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Abstract

Behavioral evidence suggests that beliefs about causal structure constrain associative learning, determining which

stimuli can enter into association, as well as the functional form of that association. Bayesian learning theory provides

one mechanism by which structural beliefs can be acquired from experience, but the neural basis of this mechanism

is unknown. A recent study (Gershman, 2017) proposed a unified account of the elusive role of “context” in animal

learning based on Bayesian updating of beliefs about the structure of causal relationships between contexts and cues

in the environment. The model predicts that the computations which arbitrate between these abstract causal structures

are distinct from the computations which learn the associations between particular stimuli under a given structure. In

this study, we used fMRI with male and female human subjects to interrogate the neural correlates of these two distinct

forms of learning. We show that structure learning signals are encoded in rostrolateral prefrontal cortex and the angular

gyrus, anatomically distinct from correlates of associative learning. Within-subject variability in the encoding of

these learning signals predicted variability in behavioral performance. Moreover, representational similarity analysis

suggests that some regions involved in both forms of learning, such as parts of the inferior frontal gyrus, may also

encode the full probability distribution over causal structures. These results provide evidence for a neural architecture

in which structure learning guides the formation of associations.
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Significance Statement

Animals are able to infer the hidden structure behind causal relations between stimuli in the environment, allowing

them to generalize this knowledge to stimuli they have never experienced before. A recently published computational

model based on this idea provided a parsimonious account of a wide range of phenomena reported in the animal

learning literature, suggesting that the neural mechanisms dedicated to learning this hidden structure are distinct from

those dedicated to acquiring particular associations between stimuli. Here we validate this model by measuring brain

activity during a task which dissociates structure learning from associative learning. We show that different brain

networks underlie the two forms of learning and that the neural signal corresponding to structure learning predicts

future behavioral performance.
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Introduction

Classical learning theories posit that animals learn associations between sensory stimuli and rewarding outcomes

(Rescorla and Wagner, 1972; Pearce and Bouton, 2001). These theories have achieved remarkable success in explaining

a wide range of behaviors using simple mathematical rules. Yet numerous studies have challenged some of their

foundational premises (Miller et al., 1995; Gershman et al., 2015; Dunsmoor et al., 2015). One particularly longstanding

puzzle for these theories is the multifaceted role of contextual stimuli in associative learning. Some studies have shown

that the context in which learning takes place is largely irrelevant (Bouton and King, 1983; Lovibond et al., 1984;

Kaye et al., 1987; Bouton and Peck, 1989), whereas others have found that context plays the role of an “occasion

setter,” modulating cue-outcome associations without itself acquiring associative strength (Swartzentruber and Bouton,

1986; Grahame et al., 1990; Bouton and Bolles, 1993; Swartzentruber, 1995). Yet other studies suggest that context

acts like another punctate cue, entering into summation and cue competition with other stimuli (Balaz et al., 1981;

Grau and Rescorla, 1984). The multiplicity of such behavioral patterns defies explanation in terms of a single

associative structure, suggesting instead that different structures may come into play depending on the task and training

history.

Computational modeling has begun to unravel this puzzle, using the idea that structure is a latent variable inferred

from experience (Gershman, 2017). On this account, each structure corresponds to a causal model of the environment,

specifying the links between context, cues and outcomes, as well as their functional form (modulatory vs. additive).

The learner thus faces the joint problem of inferring both the structure and the strength of causal relationships, which

can be implemented computationally using Bayesian learning (Griffiths and Tenenbaum, 2005; Körding et al., 2007;

Meder et al., 2014). This account can explain why different tasks and training histories produce different forms of

context-dependence: variations across tasks induce different probabilistic beliefs about causal structure. For example,

Gershman (2017) showed that manipulations of context informativeness, outcome intensity, and number of training

trials have predictable effects on the functional role of context in animal learning experiments (Odling-Smee, 1978;

Preston et al., 1986).
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If this account is correct, then we should expect to see separate neural signatures of structure learning and associative

learning that are systematically related to behavioral performance. However, there is currently little direct neural

evidence for structure learning (Collins et al., 2014; Tervo et al., 2016; Madarasz et al., 2016). In this study, we seek

to address this gap using human fMRI and an associative learning paradigm adapted from Gershman (2017). On

each block, subjects were trained on cue-context-outcome combinations that were consistent with a particular causal

interpretation. Subjects were then asked to make predictions about novel cues and contexts without feedback, revealing

the degree to which their beliefs conformed to a specific causal structure. We found that the structure learning model

developed by Gershman (2017) accounted for the subjects’ predictive judgments, which led us to hypothesize a neural

implementation of its computational components.

We found trial-by-trial signals tracking structure learning and associative learning in distinct neural systems. A

whole-brain analysis revealed a univariate signature of Bayesian updating of the probability distribution over causal

structures in parietal and prefrontal regions, while updating of associative weights recruited a more posterior network

of regions. Among these areas, the angular gyrus and the inferior frontal gyrus exhibited structure learning signals

that were predictive of subsequent generalization on test trials. Additionally, some of these areas were also implicated

in the representation of the full distribution over causal structures. Our results provide new insight into the neural

mechanisms of causal structure learning and how they constrain the acquisition of associations.
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Materials and Methods

Subjects

Twenty-seven healthy subjects were enrolled in the fMRI portion of the study. Although we did not perform power

analysis to estimate the sample size, it is consistent with the size of the pilot group of subjects that showed a robust

behavioral effect (Figure 4, grey circles), as well as with sample sizes generally employed in the field (Desmond

and Glover, 2002). Prior to data analysis, seven subjects were excluded due to technical issues, insufficient data, or

excessive head motion. The remaining 20 subjects were used in the analysis (10 female, 10 male; 19-27 years of age;

mean age 20±2; all right handed with normal or corrected-to-normal vision). Additionally, 10 different subjects were

recruited for a behavioral pilot version of the study that was conducted prior to the fMRI portion. All subjects received

informed consent and the study was approved by the Harvard University Institutional Review Board. All subjects were

paid for their participation.

Experimental Design and Materials

We adapted the task used in Gershman (2017) to a within-subjects design. Subjects were told that they would play

the role of a health inspector trying to determine the cause of illness in different restaurants around the city. The

experiment consisted of nine blocks. Each block consisted of 20 training trials followed by four test trials. On each

training trial, subjects were shown a given cue (the food) in a given context (the restaurant) and asked to predict

whether that cue-context combination would cause sickness. After making a prediction, they were informed whether

their prediction was correct (Figure 1A). On a given block, the assignment of stimuli to outcomes was deterministic,

such that the same cue-context pair always led to the same outcome. Even though the computational model could

support stochastic and dynamically evolving stimulus-outcome contingencies, our goal was to provide a minimalist

design that can assess the main predictions of the theory. There were four distinct training cue-context pairs (two foods

× two restaurants) on each block, such that two of the pairs always caused sickness while the other two never caused

sickness. Each cue-context pair was shown five times in each block for a total of 20 randomly shuffled training trials.
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Cue/Choice
(0-3 s = RT)

Feedback (1 s)

ITI (1-7 s + residual)

ISI (1 s)

Condition Training
phase

Test
phase

Irrelevant

x1c1+
x2c1−
x1c2+
x2c2−

x1c1
x1c3
x3c1
x3c3

Modulatory

x1c1+
x2c1−
x1c2−
x2c2+

x1c1
x1c3
x3c1
x3c3

Additive

x1c1+
x2c1+
x1c2−
x2c2−

x1c1
x1c3
x3c1
x3c3

A B

Figure 1. Experimental Design

(A) Timeline of events during a training trial. Subjects are shown a cue (food) and context (restaurant) and are asked

to predict whether the food will make a customer sick. They then see a line under the chosen option, and feedback

indicating a “Correct” or “Incorrect” response. ISI: interstimulus interval; ITI: intertrial interval.

