributed	 computed	 platforms37,38,	 we	 can	 now	 reach	 relevant	
timescales39	to	sample	the	kinase	conformational	landscape.	These	parallel	trajectories	can	
be	stitched	together	using	the	Markov	state	model	(MSM)	framework	to	provide	additional	
insight.		

	
Figure	1:	Starting	structures	for	the	Fyn	simulations	were	generated	from	a	Src-based	homology	model	corresponding	to	
the	 inactive	 state	 and	 a	 crystal	 structure	 of	 Fyn	 in	 its	 active	 state22.	 In	 the	 inactive	 state	 (a),	 the	A-loop(red)	 is	 folded	
forming	a	salt	bridge	between	Glu314	and	Arg413.	The	C-helix	(orange)	 is	rotated	outwards,	and	the	Hinge	(yellow)	 is	
open.	In	the	active	state	(b),	the	Hinge	closes	by	forming	backbone	hydrogen	bond	between	Met345	and	Gly348,	the	C-
helix	rotates	inwards	to	form	new	contact	between	Glu314	and	Lys299	and	complete	the	hydrophobic	R-spine	(purple),	
and	 the	 A-loop	 is	 unfolded.	 (c)	 and	 (d)	 show	 atomistic	 details	 of	 these	 transitions.	 ATP	 and	 Mg	 ions	 have	 not	 been	
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rendered	 for	 the	 sake	of	 clarity.	 Secondary	 structure	was	 assigned	using	dictionary	of	 secondary	 structure	 in	proteins	
(DSSP)40.	The	color	scheme	shown	here	is	extended	unto	the	rest	of	the	paper.	

	
Previous	 MD	 studies	 on	 other	 kinases9,13,16,25,27,32,41,42	 point	 to	 a	 large	 conformational	
change	 that	 requires	breaking	of	 a	 conserved	Glu-Lys	 salt	 bridge,	 rotation	of	 the	C-helix,	
folding	of	the	Activation	loop	(A-loop),	and	misalignment	of	regulatory	and	catalytic	spines	
to	 form	 an	 inactive	 state.	 However,	 the	 consistency	 of	 the	 transition	 paths	 across	 the	
kinome	and	the	differences	in	the	accessible	energy	landscapes	for	different	kinases	remain	
unanswered.	 Differences	 in	 pathways	 and	 energy	 landscapes	 are	 central	 to	 the	 rational	
design	 of	 selective	 type	 I,II	 and	 III	 inhibitors2,43	 that	 select	 for	 potentially	 unique	
intermediate	or	inactive	kinase	states	rather	than	the	putative	active	crystal	conformation.	
To	 answer	 these	 questions	 within	 the	 context	 of	 the	 SFKs,	 we	 started	 by	 sampling	 the	
entire	 deactivation	 pathway	 for	 Fyn	 starting	 from	 a	 single	 crystal	 structure22	 and	 a	
homology	model	 of	 the	 inactive	 catalytic	 domain	 for	 Src4,13(see	Methods	 for	 details).	We	
next	used	the	MD	generated	Fyn	dataset	to	start	thousands	of	new	MD	trajectories	for	six	
other	members	of	SFK,	Lyn,	Lck,	Hck,	Fgr,	Yes,	and	Blk.	Ultimately	we	collected	over	5.7ms	
(Supporting	Figure	3)	of	aggregate	MD	data	on	the	Folding@home	distributed	computing	
platform37.The	 aggregate	 simulation	 time	 was	 necessary	 to	 accurately	 capture	 slow	
conformational	transitions	(C-helix	rotation,	A-loop	folding),	and	their	relative	kinetics	(~	
100𝑠	𝜇𝑠)	and	thermodynamics	across	the	7	sequences.		
	
To	analyze	this	data,	we	created	a	multiple	sequence	extension	to	MSMs44–47(	see	Methods	
for	 details),	 utilizing	 state-of-the	 art	 dimensionality	 reduction48,	 model	 selection49,	 and	
model	 interpretation50	procedures	(Supporting	Figures	1-2)	 from	Machine	Learning	(ML)	
literature.	 The	 multi-sequence	 extension	 to	 MSMs	 allowed	 us	 to	 explicitly	 compare	 the	
thermodynamics	 and	 kinetics	 across	 the	 7	 sequences.	 Our	 simulations	 reveal	 that	 in	 the	
absence	of	their	regulatory	domains,	the	members	of	the	SFK	catalytic	subunit	have	active	
populations	 ranging	 from	 4-40%	 and	 exchange	 timescales	 on	 the	 order	 of	 hundreds	 of	
microseconds.	We	identified	several	catalytically	inactive	intermediate	states	and	describe	
the	transition	pathways	that	separate	active	from	inactive	states	in	an	effort	to	gain	insight	
into	 the	 atomistic	 underpinnings	 of	 the	 SFK	 kinase	 domain	 regulatory	 mechanism.	
Furthermore,	we	hope	an	enhanced	picture	that	connects	structural	with	functional	details	
can	set	the	stage	for	inhibitor	design	strategies	that	i)	can	take	advantage	of	intermediate	
states	with	druggable	pockets,	and	ii)	also	allow	allosteric	inhibition	and	inducible	pocket	
strategies	 to	 be	 conceived.	 We	 will	 begin	 our	 paper	 by	 first	 delineating	 the	 common	
activation	pathway	across	 the	sub-family,	 focusing	on	Fyn,	before	delving	 into	 the	rest	of	
the	 sub-family.	 We	 are	 choosing	 to	 focus	 on	 single	 sequence	 because	 our	 individual	
analysis	indicated	that	several	members	had	qualitatively	similar	activation	dynamics.		
	