(B) Stimulus-outcome contingencies in each condition. Cues denoted by (x1,x2,x3) and contexts denoted by

(c1,c2,c3). Outcome presentation denoted by “+” and no outcome denoted by “−”.
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M3: additive context
context acts like another 
cue

Figure 2. Hypothesis Space of Causal Structures

Each causal structure is depicted as a network where the nodes represent variables and the edges represent causal

connections. In M2, the context modulates the causal relationship between the cue and the outcome. Adapted from

Gershman (2017).
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Crucially, the stimulus-outcome contingencies in each block were designed to promote a particular causal interpretation

of the environment (Figure 1B, Figure 2). On irrelevant context blocks, one cue caused sickness in both contexts,

while the other cue never caused sickness, thus rendering the contextual stimulus irrelevant for making correct

predictions. On modulatory context blocks, the cue-outcome contingency was reversed across contexts, such that

the same cue caused sickness in one context but not the other, and vice versa for the other cue. On these blocks,

context thus acted like an “occasion setter”, determining the sign of the cue-outcome association. Finally, on additive

context blocks, both cues caused sickness in one context but neither cue caused sickness in the other context, thus

favoring an interpretation of context acting as a punctate cue which sums together with other cues to determine the

outcome. There were no explicit instructions or other signals that indicated the different block conditions other than

the stimulus-outcome contingencies. While other interpretations of these contingencies are also possible (e.g., that

additive context sequences also match a causal structure in which cues are irrelevant), we sought to construct the

simplest stimulus-outcome relationships that distinguish between the three causal structures outlined in the Introduction.

These causal structures correspond to alternative hypotheses about the role of context in associative learning that have

been put forward in the animal learning literature (Balsam and Tomie, 1985). We based our experimental design on

the fact that a parsimonious model with these structures alone can capture a wide array of behavioral phenomena

(Gershman, 2017) and that the chosen stimuli-outcome contingencies establish a clear behavioral pattern that we can

build upon to explore the neural correlates of structure learning. The inherent asymmetry between cues and contexts is

justified by the a priori notion that foods (cues) are spatially and temporally confined focal stimuli, while restaurants

(contexts) often comprise spatially and temporally diffuse bundles of background stimuli.

Behavior was evaluated on four test trials during which subjects were similarly asked to make predictions, however

this time without receiving feedback. Subjects were presented with one novel cue and one novel context, resulting in

four (old cue vs. new cue) × (old context vs. new context) randomly shuffled test combinations (Figure 1B). The old

cue and the old context were always chosen such that their combination caused sickness during training. Importantly,

different causal structures predict different patterns of generalization on the remaining three trials which contain a new

cue and/or a new context. If context is deemed to be irrelevant, the old cue should always predict sickness, even when
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presented in a new context. If a modulatory role of context is preferred, then no inferences can be made about any of

the three pairs that include a new cue or a new context. Finally, if context is interpreted as acting like another cue, then

both the old cue and the new cue should predict sickness in the old context but not in the new context.

Each block was assigned to one of the three conditions (irrelevant, modulatory, or additive) and each condition

appeared three times for each subject, for a total of nine blocks. The block order was randomized in groups of

three, such that the first three blocks covered all three conditions in a random order, and so did the next three blocks

and the final three blocks. We used nine sets of foods and restaurants corresponding to different cuisines (Chinese,

Japanese, Indian, Mexican, Greek, French, Italian, fast food and brunch). Each set consisted of three clipart food

images (cues) and three restaurant names (contexts). For each subject, blocks were randomly matched with cuisines,

such that subjects had to learn and generalize for a new set of stimuli on each block. The assignment of cuisines was

independent of the block condition. The valence of the stimuli was also randomized across subjects, such that the

same cue-context pair could predict sickness for some subjects but not others.

Experimental protocol

Prior to the experiment, the investigator read the task instructions aloud and subjects completed a single demonstration

block of the task on a laptop outside the scanner. Subjects completed nine blocks of the task in the scanner, with

one block per scanner run. Each block had a duration of 200 seconds during which 100 volumes were acquired

(TR = 2 s). At the start of each block, a fixation cross was shown for 10 seconds and the corresponding 5 volumes

were subsequently discarded. This was followed by the training phase, which lasted 144 seconds. The event sequence

within an example training trial is shown in Figure 1. At trial onset, subjects were shown a food and restaurant pair and

instructed to make a prediction. Subjects reported their responses by pressing the left or the right button on a response

box. After trial onset, subjects were given 3 seconds to make a response. A response was immediately followed by

a 1-second inter-stimulus interval (ISI) during which their response was highlighted. The residual difference between

3 seconds and their reaction time was added to the subsequent inter-trial interval (ITI). The ISI was followed by a

1-second feedback period during which they were informed whether their choice was correct. If subjects failed to
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respond within 3 seconds of trial onset, no response was recorded and at feedback they were informed that they had

timed out. During the ITIs, a fixation cross was shown. The trial order and the jittered ITIs for the training phase were

generated using the optseq2 program (Greve, 2002) with ITIs between 1 and 12 seconds. The training phase was

followed by a 4 second message informing the subjects they are about to enter the test phase. The test phase lasted

36 seconds. Test trials had a similar structure as training trials, with the difference that subjects were given 6 seconds

to respond instead of 3 and there was no ISI nor feedback period. The ITIs after the first 3 test trials were 2, 4, and 6

seconds, randomly shuffled. The last training trial was followed by a 6-second fixation cross. The stimulus sequences

and ITIs were pre-generated for all subjects. The task was implemented using the PsychoPy2 package (Peirce, 2007).

The subjects in the behavioral pilot version of the study performed an identical version of the experiment, except that

it was conducted on a laptop.

Computational modeling

We implemented the model presented in Gershman (2017). The key idea is that learners track the joint posterior over

associative weights (w) and causal structures (M), computed using Bayes’ rule:

P(w,M|h1:n) =
P(h1:n|w,M)P(w|M)P(M)

P(h1:n)
(1)

where h1:n = (x1:n,r1:n,c1:n) denotes the training history for trials 1 to n (cue-context-outcome combinations). The

likelihood P(h1:n|w,M) encodes how well structure M predicts the training history, the prior P(w|M) specifies a

preference for weights close to 0, and the prior over structures P(M) was taken to be uniform. The zero-weight prior

assumes a belief that generally most foods do not cause sickness. The structure prior assumes that all structures are

equally probable a priori.

Generative model

Our model is based on the following assumptions about the dynamics that govern associations between stimuli and

outcomes in the world. The training history is represented as h1:n = (x1:n,r1:n,c1:n) for trials 1 to n, consisting of the

following variables:
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• xn ∈ RD: the set of D cues observed at time n, where xnd = 1 indicates that cue d is present and xnd = 0 to

indicate that it is absent. Thus each cue can be regarded as a “one-hot” D-dimensional vector and xn can be

viewed as the sum of all cues present on trial n. In our simulations, we use D = 3 and we only have a single cue

(the food) present on each trial.

• cn ∈ {1, . . . ,K}: the context, which can take on one of K discrete values. While contexts could in principle be

represented as vectors as well, we restrict the model to one context per trial for simplicity. In our simulations,

we take K = 3.

• rn ∈ R: the outcome. In our simulations, we use rn = 1 for “sick” and rn = 0 for “not sick”.

We consider three specific structures relating the above variables. All the structures have in common that the outcome

is assumed to be drawn from a Gaussian with variance σ2
r = 0.01:

rn ∼N
(
r̄n,σ

2
r
)
, (2)

where we have left the dependence on cn and xn implicit. The structures differ in how the mean r̄n is computed.