Results:	
ATP	bound	Fyn’s	samples	a	kinome	wide	“DFG	in”	conformational	landscape	
In	order	to	quantify	the	structural	heterogeneity	within	our	ATP	bound	Fyn	MD	dataset,	we	
compared	 our	 results	 (Figure	 2)	 against	 the	 kinome-wide	 classifications	 scheme	 of	
Möbitz51.	 In	 that	 work,	 the	 author	 classified	 several	 thousand	 kinase	 crystal	 structures	
based	 upon	 the	 positioning	 of	 conserved	 DFG	 (Asp408-Gly410)	 and	 C-helix	 Glu314	
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residues.	 Our	 simulations	 (Figure	 2a)	 predict	 that	 the	 ATP	 bound	 “DFG	 in”	 Fyn	 kinase	
samples	a	kinome	wide	distribution	(Figure	2b).	However,	the	“DFG	out”	(Figure	2	bottom	
panel)	 state	 is	 inaccessible	 due	 to	 the	 presence	 of	 ATP.	 This	 result,	 combined	 with	 our	
previous	 work	 on	 the	 apo	 BTK42	 catalytic	 domain,	 suggests	 that	 protein	 kinases	 likely	
possess	 a	 conserved	 conformational	 landscape,	 modulated	 via	 the	 exact	 sequence,	 post-
translational	 modifications,	 and	 the	 presence	 of	 nucleotides,	 binding	 partners	 and	
substrates.	 It	also	shows	how	MD	 is	 increasingly	capable	of	predicting	pharmacologically	
relevant	unseen	states	that	have	only	been	previously	observed	in	related	members	of	the	
super-family.		
	

	
Figure	2:	Comparison	of	Fyn	MD	dataset,	subsampled	to	1ns,	against	the	kinome	wide	conformational	diversity	
reported	by	Möbitz	et	al51.	We	used	the	data	and	classification	scheme	provided	in	ref.	51	to	generate	panel	b.	The	
bottom	y-coordinate	tracks	the	“DFG	in”	to	“DFG	out”	transition	while	the	top	y	coordinate	tracks	the	C-helix	in	to	
C-helix	out	transitions.	Note	that	the	“DFG	out”	state	is	inaccessible	while	ATP	is	bound	to	the	kinase.	The	x-axis	
separates	 the	 structures	 along	 various	 positions	 of	 the	 DFG	 motif.	 The	 white	 and	 red	 circles	 represent	 the	
starting	 active	 (2DQ7)	 crystal	 structure	 and	 inactive	 homology	 model	 states.	 For	 more	 details	 regarding	 the	
coloring	see	Supporting	Note	1.	For	the	free	energies	along	these	coordinates,	see	Supporting	Figure	13.	

	
Simulations	suggest	a	step-wise	activation	pathway	across	the	Src	sub-family	
In	 order	 to	 understand	 the	 universality	 of	 the	 kinase	 activation	 pathway,	 we	 began	 by	
simulating	 the	 atomistic	 dynamics	 of	 Fyn	 kinase’s	 catalytic	 domain.	 We	 connected	 the	
active	 Fyn	 PDB	 (RCSB	 id	 2DQ7)22	 to	 a	 homology	 model52	 of	 the	 Src-like	 inactive	 state	
(Sequence	 identity	 85%)	 via	 MD.	 This	 required	 approximately	 6	 microseconds	 of	
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accelerated	molecular	 dynamics	 (AMD)	 to	 find	 seed	 structures	 followed	by	 an	 aggregate	
1500	microseconds	of	 sampling	on	 the	Folding@home37	distributed	 computing	platform.	
Since	 neither	 AMD	 nor	MD	 requires	 pre-specifying	 a	 reaction	 coordinate35,53,	 we	 do	 not	
expect	 homology	 modeling	 of	 the	 inactive	 state	 to	 bias	 our	 dynamics.	 The	 resulting	
trajectories	 were	 analyzed	 by	 time-structure	 based	 independent	 component	 analysis	
(tICA)48	and	MSMs44,45.	tICA	is	a	dimensionality	reduction	technique	designed	to	find	a	set	
of	minimally	 overlapping	 linear	 combinations	 of	 the	 input	 features,	 such	 as	 dihedrals	 or	
inter-residue	distances,	 that	de-correlate	 the	slowest48.	The	dominant	components,	called	
tICs,	 are	 one	 dimensional	 projections	 of	 large	 scale	 and	 slow	 protein	 conformational	
change	(Supporting	Figure	4).	tICA	is	used	as	a	dimensionality	reduction	step	in	MSMs	for	
defining	 a	 kinetically	 motivated	 clustering	 metric.	 The	 clustering	 metric	 defines	 a	 state	
space	which	 is	 then	 used	 as	 input	 for	 the	MSM.	MSMs	 are	models	 of	 dynamic	 processes	
defined	over	a	set	of	protein	states	and	the	transition	probabilities	connecting	them44,45.		
	
Within	our	Fyn	MSM	 (Figure	3),	Hinge	 closing	 is	highly	 coupled	 to	 activation	 (Figure	3c,	
yellow	 vs.	 orange	 trace,	 respectively).	 In	 the	 Src-like	 inactive	 state27,54,55	 (Figure	 3a,	 Src-
like),	 the	 A-loop	 is	 folded	 (Figure	 3c,	 red),	 the	 C-helix	 is	 rotated	 outwards	 (Figure	 3c,	
orange)	 forming	 a	 Glu314-Arg413	 salt	 bridge,	 and	 the	Hinge	 is	 open.	 The	 open	Hinge	 is	
characterized	by	 a	broken	hydrogen	bond	 (Figure	3c,	missing	 yellow	 trace)	between	 the	
backbone	carbonyl	and	amide	groups	of	Met345	and	Gly348.	Closing	of	the	Hinge	(Figure	
3c,	yellow	trace	starting	at	~90	µs	mark),	pushes	the	kinase	to	an	ensemble	of	intermediate	
states	 (Figure	 3a,	 I1)	 that	 has	 a	 closed/formed	 Hinge,	 an	 unstructured	 A-loop,	 and	 an	
outward	rotated	C-helix.	Starting	from	these	intermediates,	the	C-helix	can	rotate	inwards	
to	form	a	conserved	Glu314-Lys299	salt	bridge	(Figure	3a,	Active).		This	Glu-Arg	to	Glu-Lys	
switching	mechanism	has	been	observed	in	active	and	inactive	crystal	structures1,13–15,33,56	
but	 the	 intermediate	 has	 only	 been	 computationally	 observed1,13.	Within	 our	 simulation	
set,	 we	 observed	 several	 large-scale	 activation	 or	 deactivation	 events	 with	 several	
trajectories	spontaneously	rotating	the	C-helix	in	and	out	(Supporting	Figure	5-6).		
	
In	particular,	the	intermediate	state	(Figure	3a	I1,	Supporting	Figure	7)	observed	within	our	
ensemble	 is	 different	 from	 either	 of	 the	 starting	 active	 (2DQ7)	 and	 inactive	 homology	
model	states.	 In	 this	state,	 the	Hinge	 is	closed,	 the	C-helix	 is	 rotated	outwards	but	 the	A-
loop	 is	 relatively	 unstructured	 and	 samples	 a	 range	 of	 conformations1.	 The	 outward	
rotation	 of	 the	 C-helix	 opens	 up	 a	 pocket	 between	 the	 ATP	 binding	 site	 and	 the	 C-helix	
(Supporting	 Figure	 10)	 that	 presents	 itself	 as	 a	 putatively	 druggable	 site	 for	 the	 design	
novel	 allosteric	Fyn	 inhibitors	 (Supporting	Figure	10)	–	not	 too	dissimilar	 from	previous	
observations	that	were	made	in	the	context	of	Src1.		
	
The	activation	process	is	accompanied	by	the	alignment	of	two	hydrophobic	spines25,26,	the	
Catalytic	spine	(C-spine;	Val285,	Ala297,	Leu397,	Ile396,	Val398,	Leu350,	Leu455,	Leu459,	
and	ATP)	and	the	Regulatory	spine	(R-spine;	Leu329,	Met318,	Phe409,	His388).	These	non-
contiguous	structural	motifs	are	aligned	in	the	kinase	active	state.	The	C-spine	is	broken	by	
the	movement	of	ATP’s	adenine	and	ribose	rings	 towards	 the	protein	core15	while	 the	R-
spine	is	disrupted	by	movement	of	the	C-helix	away	from	the	core	(Figure	1),	leading	to	a	
displacement	 of	 Met318	 and	 Phe409.	 Lastly,	 activation	 correlates	 with	 a	 change	 in	

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2017. ; https://doi.org/10.1101/228528doi: bioRxiv preprint 

https://doi.org/10.1101/228528
http://creativecommons.org/licenses/by/4.0/


7	
	
	

positioning	 of	 the	 glycine	 rich	 P-loop	 (Figure	 3c,	 green	 trace).	 Though	 both	 ensembles	
occupy	the	opposing	configurations,	our	simulations	find	that	the	inactive	ensemble	favors	
a	closed	P-loop	configuration	whilst	the	active	ensemble	favors	the	open	(	Figure	3c)	state.			
	

					
Figure	3	:	Activation	is	a	concerted	process.	Model	for	Fyn	kinase	starting	from	the	Src-like	inactive	state	(1)	and	ending	in	
the	active	state	(3).	(a)	In	the	Src-like	state,	the	Hinge	is	broken	the	kinase	is	inactive,	and	the	A-loop	folds	into	a	double	
helix.	 	In	the	Hinge	formed	states	(2-3),	the	kinase	can	be	active	(3)	or	sample	other	catalytically	inactive	intermediates	
(2).	 (b).	 Projection	 of	 the	 Fyn	 ensemble	 onto	 the	 Glu314-Lys299	 distance	 reaction	 coordinate	 gives	 us	 the	
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thermodynamics,	showing	an	appreciable	active	(3)	state.	The	dashed	line	(Supporting	figure	7)	indicates	the	cutoff	used	
to	 define	 the	 active	 state	 and	 the	 lighter	 band	 indicates	 distributions	 calculated	 via	 200	 rounds	 of	 bootstrapping.	 (c)	
Kinetics	of	several	molecular	switches	as	 inferred	by	a	simulated	270	𝝁𝒔	Monte	Carlo	MSM	trajectory	(see	methods	 for	
details).	The	traces	show	variation	of	several	key	order	parameters.	(i)	Projection	of	the	trajectory	unto	the	dominant	tIC.	
The	1st	tIC	captures	the	Hinge	closing	and	A-loop	dynamics.	The	black	dashed	line	corresponds	to	the	structures	plotted	in	
(a).	(ii)	The	second	panel	shows	the	R-spine	RMSD.	(iii)	The	third	panel	shows	the	hydrogen	bond	distance	between	the	
backbone	atoms	of	Hinge	residues	M345	and	G348.	Missing	values	 indicate	the	absence	of	a	hydrogen	bond,	calculated	
according	 to	 the	 Baker	 Hubbard	 criterion57.	 (iv)	 The	 fourth	 panel	 traces	 the	 RMSD	 of	 A-loop	 heavy	 atoms	 (residue	
Lys405-Gln424).	 (v)	 The	 fifth	 panel	 shows	 the	 distance	 between	 residues	 Glu314	 (Delta	 Carbon)	 and	 Lys299	 (Zeta	
Nitrogen).	 Larger	 values	 indicate	 outward	 swing	 of	 the	C-helix.	 (vi)	 The	 last	 panel	 shows	 the	 RMSD	 of	 the	P-loop.	All	
RMSDs	are	calculated	using	 the	heavy	atoms	and	are	 in	reference	 to	 the	active	structure.	The	colors	correspond	to	 the	
structural	features	labeled	in	Figure	1	and	darker	colors	in	(c)	indicate	moving	averages	across	10	frames.		