• Irrelevant context (M1):

r̄n =
D

∑
d=1

wdxnd = w>xn. (3)

where d indexes the set of D cues. Under this structure, context cn plays no role in determining the expected

outcome r̄n on trial n. Instead, a single set of weights w dictates the associative strength between each cue

and the outcome, such that the expected outcome on a given trial is the sum of the associative weights of all

present cues. The idea that context is irrelevant for stimulus-outcome associations is consistent with number of

behavioral studies (Bouton and King, 1983; Lovibond et al., 1984; Kaye et al., 1987; Bouton and Peck, 1989).

For example, if the associative weights are w = [1 0.5 0], then cue 1 would predict an average outcome of

r̄n = [1 0.5 0]>[1 0 0] = 1, cue 2 would predict an average outcome of r̄n = [1 0.5 0]>[0 1 0] = 0.5, while cue

3 would predict no outcome, on average, since r̄n = [1 0.5 0]>[0 0 1] = 0. Each cue would make the same

prediction regardless of the context cn, since the weights are the same across contexts.
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• Modulatory context (M2):

r̄n =
D

∑
d=1

wdkxnd = w>k xn (4)

when cn = k. Under this structure, each context cn = k specifies its own weight vector wk. Thus the same cue can

make completely different predictions in different contexts. The view that context modulates stimulus-outcome

associations is also supported by previous behavioral findings (Swartzentruber and Bouton, 1986; Grahame et

al., 1990; Bouton and Bolles, 1993; Swartzentruber, 1995).

For example, context 1 may induce associative weights w1 = [1 0.5 0], while context 2 may induce associative

weights w2 = [0 0.5 1]. Thus in context 2, the predictions of cue 1 and cue 3 would be the opposite of those in

context 1.

• Additive context (M3):

r̄n =
D

∑
d=1

wdxnd +wD+k = w>x̃n, (5)

again for cn = k. The augmented stimulus x̃n is defined as: x̃n = [xn, c̃n], where c̃nk = 1 if cn = k, and 0 otherwise.

Under this structure, we assume a one-hot vector c̃n that encodes the context in the same way as the cue. The

augmented stimulus x̃n ∈ RD+K and the weight vector w thus contain entries for both cues and contexts, whose

associative strength sums to predict the expected outcome. Previous work also suggests that context sometimes

acts like another cue (Balaz et al., 1981; Grau and Rescorla, 1984).

For example, imagine that there are D = 3 cues and K = 3 contexts with associative weights w = [1 0.5 0 -1 0 1].

Consider the prediction of cue 1 (xn = [1 0 0]) across the three contexts. In context 1, the context vector is

c̃n = [1 0 0], and hence the augmented stimulus vector is x̃n = [1 0 0 1 0 0]. In this case, the expected outcome

is r̄n = w>x̃n = 1×1+(−1)×1 = 0. Even though cue 1 predicts an average outcome of 1 on its own, context

1 predicts an average outcome of -1, and the two cancel each other out to predict no outcome, on average. In

context 2, we have c̃n = [0 1 0], x̃n = [1 0 0 0 1 0], and r̄n = 1× 1+ 0× 1 = 1. Context 2 has no associative

strength and thus cue 1 predicts an average outcome of 1. In context 3, c̃n = [0 0 1], x̃n = [1 0 0 0 0 1], and

r̄n = 1×1+1×1 = 2. Both cue 1 and context 3 predict an average outcome of 1 separately, so together, they

predict double that amount.
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We assume each weight is drawn independently from a zero-mean Gaussian prior with variance σ2
w. This prior variance

was a free parameter that we fit using data from the behavioral pilot version of the study. Each weight can change

slowly over time according to a Gaussian random walk with variance τ2 = 0.001.

In summary, each causal structure corresponds to an internal model of the world in which the relationship between

cues, contexts and outcomes can be described by a distinct linear-Gaussian dynamical system (LDS). While the LDS

assumptions might seem excessive given the deterministic nature of the task, they have been widely used in the classical

conditioning studies (Dayan and Kakade, 2000; Kakade and Dayan, 2002; Kruschke, 2008; Gershman, 2015) to

provide a parsimonious account for various learning phenomena. Here we employ them for the purposes of tractability

and in order to remain consistent with the causal learning model that Gershman (2017) used to explain the seemingly

contradictory roles of context reported in the animal learning literature. The three causal structures correspond to

different sub-models that have been advanced in various subforms in the literature, none of which has been able to

capture the broad range of results on its own. By recasting each sub-model as an alternative causal structure within the

same generative framework, the full model is able to account for a wide range of behavioral findings.

Probabilistic inference

Assuming this generative model, a rational agent can use Bayesian inference to invert the model and use its training

history h1:n to learn the underlying causal structure M and its associative weights w (Eq. 1). To achieve this, first we

can compute the posterior over the weights for a given model M using Bayes’ rule:

P(w|h1:n,M) =
P(h1:n|w,M)P(w|M)

P(h1:n|M)
. (6)

For M1, the posterior at time n is:

P(w|h1:n,M = M1) = N (w; ŵn,Σn) (7)

with parameters updated recursively as follows:

ŵn+1 = ŵn +gn(rn− ŵ>n xn) (8)

Σn+1 = Σ
′
n−gnx>Σ

′
n, (9)
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where Σ′n = Σn + τ2I. These update equations are known as Kalman filtering, an important algorithm in engineering

and signal processing that has recently been applied to animal learning (Dayan and Kakade, 2000; Kruschke, 2008;

Gershman, 2015). The initial estimates are given by the parameters of the prior: ŵ0 = 0,Σ0 = σ2
wI. The Kalman gain

gn (a vector of learning rates) is given by:

gn =
Σ′nxn

x>n Σ′nxn +σ2
r
. (10)

The same equations apply to M2, but the mean and covariance are context-specific: ŵk
n and Σk

n. Accordingly, the

Kalman gain is modified as follows:

gnk =
Σ′nkxn

x>n Σ′nkxn +σ2
r

(11)

if cn = k, and a vector of zeros otherwise. For M3, the same equations as M1 apply, but to the augmented stimulus x̃n.

To make predictions about future outcomes, we need to compute the posterior predictive expectation, which is also

available in closed form:

Vn = E[rn|xn,cn,h1:n−1] = ∑
M
E[rn|xn,cn,h1:n−1,M]P(M|h1:n−1). (12)

The first term in Eq. 12 is the posterior predictive expectation conditional on model M:

E[rn|xn,cn,h1:n−1,M] = x>n ŵn, (13)

where again the variables are modified depending on what model is being considered. The second term in Eq. 12 is

the posterior probability of model M, which can be updated according to Bayes’ rule:

P(M|h1:n) ∝ P(rn|xn,cn,h1:n−1,M)P(M|h1:n−1), (14)

where the likelihood is given by:

P(rn|xn,cn,h1:n−1,M) = N (rn;x>n ŵn,x>n Σ
′
nxn +σ

2
r ). (15)

To make predictions for the predictive learning experiment, we mapped the posterior predictive expectation onto choice

probability (outcome vs. no outcome) by a logistic sigmoid transformation:

P(an = 1) =
1

1+ exp[(−2Vn +1)β ]
, (16)
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where an = 1 indicates a prediction that the outcome will occur, and an = 0 indicates a prediction that the outcome

will not occur. The free parameter β corresponds to the inverse softmax temperature and was fit based on data from

the behavioral pilot portion of the study.

In summary, we use standard Kalman filtering to infer the parameters of the LDS corresponding to each causal

structure. This yields a distribution over associative weights w for each causal structure M (Eq. 6), which we can

use in turn to compute a distribution over all three causal structures (Eq. 14). The joint distribution over weights and

causal structures is then used to predict the expected outcome Vn (Eq. 12) and the corresponding decision an (Eq. 16).