Active	and	inactive	states	are	similarly	populated	
In	order	to	gain	insight	into	Fyn’s	thermodynamics,	we	projected	the	Fyn	ensemble	onto	a	
simplified	 reaction	 coordinate	 (Figure	 3b,	 Supporting	 Figure	 8)	 measuring	 the	 contact	
distance	 between	 the	 SFK	 conserved	 C-helix	 Glu314	 and	 catalytic	 Lys299	 residues	
(numbering	corresponds	 to	Fyn).	Our	analysis	 indicates	 that	 the	active	state	 is	 similar	 in	
population	 to	 the	 inactive	state	 (Figure	3)	 in	 the	Fyn	ensemble	 (Pactive	~39*+,-	%).	The	sub	
and	 superscript	 represent	 25th	 and	 75th	 percentiles	 as	 calculated	 via	 200	 rounds	 of	
bootstrapping	 (see	 Methods	 for	 details,	 and	 Figure	 4	 and	 Supporting	 Figure	 9	 for	 the	
complete	distribution).		The	active	state	population	within	our	model	is	consistent	with	the	
hypothesis	 that	 the	 kinase	 regulatory	 domains	 (SH2	 and	 SH3)	 are	 required	 to	 regulate	
SFK13,27	 kinases,	 and	 their	 removal	 leads	 to	 a	 higher	 active	 population.	 The	 appreciable	
active	 population	 (Figure	 3)	 within	 our	 model	 also	 helps	 to	 potentially	 explain	 the	
experimental	 phosphorylation	 patterns	 of	 SFKs.	 SFKs	 require	 phosphorylation	 of	 a	 key	
tyrosine	residue	(Tyr420)	in	the	activation	loop	(A-loop)	for	activation27,55.	While	we	were	
unable	 to	 find	 phosphorylation	 data	 for	 Fyn	 for	 a	 direct	 comparison	 to	 our	 model,	
phosphorylation	was	 shown	 to	 have	 a	minimal	 effect	 upon	 Src,	 featuring	 an	 increase	 in	
activity	 of	 only	 about	 1.5-2.5x58–60.	 In	 contrast,	 phosphorylation	 increases	 the	 active	
population	 in	 non-SFK	 extracellular	 signal	 regulated	 kinase	 2	 (ERK2)	 by	 three	 orders	 of	
magnitude61.		We	predict	Fyn	to	behave	similarly	to	Src	given	their	85%	sequence	identity	
and	the	results	of	our	un-phosphorylated	simulations.	This	increase	in	activity	is	consistent	
with	a	thermodynamic	landscape	featuring	an	appreciably	active	minimum	that	is	robust	to	
phosphorylation	(characterized	by	population	shifts	of	less	than	an	order	of	magnitude	or	
1	kcal/mol).	 These	 small	 shifts	 in	 active	 population	 are	 expected	 to	 result	 in	 relatively	
minor	increases	in	observed	chemical	activity.		
	
To	gain	insight	into	Fyn’s	activation	kinetics,	we	calculated	the	distribution	for	the	median	
time	required	 to	 “travel”	 to	a	 set	of	active	states	 (Figure	3,	Supporting	Figure	7)	 starting	
from	the	Src-like	inactive	states	(Supporting	Figure	7).	According	to	our	model,	the	median	
value	 for	Fyn’s	mean	 first	 passage	 time	 to	 either	of	 its	 active	or	 inactive	 states	 is	 on	 the	
hundreds	 of	microsecond	 timescale	 (Figure	 4b,	 Supporting	 Figure	 9).	 Such	 exceptionally	
high	 timescales	 make	 it	 difficult,	 even	 with	 millisecond	 scale	 simulations,	 to	 provide	
reliable	 kinetic	 estimates.	 Accordingly,	 we	 can	 only	 conservatively	 estimate	 that	 the	
exchange	timescales	are	on	the	micro	to	millisecond	timescale.		
Similar	to	previous	experimental	work	on	protein	kinase	A62,	ERK261,	p3862,	and	Src63,	the	
concerted	 conformational	 change	 predicted	 by	 our	 simulations	 is	 likely	 to	 display	 NMR	
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signature.	 In	 particular,	 our	 MSM	 is	 highly	 consistent	 with	 the	 Src	 study63	 where	 the	
authors	 experimentally	 showed	 that	 Src’s	 catalytic	 domain	 exists	 in	 at	 least	 two	
conformational	states	in	solution.	The	major	and	minor	conformational	state	exchange	on	
the	 micro	 to	 millisecond	 timescales	 and	 are	 related	 via	 hinge	 motion.	 Similar	 to	 their	
experimental	data,	our	simulations	also	predict	a	two	state	hinge	behavior	with	the	hinge	
formed	 states	 having	 a	 higher	 free	 energy	 (<1-2kcal/mol)	 relative	 to	 the	 hinge	 broken	
states.	The	hinge	formed	states	can	be	further	divided	into	the	active	and	intermediate.	We	
predict	that	similar	experiments	on	Fyn	can	be	used	to	probe	the	multi-state	behavior	for	
the	 the	salient	 features	of	our	activation	model,	 including	allosteric	coupling	of	 the	hinge	
residues	to	the	rest	of	the	kinase.		
	
High	sequence	identity	leads	to	similar	in-silico	functional	dynamics	
In	order	to	build	a	single	model	for	Src	sub-family,	we	ran	new	simulations	for	several	SFK	
members.	To	 that	end,	we	extracted	several	hundred	structures	 from	our	Fyn	simulation	
set,	built	homology	models	of	 the	human	sequences	 for	 six	SFK	members	 (Lyn,	Lck,	Hck,	
Fgr,	Yes,	and	Blk),	and	docked	ATP	+	magnesium	ions	into	each	ATP	binding	site	(Figure	1).	
This	 large	 pool	 of	 configurations	 allowed	 us	 to	 seed	 simulations	 from	high	 and	 low	 free	
energy	regions	in	the	kinase	state	space,	enabling	faster	convergence	of	sampling44,64.	We	
furthermore	 validated	 the	 active	 and	 inactive	 homology	 models	 by	 comparing	 them	 to	
known	 crystallographic	 states	 (Supporting	 Figure	 11).	 Based	 on	 their	 high	 sequence	
similarity	 with	 Fyn	 (Supporting	 Note	 1,	 Figure	 4a),	 we	 conjectured	 that	 these	 systems	
would	be	expected	to	display	similar	dynamics.		
		
A	set	of	MD	simulations	was	carried	out	 for	each	of	these	kinase	systems,	resulting	in	six	
sets	of	trajectories	with	an	aggregate	sampling	of	4	ms.	A	separate	MSM	was	built	for	each	
of	 the	 six	 kinase	 domains,	 utilizing	 an	 identical	 set	 of	 clustering	 definition.	 This	 single	
domain	decomposition	allowed	us	to	explicitly	compare	the	thermodynamics	and	kinetics	
of	Fyn,	Lyn,	Lck,	Hck,	Fgr,	Yes,	and	Blk,	the	results	of	which	are	distilled	into	Figure	4.	
	
Collectively,	within	the	1kcal/mol	restraints	of	modern	force	fields,	our	simulations	suggest	
that	 the	 free	 energy	 differences	 between	 active	 and	 inactive	 ensembles	 fall	 within	 1-
2	kcal/mol	 across	 all	 sequences	 (Figure	 4a	 and	 Supporting	 figure	 7-8),	with	 active	 state	
populations	ranging	from	2/.1* 	%	for	Lyn	to	13-+3	%	for	Hck	to	39*+,-	%	for	Fyn.	As	before,	the	
sub-	 and	 superscript	 represent	 25th	 and	 75th	 percentiles	 as	 calculated	 via	 200	 rounds	 of	
bootstrapping	 (see	 Figure	 4	 and	 Supporting	 Figure	 9	 for	 the	 complete	 distribution).	 The	
active	 states	 of	 both	 Fyn	 and	 Hck	 kinase	 domains	 are	 characterized	 by	 elevated	
populations,	 which	 is	 qualitatively	 consistent	with	 experimental	 evidence	 that	 both	 full-
length	kinases	display	higher	specific	activities	when	compared	to	Lyn65.		
	
A	 kinetics	 analysis	 for	 all	 six	 kinases	 (Figure	 4b)	 shows	 that	 similar	 to	 Fyn,	 all	 six	 SFK	
members	display	activation	timescales	(Figure	4b,	blue	boxes)	on	the	order	of	milliseconds	
and	deactivation	 timescales	 (Figure	4b,	 green	boxes)	on	 the	order	of	100-1000	µs.	While	
the	 distributions	 show	 overlap,	 for	 most	 of	 the	 simulated	 sequences,	 deactivation	 was	
faster	than	activation	except	for	Fyn	and	Hck	(Figure	4b).	The	asymmetric	timescales	are	
consistent	with	 the	presence	of	a	slightly	higher	 free-energy	active	state	(Figure	4a).	The	
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higher	 free	 energy	 state	 indicates	 that	 phosphorylation	might	 be	 required	 for	 complete	
kinase	 activation.	 The	 slower	 Fyn	 and	 Hck	 deactivation	 is	 consistent	 with	 their	 higher	
observed	experimental	activities.	Therefore,	while	we	can	predict	 that	SFK	will	 exchange	
on	the	hundred	microsecond	to	millisecond	timescale,	more	precise	kinetic	predictions	will	
likely	require	simulations	on	the	order	of	tens	to	hundreds	of	milliseconds.				
	