Our model thus makes predictions about computations at two levels of inference: at the level of causal structures

(Eq. 14) and at the level of associative weights for each structure (Eq. 6).

Parameter estimation

The model has two free parameters: the variance σ2
w of the Gaussian prior from which the weights are assumed to

be drawn, and the inverse temperature β used in the logistic transformation from predictive posterior expectation to

choice probability. Intuitively, the former corresponds to the level of uncertainty in the initial estimate of the weights,

while the latter reflects choice stochasticity. We estimated a single set of parameters based on choice data from the

behavioral pilot version of the study using maximum log-likelihood estimation (Figure 4B, grey circles). We preferred

this approach over estimating a separate set of parameters for each subject as it tends to avoid overfitting, produces

more stable estimates, and has been frequently used in previous studies (Daw et al., 2006; Gershman et al., 2009;

Gläscher, 2009; Gläscher et al., 2010). Additionally, since none of these pilot subjects participated in the fMRI portion

of the study, this procedure ensured that the parameters used in the final analysis were not overfit to the choices of the

scanned subjects. For the purposes of fitting, the model was trained and tested over the same stimulus sequences as

the pilot subjects. Each block was simulated independently i.e. the parameters of the model were reset to their initial

values prior to the start of training. The likelihood of the subject’s response on a given trial was estimated according

to the choice probability given by the model on that trial. Maximum log-likelihood estimation was computed using

MATLAB’s fmincon function with 5 random initializations. The bounds on the parameters were σ2
w ∈ [0,1] and
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β ∈ [0,10].

The fitted values were σ2
w = 0.12 and β = 2.01. All other parameters were set to the same values as described in

Gershman (2017). We used these parameters to simulate subjects from the fMRI experiment. For behavioral analysis,

we trained and tested the model on each block separately and reported the choice probabilities on test trials, averaged

across conditions. We used the probability distributions from these simulations to compute the parametric modulators

(the Kullback-Leibler divergence) in the GLM (Figure 5) and the representational dissimilarity matrices (Figure 6).

For model comparison, we similarly estimated parameters for versions of model constrained to use a single causal

structure (M1, M2, or M3). We used random effects Bayesian model selection (Rigoux et al., 2014) to compare the three

single-structure models and the full model, using -0.5 * BIC as an approximation of the log model evidence, where

BIC is the Bayesian information criterion. Models were compared based on their computed exceedance probabilities,

with a higher exceedance probability indicating a higher frequency of the given model in the population compared to

the other models.

fMRI data acquisition

Scanning was carried out on a 3T Siemens Magnetom Prisma MRI scanner with the vendor 32-channel head coil

(Siemens Healthcare, Erlangen, Germany) at the Harvard University Center for Brain Science Neuroimaging. A

T1-weighted

high-resolution multi-echo magnetization-prepared rapid-acquisition gradient echo (ME-MPRAGE) anatomical scan

(van der Kouwe et al., 2008) of the whole brain was acquired for each subject prior to any functional scanning (176

saggital slices, voxel size = 1.0 x 1.0 x 1.0 mm, TR = 2530 ms, TE = 1.69 - 7.27 ms, TI = 1100 ms, flip angle = 7◦, FOV

= 256 mm). Functional images were acquired using a T2*-weighted echo-planar imaging (EPI) pulse sequence that

employed multiband RF pulses and Simultaneous Multi-Slice (SMS) acquisition (Moeller et al., 2010; Feinberg et al.,

2010; Xu et al., 2013). In total, 9 functional runs were collected per subject, with each run corresponding to a single

task block (84 interleaved axial-oblique slices per whole brain volume, voxel size = 1.5 x 1.5 x 1.5 mm, TR = 2000

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228593doi: bioRxiv preprint 

https://doi.org/10.1101/228593


ms, TE = 30 ms, flip angle = 80◦, in-plane acceleration (GRAPPA) factor = 2, multi-band acceleration factor = 3, FOV

= 204 mm). The initial 5 TRs (10 seconds) were discarded as the scanner stabilized. Functional slices were oriented

to a 25 degree tilt towards coronal from AC-PC alignment. The SMS-EPI acquisitions used the CMRR-MB pulse

sequence from the University of Minnesota. Four subjects failed to complete all 9 functional runs due to technical

reasons and were excluded from the analyses. Three additional subjects were excluded due to excessive motion.

fMRI preprocessing

Functional images were preprocessed and analyzed using SPM12 (Wellcome Department of Imaging Neuroscience,

London, UK). Each functional scan was realigned to correct for small movements between scans, producing an

aligned set of images and a mean image for each subject. The high-resolution T1-weighted ME-MPRAGE images

were then co-registered to the mean realigned images and the gray matter was segmented out and normalized to the

gray matter of a standard Montreal Neurological Institute (MNI) reference brain. The functional images were then

normalized to the MNI template (resampled voxel size 2 mm isotropic), spatially smoothed with a 8 mm full-width at

half-maximum (FWHM) Gaussian kernel, high-pass filtered at 1/128 Hz, and corrected for temporal autocorrelations

using a first-order autoregressive model.

Univariate analysis

To analyze the fMRI data, we defined a GLM with four impulse regressors convolved with the canonical hemodynamic

response function (HRF): a regressor at trial onset for all training trials (the stimulus regressor); a regressor at feedback

onset for all training trials (the feedback regressor); a regressor at feedback onset for training trials on which the

subject produced the wrong response (the error regressor); and a regressor at feedback onset for training trials on

which the contextual stimulus differs from the contextual stimulus on the previous trial (the context regressor). The

context regressor was not included on the first training trial of each block. The feedback regressor had two parametric

modulators: the Kullback-Leibler (KL) divergence between the posterior and the prior probability distribution over

causal structures; and the KL divergence between the posterior and the prior probability distribution over the associative

weights for the causal structure corresponding to the condition of the given block. In particular, the causal structure
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KL divergence on trial n was computed as:

DKL[P(M|h1:n)||P(M|h1:n−1)] = ∑
M

P(M|h1:n) log2
P(M|h1:n)

P(M|h1:n−1)
. (17)

The associative weights KL divergence for trial n and causal structure M1 was computed as:

DKL[P(w|h1:n,M1)||P(w|h1:n−1,M1)] =
∫

w
P(w|h1:n,M1) log2

P(w|h1:n,M1)

P(w|h1:n−1,M1)
dw

=
1

2ln2

[
tr(Σ−1

n−1Σn)+(ŵn−1− ŵn)
T

Σ
−1
n−1(ŵn−1− ŵn)−D+ ln

(
detΣn−1

detΣn

)]
(18)

where D denotes the number of weights, Σn denotes the posterior covariance on trial n, and dividing by ln2 converts

the result to bits. Eq. 18 follows from the fact that the weights are normally distributed (Eq. 7). The KL divergence

was computed analogously for causal structures M2 and M3. The two parametric modulators were not orthogonalized

with respect to each other nor with respect to the feedback regressor. Orthogonalizing the two KL divergences would

introduce an ordering effect which would unnecessarily complicate the analysis. Furthermore, computing the contrast

between the two parametric modulators (Figure 5C) would subtract any common variability in the signal.

For group-level analyses, we report t-contrasts with single voxels thresholded at p < 0.001 and whole-brain cluster

family-wise error (FWE) correction applied at significance level α = 0.05. Anatomical regions were labeled using the

Automated Anatomical Labeling (AAL2) atlas (Tzourio-Mazoyer et al., 2002; Rolls et al., 2015), the SPM Anatomy

Toolbox (Eickhoff et al., 2005), and the CMA Harvard-Oxford atlas (Desikan et al., 2006). All voxel coordinates are

reported in Montreal Neurological Institute (MNI) space.