	
Figure	4:	The	catalytic	domains	of	SFK	members	sample	several	macrostates	with	active	states	being	within	2kcal/mol	of	
the	inactive	state.	(a)	Boxplot	distributions	for	the	active	state	populations	for	all	7	proteins.	We	used	a	consistent	MSM	
basis	to	allow	for	direct	comparisons	across	the	sequences.	See	Supporting	Figure	8,	for	projections	along	the	activation	
coordinate.	The	bracketed	numbers	correspond	to	sequence	 identity	 to	Fyn.	 (b)	Boxplot	distribution	 for	activation	and	
deactivation	bootstrapped	mean	first	passage	time	(MFPT)	for	all	7	proteins.	We	used	the	same	set	of	starting	and	ending	
states	for	the	calculations,	though	not	all	states	are	accessible	for	the	varying	sequences.	The	box	plot	box	shows	the	25th	
and	 75th	 quartiles	 while	 the	 whiskers	 show	 the	 rest	 of	 the	 distribution.	 Outliers	 (defined	 as	 being	 1.5x	 outside	 the	
quartile	 values)	 are	 shown	 as	 individual	 points.	 All	 timescales	 >	 10**5	 (0.26%)	 were	 discarded.	 (c)	 Frames	 showing	
representative	 active	 and	 inactive	 states	 used	 for	 the	 calculation	 in	 3a	 and	 3b.	 See	 Supporting	 Figure	 7	 for	 the	 exact	
definition	of	the	active	and	inactive	states,	and	Supporting	Figure	9	for	the	future	statistical	validation.	ATP	and	Mg	have	
not	been	rendered	for	sake	of	clarity.		

Conclusions:	
Unbiased,	 multi-millisecond	 MD	 dynamics	 of	 seven	 SFK	 members	 presented	 here	 have	
provided	 us	 with	 detailed	 atomistic	 insight	 into	 their	 collective	 activation	 mechanisms,	
revealing	the	prominence	of	Hinge	motion	for	activation.	Our	simulations	indicate	that	SFK	
sample	a	conserved	free	energy	landscape	which	has	been	previously	only	observed	at	the	
kinome	level51,66.	Furthermore,	the	activation	process	further	correlates	with	dampening	of	
dynamics	within	the	P-loop,	in	addition	to	large	scale	conformational	changes	involving	the	
C-helix	and	A-loop.	Our	Fyn	MSM	suggests	that	the	catalytic	domain,	 in	the	absence	of	 its	
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regulatory	 partners,	 has	 a	 measureable	 active	 state	 and	 contains	 several	 catalytically	
inactive	intermediate	and	inactive	states.			
	
We	present	 an	 extension	 to	 traditional	MSMs	built	 on	 top	 of	 a	 set	 of	 sequence	 invariant	
feature	 space.	 The	 joint	 phase	 space-decomposition	 allows	 for	 a	 comparative	 analysis	 of	
the	kinetics	and	thermodynamics	across	the	entire	sub-family.	Our	calculations	predict	that	
the	 active	 state	 is	 within	 1-2	 kcal/mol	 of	 the	 inactive	 ensemble,	 and	 that	 activation	 is	
slower	than	deactivation	across	the	entire	sub-family.	The	transitions	between	active	and	
inactive	 states	 proceed	 through	 a	 number	 of	 intermediate	 conformations	 that	 offer	 new	
opportunities	for	the	design	of	kinase	subfamily	specific	inhibitors.	
	
While	we	 have	 chosen	 to	 look	 at	 the	 conserved	 dynamics	within	 the	 current	 dataset,	 an	
interesting	 complementary	 extension	might	 involve	 looking	 at	 the	 dynamics	 of	 the	 non-
conserved	 residues	 in	 an	 effort	 to	 elucidate	 differences	 within	 the	 SFK	 family.	 More	
intriguingly,	 our	 methodology	 raises	 opportunities	 for	 creating	 a	 single	 kinome-wide	
model,	allowing	researches	to	compare	and	contrast	the	thermodynamic	and	kinetic	effects	
of	 sequence	 changes,	 oncogenic	mutations,	 and	PTMs	 to	 a	 given	baseline.	 Such	unbiased	
comparative	structural	modeling	can	aid	in	the	creation	of	new,	specific	and	potent	kinase	
inhibitors	or	perhaps	even	creating	personalized	medicines	conditioned	upon	the	patients’	
genome.	
	
	 	
Methods:	
Initial	Setup	and	homology	modeling:	
The	 crystallographic	 coordinates	 of	 Fyn	 kinase	 were	 downloaded	 from	 the	 protein	
databank	 (id:	2DQ7)22.	The	staurosporine	drug	and	crystallographic	waters	were	deleted	
from	 the	pdb	 file	 leaving	 just	 the	protein	 coordinates.	 The	 structure	was	mutated	 to	 the	
human	WT	sequence	using	Modeller	(ver.	9.1).	VMD	(ver.	1.9)67	was	used	to	add	adenosine	
tri	phosphate(ATP)	to	the	structures	using	 	the	Src1	structure	as	the	template.	Modeller52	
was	 further	used	to	build	 the	Fyn’s	 inactive	structure	(with	ATP)	using	the	 inactive	c-Src	
structure(id:	2SRC)1,13,16	as	a	template.		Hydrogen	atoms	were	added	to	both	the	active	and	
inactive	structure	using	the	t-leap	module	contained	with	the	Amber	tools	(ver.	14)	suit.68–
70	Both	the	systems	were	solvated	in	a	water	box	with	10	Å	padding	on	all	side.	Chloride	
and	 sodium	 ions	 were	 added	 to	 neutralize	 the	 charge	 and	 set	 up	 the	 final	 ionic	
concentration	 to	 150mM.	 The	 Amber99sb-ildn71	 force	 field	 was	 used	 to	 model	 protein	
dynamics	 in	 conjunction	 with	 	 the	 TIP3P72	 water	 model	 and	 Amber	 ATP	 and	 Mg	
parameters73.		
	
Simulation	Details:	 	
All	production	runs	for	the	initial	accelerated	dynamics35	and	regular	molecular	dynamics	
simulations	 were	 run	 at	 a	 pressure	 of	 1	 atm	 and	 temperature	 of	 300K.	 The	 Langevin	
integrator	with	a	friction	coefficient	of	1/ps	and	a	2fs	time	step	were	used.	A	Monte	Carlo	
barostat	with	an	interval	of	25	frames	was	used	to	maintain	the	pressure	at	1ATM.	Frames	
were	 saved	every	100ps	unless	otherwise	 specified.	Long-range	electrostatics	were	dealt	
with	 using	 the	 Particle	 mesh	 Ewald74	 algorithm	 with	 a	 8Å	 	 cutoff	 for	 the	 accelerated	
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molecular	 dynamics	 simulation	 and	 a	 10Å	 cutoff	 for	 the	 production	 runs	 on	
Folding@home37.	All	simulations	were	equilibrated	for	1ns	before	production	runs	unless	
specified	otherwise.	
	
	
Accelerated	Molecular	Dynamics	Simulations:	
To	 obtain	 a	 large	 number	 of	 diverse	 initial	 starting	 structures,	 accelerated	 molecular	
dynamics	 (AMD)35	 was	 run	 on	 both	 the	 active	 and	 the	 inactive	 starting	 structures	 until	
partial	 deactivation	 and	 activation	were	 observed	 respectively	 (~6	 μs)	 as	monitored	 via	
progress	on	the	two	dimensional	reaction	coordinate	defined	using	the	partial	unfolding	of	
the	A-loop	and	swinging	of	the	C-helix.	For	the	accelerated	dynamics,	a	boost	was	applied	
to	 the	 dihedrals	 of	 the	 system	 with	 an	 energy	 threshold	 of	 3900-4500kcal/mol	 and	 an	
alpha	 parameter	 value	 of	 160-210.	 1005	 structures	 were	 randomly	 pulled	 from	 the	
resulting	 trajectories	 to	 seed	 simulation	 on	 the	 Folding@Home37	 distributed	 computing	
platform.		
	
Production	MD	Simulations:	
The	 1005	 randomly	 pulled	 structures	 from	 the	 AMD	 trajectories	 were	 re-solvated	 and	
minimized	as	described	above	using	the	Amber	Tools	suite68.	The	resulting	Amber	topology	
and	input	coordinates	were	read	into	OpenMM(	ver.	6.3-7.1)75	for	production	runs	on	FAH.	
1.53ms	of	combined	dynamics	were	obtained	in	three	stages	(project	id	9101-9102,	9162)	
consisting	of	 approximately	 equal	 sampling.	The	 later	 stages	 involved	 sampling	 from	 the	
lowly	populated	states.			
	
SFK	homology	modeling	and	Production	MD	simulation:	
For	Lyn,	Lck,	Hck,	Fgr,	Yes,	and	Blk	kinase	simulations,	we	sampled	1000	structures	from	
the	Fyn	kinase	dataset	and	homology	modeled	the	human	sequence	onto	those	structures.	
ATP,	Mg	 ions,	water	 and	 counter	 ions	were	 added	 as	 before.	We	 used	 the	 same	 protein	
force	 field	 and	water	models,	 and	 equilibrated	 the	models	 using	 the	 protocol	 described	
above.	 For	 production	MD	 simulations,	 we	 again	 employed	 a	 similar	 protocol	 but	 saved	
trajectory	frames	every	200ps	to	save	disk	space.			
	
	
Markov	state	model:	
Before	model	building,	all	7	datasets	were	subsampled	to	1ns	to	allow	for	faster	analysis.	
Building	 an	 MSM	 requires	 identification	 of	 metastable	 kinetically	 close	 conformational	
states.	This	splitting	of	 the	accessible	phase	space	 is	 followed	by	counting	 the	 transitions	
between	 those	 states	 as	 observed	 in	 our	 trajectories	 at	 a	 Markovian	 (memory	 free)	 lag	
time.	 After	 sampling,	 a	 total	 of	 13343	 trajectories	 (across	 7	 sequences)	were	 vectorized	
using	a	 common	set	of	1081	protein	 contacts.	This	was	done	by	 calculating	all	 pair	wise	
contacts	 for	 residues	 W264,	 E265,	 G280,	 F282,	 G283,	 V285,	 W286,	 V296,	 K299,	 M306,	
F311,	L312,	E314,	A315,	M318,	K319,	L321,	L326,	L329,	A331,	E336,	H388,	R389,	D390,	
L391,	 D408,	 F409,	 G410,	 L411,	 A412,	 R413,	 I415,	 D417,	 E419,	 Y420,	 G425,	 K427,	 F428,	
K431,	E436,	G441,	K446,	S451,	T461,	P466,	C491,	and	P511.	The	residue	numbering	here	
corresponds	 to	 Fyn’s	 and	 we	 used	 equivalent	 contact	 distances	 across	 all	 proteins.	 The	
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Supporting	Information	contains	a	sequence	alignment	that	was	used	for	this	purpose.	Our	
method	 is	 completely	 generic	 and	 can	 be	 extended	 to	 many	 proteins.	 For	 new	 set	 of	
systems,	we	recommend	first	performing	a	sequence	alignment	and	then	using	a	conserved	
set	 of	 residues	 to	 define	 the	 feature	 basis.	 Care	 must	 be	 taken	 if	 some	 sequences	 have	
insertions	or	deletions	since	that	would	preclude	the	use	of	certain	backbone	dihedrals	as	
features.	We	note	that	the	open	source	software	MSMBuilder	implements	a	range	of	utility	
functions	that	make	this	task	easier.				
	