Correlating neural activity with behavior

In order to link neural variability in structure updating with behavior, we identified the peak voxel (i.e. voxel with the

highest t-statistic) in each activation cluster from the contrast corresponding to the KL divergence for causal structures

(Figure 5A and Table 2). For each peak voxel, we defined a region of interest (the peak ROI) as a 27-voxel sphere

(radius = 1.814 voxels) centered on that voxel and intersected with the corresponding activation cluster (i.e., only

voxels that belong both to the sphere and to the cluster were included in the ROI). These ROIs represent the distinct
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brain areas that are most strongly correlated with causal structure updating. For each block and for each subject, we

then extracted the structure KL betas of the voxels in each ROI. Since the betas are computed for each block separately

as an intermediate step in fitting the GLM, we did not have to perform any additional analyses in order to obtain them.

For a given block, the structure KL beta of a particular voxel represents the degree to which BOLD activity in that

voxel tracks the causal structure KL divergence across all 20 training trials of the block. Even for voxels that are on

average highly correlated with the KL divergence (such as the peak voxels), there is block-to-block variability in the

strength of that relationship. If the activity of a given voxel represents updates about causal structures, a lower beta on

a particular block would suggest that the underlying computations deviated from Bayesian updating as predicted by

the model. Conversely, a high beta would indicate that the computations were consistent with the structure learning

account. Thus one would expect that performance on the test phase following a given block would be similar to the

predictions of the Bayesian model in the latter case but not in the former. We tested this idea by correlating the average

beta across all voxels in the peak ROI for a given training block with the average log likelihood of the subject’s choices

on the test trials following that block. This yielded a Pearson’s correlation coefficient (n = 9 blocks per subject) for

each subject. The resulting correlation coefficients were Fisher z-transformed and entered into a one-sample t-test

against 0. For each peak ROI, we report the average Fisher z-transformed r and the result from the t-test (Figure 5D).

Primary sensory, visual, and motor regions such as V1 and the cerebellum were a priori excluded from this analysis.

Negative activation clusters were also excluded. We chose spherical ROIs of this size in order to remain consistent

with our searchlight analysis and with previous studies (Chan et al., 2016). Similarity between the model predictions

and the subject’s behavior was computed as the mean log likelihood of their choices across test trials on which they

produced a response, 〈logP(cn)〉, where cn = 1 indicates that the subject predicted the outcome would occur on trial n,

cn = 0 indicates that they predicted the outcome would not occur, and the probability P(cn) is calculated as in Eq. 16.

Representational similarity analysis

We used representational similarity analysis (RSA) to identify candidate brain regions that might encode the full

probability distribution over causal structures in their multivariate activity patterns (Kriegeskorte et al., 2008; Xue et
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al., 2010; Chan et al., 2016). On a given trial, we expected Bayesian updating to occur when the outcome of the

subject’s prediction is presented at feedback onset (i.e. whether they were correct or incorrect). We therefore expected

to find representations of the prior distribution at trial onset and representations of the posterior distribution at feedback

onset (which in turn corresponds to the prior distribution on the following trial). We describe how we performed RSA

for the prior; the analysis for the posterior proceeded in a similar fashion.

In order to identify regions with a high representational similarity match for the prior, we used an unbiased whole-brain

“searchlight” approach. For each voxel of the entire volume, we defined a 27-voxel spherical ROI (radius = 1.814

voxels) centered on that voxel, excluding voxels outside the brain. For each subject and each ROI, we computed a

180× 180 representational dissimilarity matrix R (the neural RDM) such that the entry in row i and column j is the

cosine distance between the neural activity patterns on training trial i and training trial j:

Ri j = R ji = 1− cosθi j = 1−
ai ·a j

|ai| |a j|
(19)

where θi j is the angle between the 27-dimensional vectors ai and a j which represent the instantaneous neural activity

patterns at trial onset on training trials i and j, respectively, in the given ROI for the given subject. Neural activations

entered into the RSA were obtained using a GLM with distinct impulse regressors convolved with the HRF at trial

onset and feedback onset on each trial (test trials had regressors at trial onset only). The neural activity of a given

voxel was thus simply its beta coefficient of the regressor for the corresponding trial and event. Since the matrix is

symmetric and Rii = 0, we only considered entries above the diagonal (i.e. i < j). The cosine distance is equal to 1

minus the normalized correlation (i.e. the cosine of the angle between the two vectors), which has been preferred over

other similarity measures as it better conforms to intuitions about similarity both for neural activity and for probability

distributions (Chan et al., 2016).

Similarly, we computed an RDM (the model RDM) such that the entry in row i and column j is the cosine distance

between the priors on training trial i and training trial j, as computed by model simulations using the stimulus

sequences experienced by the subject on the corresponding blocks.
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If neural activity in the given ROI encodes the prior, then the neural RDM should resemble the model RDM: trials

on which the prior is similar should have similar neural representations (i.e. smaller cosine distances), while trials

on which the prior is dissimilar should have dissimilar neural representations (i.e. larger cosine distances). This

intuition can be formalized using Spearman’s rank correlation coefficient between the model RDM and the neural

RDM (n= 180×179/2= 16110 unique pairs of trials in each RDM). A high coefficient implies that pairs of trials with

similar priors tend show similar neural patterns while pairs of trials with dissimilar priors tend to show dissimilar neural

patterns. Spearman’s rank correlation is a preferred method for comparing RDMs over other correlation measures as

it does not assume a linear relationship between the RDMs (Kriegeskorte et al., 2008). Thus for each voxel and each

subject, we obtained a single Spearman’s ρ that reflects the representational similarity match between the prior and

the ROI around that voxel.

In order to aggregate these results across subjects, for each voxel we Fisher z-transformed the resulting Spearman’s ρ

from all 20 subjects and performed a t-test against 0. This yielded a group-level t-map, where the t-value of each voxel

indicates whether the representational similarity match for that voxel is significant across subjects. We thresholded

single voxels at p < 0.001 and corrected for multiple comparisons using whole-brain cluster FWE correction at

significance level α = 0.05. We report the surviving clusters and the t-values of the corresponding voxels (Figure 6A).

We used an identical procedure to obtain a t-map indicating which brain regions how a high representational similarity

match with the posterior (Figure 6B). The only difference was that we computed the neural RDMs using activity

patterns at feedback onset (rather than at trial onset) and we computed the model RDMs using the posterior (instead

of the prior).

Finally, since both the prior and the posterior tend to be similar on trials that are temporally close to each other, as well

as on trials from the same block, we computed two control RDMs: a “time RDM” in which the distance between trials

i and j is |ti− t j|, where ti is the difference between the onset of trial i and the start of its corresponding block; and a

“block RDM” in which the distance between trials i and j is 0 if they belong to the same block, and 1 otherwise. Each

Spearman’s ρ’s was then computed as a partial rank correlation coefficient between the neural RDM and the model
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Figure 3. Learning curves during training

Performance during training for (A) behavioral pilot subjects (N = 10), and (B) fMRI subjects (N = 20), averaged

across subjects and blocks. The prior variance of the weights σ2
w and the logistic inverse temperature β were fitted

using data only from the pilot version of the study.

RDM, controlling for the time RDM and the block RDM. This rules out the possibility that our RSA results reflect

within-block temporal autocorrelations that are unrelated to the prior or the posterior.