The	 featurized	 trajectories	 were	 then	 transformed	 using	 time	 structure	 independent	
component	analysis	(tICA)48.	tICA	seeks	to	find	a	set	of	linear	combinations	of	features	that	
de-correlate	 the	 slowest	 (at	 a	 certain	 lag	 time)	 whilst	 minimizing	 their	 overlap.	 The	
transformed	dataset	was	clustered	using	the	mini	batch	K-means.	It	is	worth	noting	that	we	
built	 a	 single	 tICA	 and	 K-Means	model	 for	 all	 7	 sequences	 allowing	 us	 to	 quantitatively	
compare	 thermodynamics	 and	 kinetics.	 We	 use	 a	 tICA	 lagtime	 of	 300ns	 to	 reduce	 the	
dimensionality	 of	 the	 data	 from	 1081	 contacts	 to	 5tICs,	 which	 were	 also	 scaled	 using	
kinetic	mapping76.	For	the	clustering	step,	we	used	the	mini	batch	K-Means	algorithm	with	
the	number	of	clusters	set	to	300.	Based	upon	previous	work1,38	and	the	convergence	of	the	
implied	timescales	plot	for	300	state	model,	we	chose	a	lag	time	of	30ns	(Supporting	Figure	
1)	 for	 the	MSM.	The	Markov	transition	matrix	was	 fit	via	Maximum	likelihood	estimation	
(MLE)	with	reversibility	and	ergodicity	constraints.	This	procedure	discarded	less	than	1%	
of	the	data	for	any	given	sequence	indicating	converged	sampling.	See	Supporting	Figure	1	
and	Figure	9	for	further	validation.		
	
Error	analysis:	
To	obtain	error	bars	for	the	MFPTs,	timescales,	and	equilibrium	populations,	200	rounds	of	
bootstrapping	 were	 performed	 for	 each	 simulated	 protein	 sequence.	 The	 bootstrapping	
was	performed	over	the	trajectories	so	that	for	each	bootstrap	sample,	we	randomly	picked	
N	 trajectories	 (with	 replacement)	 where	 N	 is	 the	 total	 number	 of	 trajectories	 for	 that	
sequence.	We	kept	the	final	state	labeling,	but	fit	a	new	MSM	to	this	resampled	trajectory	
set.	This	 leads	to	a	new	estimate	of	 the	thermodynamics	and	kinetics.	Repeating	this	200	
times	allows	us	to	estimate	error	bars	for	the	predicted	kinetics	and	thermodynamics.	We	
also	validated	our	results	by	restricting	each	trajectory	to	between	75	and	100%	of	its	final	
length	 (Supporting	 Figure	 9)	 and	 re-computing	 all	 reported	 thermodynamic	 and	 kinetic	
statistics	and	found	them	to	be	consistent.		
	
The	trajectories	were	 featurized	and	analyzed	using	the	MDTraj	(ver.	1.7-v1.8)77	package	
while	 tICA	 dimensionality	 reduction	 and	 Markov	 modeling	 were	 performed	 using	
MSMbuilder	(ver.	3.5+)78.	Most	of	the	analysis	was	performed	within	the	IPython	scientific	
environment79	with	extensive	use	of	the	MSMExplorer,	matplotlib	(ver.	1.0+)80,	and	scikit-
learn	libraries81.	All	protein	images	were	generated	using	visual	molecular	dynamics	(VMD,	
ver.	1.9+)67	and	all	protein	surfaces	were	rendered	using	SURF82	as	implemented	in	VMD.		
		
Model	interpretation:	 	
The	models	were	primarily	analyzed	using	techniques	 laid	out	 in	previous	papers83,50.	To	
further	query	the	model,	we	inferred	the	dominant	deactivation	pathways	using	Transition	
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path	theory	(TPT)	84,85.	TPT	requires	specifying	the	starting	and	ending	states	 to	 find	the	
interconnecting	pathways.	All	states	with	a		formed	Hinge(1st	tIC	value	>	1.5)	and	Glu314-
Lys299	 bridge	 (<	 4.45Å)	 were	 considered	 active.	 For	 the	 inactive	 states,	 we	 picked	 all	
states	whose	all	heavy	atom	RMSD	was	with	4	Å	of	the	homology	modeled	Src-like	inactive	
state.	The	intermediate	state	was	defined	to	have	intermediate	values	(between	0.5	and	1.3.	
)	along	the	first	tIC.	
We	also	queried	the	model	by	generating	long	trajectories	from	the	MSM.	Starting	from	the	
inactive	state,	we	propagated	the	dynamics	at	a	 lag	time	of	30ns	using	a	random	number	
generator	and	the	Markovian	transition	model	as	our	sampling	scheme.		At	each	“timestep”,	
we	randomly	picked	a	frame	assigned	to	that	state	to	report	the	instantaneous	observable.	
Given	correct	parameterization	of	the	underlying	transition	matrix,	this	method	produces	
dynamics	comparable	to	running	a	single	long	MD	trajectory.		
The	 transition	 pathways	 were	 analyzed	 using	 a	 combination	 of	 inspection	 using	 visual	
molecular	 dynamics	 (VMD)67,	 random	 forest	 classifiers50,	 and	 tICA	 projections48,83.	 The	
slowly	de-correlating	tICA	vectors	were	used	to	find	the	degrees	of	freedom	involved	in	the	
dynamics83.	Spectral	decomposition	of	the	MSM	transition	matrix	was	used	to	estimate	the	
equilibrium	 populations	 and	 dynamical	 processes	 connecting	 those	 Markov	 states.	 The	
second	eigenvector	corresponding	to	the	slowest	dynamical	process	correlates	very	highly	
with	 the	active	 to	 inactive	process	 (Supporting	Figure	2)	with	an	associated	 timescale	of	
100μs	(Supporting	Figure	1),	consistent	with	previous	theoretical	work1.		
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