Results

Causal structure learning accounts for behavioral performance

The behavioral results replicated the findings of Gershman (2017) using a within-subject design. Subjects from both

the pilot and the fMRI portions of the study learned the correct stimulus-outcome associations relatively quickly, with

average performance plateauing around the middle of training (Figure 3). Average accuracy during the second half of

training was 91.2±2.5% (t9 = 16.8, p < 10−7, one-sample t-test against 50%) for the pilot subjects, and 92.7±1.7%

(t19 = 25.0, p < 10−15, one-sample t-test against 50%) for the scanned subjects, well above chance.
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Figure 4. Generalization on the test trials

(A) Posterior probability distribution over causal structures in each condition at the end of training. Each block was

simulated independently and the posterior probabilities were averaged across blocks of the same condition.

(B) Choice probabilities on the test trials for subjects in the pilot (grey circles) and fMRI (black circles) portions of

the study, overlaid over model choice probabilities (colored bars). Each color corresponds to a particular combination

of an old (x1) or new (x3) cue in an old (c1) or new (c3) context. Error bars represent within-subject standard errors of

the mean (Cousineau, 2005)
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Importantly, both groups exhibited distinct patterns of generalization on the test trials across the different conditions,

consistent with the results of Gershman (2017) (Figure 4B). Without taking the computational model into account,

these generalization patterns already suggest that subjects learned something beyond simple stimulus-response mappings.

On blocks during which context was irrelevant (Figure 4B, irrelevant training), subjects tended to predict that the old

cue x1, which caused sickness in both c1 and c2, would also cause sickness in the new context c3 (circle for x1c3),

even though they had never experienced c3 before. The new cue x3, on the other hand, was judged to be much less

predictive of sickness in either context (t38 = 9.51, p < 10−10, paired t-test). Conversely, on blocks during which

context acted like another cue (Figure 4B, additive training), subjects guessed that both cues would cause sickness in

the old context c1 (circle for x3c1), but not in the new context c3 (t38 = 11.1, p < 10−12, paired t-test). Generalization

in both of these conditions was different from what one would expect if subjects treated each cue-context pair as a

unique stimulus independent from the other pairs, which is similar to the generalization pattern on modulatory blocks

(Figure 4B, modulatory training). On these blocks, subjects judged that the old cue is predictive of sickness in the old

context significantly more compared to the remaining cue-context pairs (t38 = 9.01, p < 10−10, paired t-test).

These observations were consistent with the predictions of the computational model. Using parameters fit with data

from the behavioral pilot version of the study, the model quantitatively accounted for the generalization pattern on

the test trials choices of subjects in the fMRI portion of the study (Figure 4B; r = 0.96, p < 10−6). As expected, the

stimulus-outcome contingencies induced the model to infer a different causal structure in each of the three conditions

(Figure 4A), leading to the distinct response patterns on the simulated test trials. For comparison, we also ran versions

of the model using a single causal structure. Theories corresponding to each of these sub-models have been put forward

in the literature as explanations of the role of context during learning, however neither of them has been able to provide

a comprehensive account of the behavioral findings on its own. Accordingly, model performance was markedly worse

when the hypothesis space was restricted to a single causal structure: the correlation coefficients were r = 0.61 for the

irrelevant context structure (M1; p = 0.04), r = 0.73 for the modulatory context structure (M2; p < 0.01), and r = 0.91

for the additive context structure (M3; p < 0.0001). Bayesian model comparison confirmed the superiority of the full

structure learning model over the restricted variants (Table 1).
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Hypotheses σ2
w β BIC PXP Log lik Pearson’s r

M1,M2,M3 0.1249 2.0064 1670 0.3855 -1711 r = 0.96, p < 10−6

M1 0.0161 1.2323 2631 0.2048 -2687 r = 0.61, p = 0.036

M2 0.9997 1.7433 1828 0.2049 -1895 r = 0.73, p = 0.008

M3 0.0130 1.7508 2184 0.2048 -2180 r = 0.91, p = 0.00004

Table 1. Model comparison. Each model is represented by its corresponding hypothesis space of causal structures

(Figure 2). The free parameters σ2
w and β were fit based on choice data from the pilot version of the study (Figure 4B,

grey circles). Log likelihood and Pearson’s r were computed based on choice data from the fMRI version of the study.

Bayesian information criterion (BIC) and protected exceedance probability (PXP) were computed on the pilot data.

Log lik, log likelihood.

Separate brain regions support structure learning and associative learning

We sought to identify brain regions in which the blood oxygenation level dependent (BOLD) signal tracks beliefs

about the underlying causal structure. In order to condense these multivariate distributions into scalars, we computed

the Kullback-Leibler (KL) divergence between the posterior and the prior distribution over causal structures on

each training trial, which measures the degree to which structural beliefs were revised after observing the outcome.

Specifically, we analyzed the fMRI data using a general linear model (GLM) which included the KL divergence as

a parametric modulator at feedback onset. We reasoned that activity in regions involved in learning causal structure

would correlate with the degree of belief revision.

A high KL divergence often implies that, before receiving feedback on the current trial, the agent had inferred the

wrong causal structure. Accordingly, we found that the KL divergence was relatively higher for trials on which subjects

produced an incorrect response (two-sample t-test, t3598 = 12.2, p < 10−30). To eliminate any confounds specifically

related to receiving negative feedback about incorrect responding, we included an error regressor at feedback onset

indicating trials on which subjects made an incorrect prediction. In addition, since the structures are sensitive to
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Figure 5. Neural Signature of Structure Learning and Associative Weight Estimation

(A-C) Statistical maps showing regions tracking the KL divergence between the posterior and the prior over causal

structures (A) and associative weights (B), and the contrast between the two (C), using a threshold of p < 0.001,

whole-brain cluster FWE corrected at α = 0.05). The color scales represent t-values.

(D) Bayesian updating of beliefs about causal structure in the angular gyri (MNI: [34,−64,48] and [−30,−62,40])

and in the opercular part of left inferior frontal gyrus (MNI: [−42,2,32]) predict subsequent performance on the test

trials. Each bar represents the Fisher z-transformed within-subject correlation coefficient between block-specific KL

betas and the log likelihoods of the subject’s choices during the test phase (averaged across subjects; error bars: s.e.m.;

* = p < 0.05).
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contextual stimuli by design, the KL divergence tended to be higher when context changed from the previous trial

(two-sample t-test, t3418 = 6.53, p < 10−10). In order to account for potential effects of contextual tracking, we

thus included a regressor at feedback onset on trials on which the contextual stimulus differs from the previous

trial. Finally, since we were interested in regions that correlate with learning on the level of causal structures rather

than their associative weights, we included the KL divergence between the posterior and the prior distribution over

associative weights for the causal structure corresponding to the condition of the given block (e.g., only the weights

for the modulatory structure were analyzed on modulatory blocks). These weights encode the strength of causal

relationships between cues and outcomes (and additionally context, in the case of the additive structure). Including

this KL divergence as an additional parametric modulator at feedback onset would capture any variability in the signal

related to weight updating and allow us to isolate it from the signal related to structure updating.

We computed three group-level contrasts: the KL divergence for causal structures, the KL divergence for associative

weights, and the difference between the two. Activation clusters in all contrasts were identified by thresholding single

voxels at p < 0.001 and applying whole-brain cluster FWE correction at significance level α = 0.05. The first contrast

revealed several regions that were associated with updating of the posterior over causal structures (Figure 5A, and

Table 2). We observed bilateral parietal clusters with peak activations in the angular gyri. We also found bilateral

clusters in inferior frontal gyrus (IFG) spanning the opercular and the triangular parts of IFG. Bilateral activations

were also found in rostrolateral PFC, extending into the medial and anterior orbital gyri in the right hemisphere and

into the anterior insula and the orbital part of IFG in the left hemisphere. There was a cluster around the orbital

part of IFG in the right hemisphere as well. Significant activations were also found in bilateral cerebellum, bilateral

supplementary motor area (SMA), and in left inferior and middle temporal gyrus.

The second contrast revealed a more posterior network of brain regions that was correlated with the KL divergence

for associative weights (Figure 5B, and Table 3). We found a large cluster spanning visual cortex bilaterally and

extending into inferior parietal and inferior temporal cortex. We observed bilateral activations in IFG that were similar

to those observed in the causal structures KL contrast. There were also activations in the orbital part of bilateral IFG,

left middle temporal gyrus, and bilateral SMA. We also found subcortical activations in right thalamus and bilateral
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ventral striatum.

In order to isolate regions that are specifically related to causal structure updating and not associative weight updating,

we computed the contrast between these two regressors (Figure 5C, and Table 4). Positive activations in this contrast

correspond to areas where the signal is more strongly correlated with the causal structures KL divergence than with

the associative weights KL divergence, while negative activations indicate the opposite relationship. This contrast

highlighted essentially the same areas as the single regressor contrast with the causal structures KL divergence

(Figure 5A, and Table 2), implying that the signal in these areas cannot be explained by associative learning alone

and suggesting a dissociable network of regions that might support structure learning. It is worth noting that the

regions which correlated more strongly with associative weight updating were in bilateral insula, bilateral precuneus,

and left supramarginal gyrus. Inspecting the single regressor contrasts revealed that these regions were either not

significantly correlated or were negatively correlated with both regressors. This suggests that their negative activation

here is due to a more negative correlation with the causal structures KL divergence, rather than to a positive correlation

with the associative weights KL divergence or a common representation of both types of updating.

Neural correlates of causal structure updating during training predict subsequent test performance

We hypothesized that if a neural signal correlates with updating beliefs about causal structure during training, it should

also be associated with variability in behavior during the test trials. For each block and for each subject, we computed

the average parameter estimate of the causal structure KL regressors across voxels in a 27-voxel spherical region of

interest (ROI) centered on the peak voxel from each activation cluster (i.e. the peak voxels from Table 2; see Materials

and Methods). Intuitively, these averaged betas (the KL betas) correspond to how strongly the voxels from a given

ROI correlate with the causal structure KL divergence during the training trials of a given block. If a particular region

mediates structure learning, then variability in its KL beta should predict variability in test phase behavior across

blocks. Accordingly, for each subject and each ROI, we correlated the KL beta across blocks with the log likelihood

of the subject’s responses on the test trials given the model predictions. The test log likelihood indicates how closely

the subject’s responses conform to the model predictions. For example, if on a particular block subjects are updating
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Sign Brain region BA Extent t-value MNI coord.

Positive IFG pars orbitalis (R) 47 263 9.474 32 22 0

Angular gyrus (R) 39 1539 8.687 34 -64 48

IFG pars opercularis (R) 44 1411 7.483 48 20 32

Rostrolateral PFC (L) 10 1305 7.406 -40 56 6

Angular gyrus (L) 39 1500 7.343 -30 -62 40

Rostrolateral PFC (R) 10 789 7.296 36 54 0

IFG pars opercularis (L) 44 1560 6.999 -42 2 32

Supplementary motor area (L) 6 868 6.286 -6 8 52

Cerebelum (R) 660 6.217 18 -70 -24

Cerebelum (L) 1378 5.913 -6 -76 -28

Cerebelum (L) 207 5.646 -32 -68 -52

Inferior temporal gyrus (R) 20 159 5.533 62 -24 -22

Lingual gyrus (R) 19 225 5.364 12 -96 -8

Middle temporal gyrus (L) 21 187 4.367 -58 -36 -4

Negative Lateral ventricle (L) 425 -8.748 -26 -36 12

Insula (R) 13 1935 -7.211 46 -8 6

Insula (L) 13 300 -6.907 -42 -14 0

Precuneus (R) 7 443 -6.513 10 -40 52

Supramarginal gyrus (L) 40 455 -6.020 -66 -32 36

Precuneus (L) 7 368 -6.019 -12 -42 46

Table 2. Brain regions in which the BOLD signal tracks the KL divergence between the posterior and the prior

over causal structures (corresponding to Figure 5A). The voxel with the maximum t-statistic from each cluster is

also reported. Single voxels were thresholded at p < 0.001 and whole-brain cluster FWE correction was applied at

significance level α = 0.05. IFG, inferior frontal gyrus. MNI, Montreal Neurological Institute. BA, Brodmann area.
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Sign Brain region BA Extent t-value MNI coord.

Positive Inferior temporal, parietal,

and occipital gyri (L) 12042 11.091 -50 -52 -16

IFG pars triangularis (R) 45 645 7.935 36 20 26

IFG pars opercularis (L) 44 1663 7.929 -42 6 26

Supplementary motor area (L) 6 1187 7.452 -8 10 50

IFG pars orbitalis 47 181 7.334 30 26 0

Middle temporal gyrus (L) 21 542 6.088 -52 -38 -2

Thalamus and Striatum (R) 421 6.009 12 -14 2

IFG pars orbitalis (L) 47 528 5.269 -40 20 -4

Negative Lateral ventricle (L) 314 -7.449 24 -46 16

Postcentral gyrus (R) 5 390 -6.962 26 -46 62

Lateral ventricle (R) 466 -6.786 -20 -46 12

Precuneus (L) 7 572 -6.261 -26 -48 66

Postcentral gyrus (R) 1 1293 -5.853 60 -12 34

Table 3. Brain regions in which the BOLD signal tracks the KL divergence between the posterior and the prior

distribution over associative weights (corresponding to Figure 5B). Notation and procedures as in Table 2.
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Sign Brain region BA Extent t-value MNI coord.

Positive IFG pars orbitalis (R) 47 263 9.474 32 22 0

Angular gyrus (R) 39 1539 8.687 34 -64 48

Rostrolateral PFC (R) 10 746 7.948 36 54 0

Rostrolateral PFC (L) 10 881 7.045 -40 56 6

Angular gyrus (L) 39 1500 7.343 -30 -62 40

Middle frontal gyrus (R) 9 1096 6.666 40 32 22

IFG pars opercularis (L) 44 1049 6.159 -38 14 26

Supplementary motor area (L) 6 543 5.758 -6 8 52

Cerebelum (R) 304 5.498 18 -70 -24

Cerebelum (L) 394 5.417 -8 -78 -30

Cerebelum (L) 165 5.194 -32 -68 -52

Fusiform gyrus (L) 37 206 4.705 -42 -52 -14

Negative Lateral ventricle (L) 327 -8.327 -26 -36 12

Insula (R) 13 937 -6.712 46 -8 6

Insula (L) 13 169 -6.290 -42 -14 0

Supramarginal gyrus (L) 40 298 -5.876 -66 -32 36

Precuneus (R) 7 182 -5.758 10 -40 52

Temporal pole (R) 38 200 -5.419 50 4 -14

Precuneus (L) 7 192 -5.381 -12 -42 46

Table 4. Brain regions in which the BOLD signal is better explained by the causal structures KL divergence than by

the associative weights KL divergence (corresponding to Figure 5C). Notation and procedures as in Table 2.
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their structural beliefs, then their test phase performance should more closely resemble the predictions of the structure

learning model, which would be reflected in a high test log likelihood. Thus for a given ROI, a positive correlation

across subjects would indicate that the extent to which that region tracks Bayesian updating during training predicts

the extent to which test performance is consistent with causal structure learning. Importantly, since the KL betas were

estimated on the training trials preceding the test phase, this analysis would yield an unbiased assessment of the neural

predictions.

For each subject and each ROI, we thus obtained a within-subject Pearson correlation coefficient across blocks,

indicating how well the degree to which that ROI encodes structure updating predicts test choices for that subject.

For each ROI, we performed a one-sample t-test against 0 with the Fisher z-transformed Pearson’s r from all subjects

(Figure 5D). We found a significant positive relationship in right angular gyrus (t19 = 2.34, p = 0.03; mean z =

0.21±0.19; peak MNI coordinates [34 -64 48]), left angular gyrus (t19 = 2.53, p = 0.02, mean z = 0.24±0.20; peak

MNI coordinates [-30 -62 40]), and the opercular part of left IFG (t19 = 2.6, p = 0.02, mean z = 0.20± 0.17; peak

MNI coordinates [-42 2 32]). The other regions were not significant (p’s > 0.1). These results link neural variability in

correlates of Bayesian updating to individual variability in test phase choices, providing a more stringent criterion for

identifying the substrates underlying causal structure learning. We performed a similar analysis with the associative

weights KL regressor and found no significant relationship (all p’s > 0.1).

Multivariate representations of the posterior and prior distribution over causal structures

If the brain performs Bayesian inference over causal structures, as our data suggest, then we should be able to identify

regions that contain representations of the full probability distribution over causal structures before and after the

update. We thus performed a whole-brain “searchlight” representational similarity analysis (Kriegeskorte et al., 2008;

Xue et al., 2010; Chan et al., 2016) using 27-voxel spherical searchlights. For each subject, we centered the spherical

ROI on each voxel of the whole-brain volume and computed a representational dissimilarity matrix (RDM) using

the cosine distance between neural activity patterns at trial onset for all pairs of trials (see Materials and Methods).

Intuitively, this RDM reflects which pairs of trials look similar and which pairs of trials look different according to
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the neural representations in the area around the given voxel. We then used Spearman’s rank correlation to compare

this neural RDM with a model RDM based on the prior distribution over causal structures. If a given ROI encodes the

prior, then pairs of trials on which the prior is similar would also show similar neural representations, while pairs of

trials on which the prior is different would show differing neural representations. This corresponds to a positive rank

correlation between the model and the neural RDMs.

For each subject and each voxel, we thus obtained a Spearman’s rank correlation coefficient, reflecting the similarity

between activity patterns around that voxel and the prior over causal structures (the representational similarity match).

For each voxel, we then performed a one-sample t-test against 0 with the Fisher z-transformed Spearman’s ρ from all

subjects. The resulting t-values from all voxels were used to construct a whole-brain t-map (Figure 6A and Table 5).

This revealed bilateral activations in PFC near the triangular and opercular parts of IFG, as well as a region in left

inferior temporal cortex, suggesting that these areas contain multivariate representations of the prior.

We performed the same analysis using neural activations at feedback onset and the posterior over causal structures

(Figure 6B and Table 6). This revealed a broader set of regions, including a large cluster in visual cortex that extended

bilaterally into inferior temporal cortex and the angular gyri, overlapping with the regions found in the univariate

analyses. We also found bilateral activations near the triangular and opercular parts of IFG, as well as a small cluster

around the orbital part of right IFG. Taken together, these results suggest that the brain maintains representations of

the full probability distribution over causal structures, which it updates in accordance with Bayesian inference on a

trial-by-trial basis as new evidence is accumulated.
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Causal structure prior Causal structure posteriorA B

Figure 6. Representational Similarity Analysis

(A, B) Statistical maps showing regions with a high representational similarity match for the distribution over causal

structures (p < 0.001, whole-brain cluster FWE corrected at α = 0.05). The color scales represent t-values.

(A) Neural activity at trial onset matching the prior.

(B) Neural activity at feedback onset matching the posterior.

Sign Brain region BA Extent t-value MNI coord.

Positive Fusiform gyrus (L) 37 279 5.687 -22 -84 -4

IFG pars opercularis (L) 44 315 5.435 -36 12 24

IFG pars triangularis (R) 45 279 5.276 48 18 26

Table 5. Brain regions with a high representational similarity match between neural patterns at trial onset and the

prior over causal structures (corresponding to Figure 6A). The voxel with the maximum t-statistic from each cluster

is also reported. Single voxels were thresholded at p < 0.001 and whole-brain cluster FWE correction was applied at

significance level α = 0.05. Notation as in Table 2.
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Sign Brain region BA Extent t-value MNI coord.

Positive Inferior temporal, parietal,

and occipital gyri 14307 10.225 36 -84 -16

IFG (R) 44, 45, 47 1989 6.968 44 22 -4

IFG pars triangularis (L) 45 1038 6.153 -48 -2 38

Superior frontal gyrus (R) 8 253 5.360 8 20 42

Table 6. Brain regions with a high representational similarity match between neural patterns at feedback onset and the

posterior over causal structures (corresponding to Figure 6B). Notation and procedures as in Table 5.

Discussion

Behavioral evidence suggests that humans and animals infer both the structure and the strength of causal relationships

(Griffiths and Tenenbaum, 2005; Körding et al., 2007; Meder et al., 2014; Gershman, 2017). Using functional

brain imaging in humans, the current study provides neural evidence for a causal structure learning account of

the role of contextual influences on the formation of stimulus-outcome associations. The neural data support the

existence of separate learning mechanisms operating over structural and associative representations, thus reifying the

computationally hypothesized division of labor. A univariate analysis identified areas that were sensitive to belief

updates about causal structure, including regions of prefrontal, orbitofrontal and parietal cortex. Among these regions,

activation in both angular gyri (AG) and in left inferior frontal gyrus (IFG) predicted variability in test phase behavior

across blocks. Furthermore, these regions were found to be distinct from the correlates of associative learning, which

included inferior temporal and visual areas. In addition, a representational similarity analysis revealed brain areas

that appear to represent the full probability distribution over causal structures. Regions representing the posterior

overlapped with regions involved in updating the posterior, including bilateral AG and IFG. Representation of the

prior at trial onset also appeared in bilateral IFG.

These results build on previous work that has implicated some of these areas in different forms of learning and decision
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making. We found activations related to weight updating in regions commonly linked to reinforcement learning,

such as the ventral striatum, an area that has been associated with the prediction error signal in temporal difference

reinforcement learning (O’Doherty et al., 2003; Gläscher et al., 2010). In our model, associative learning also involves

the computation of an error term (the difference between the observed and the expected outcome; see Materials and

Methods), which is used to revise the posterior distribution over weights.

Our finding that activity in inferior parietal cortex correlates with both kinds of learning could be related to previous

reports of elevated AG activity for relational associations (Schwartz et al., 2011; Boylan et al., 2017), evidence

accumulation (d’Acremont et al., 2013), and insights (Aziz-Zadeh et al., 2009). The AG has also been implicated

in reorienting attentional selection based on task history (Taylor et al., 2011), responding to salient new information

(Singh-Curry and Husain, 2009), and bottom-up attentional shifts towards relevant stimuli that were previously ignored

(Downar et al., 2000; Ciaramelli et al., 2008). Gläscher et al. (2010) showed that AG encodes the state prediction

error in model-based reinforcement learning, reflecting the discrepancy between the current model and the observed

state transitions. Another notable study by O’Reilly et al. (2013) found that AG encodes the discrepancy between

the prediction of a prospective model that combines prior experience with a dynamic feed-forward simulation and the

prediction of a retrospective model that is based on task history alone, which they operationalized as the KL divergence

between the two outcome probability distributions. The same study found that AG also tracks the KL divergence

between the posterior and the prior outcome probability distributions predicted by retrospective model. AG has also

been implicated in schema memory (Gilboa and Marlatte, 2017), particularly in encoding new associations into a

schema (van Buuren et al., 2014). Seghier (2013) has attempted to unify the diverse roles of AG by proposing that

the region acts as an integrator of bottom-up multimodal input and top-down predictions from frontal areas, with the

resulting output then fed back to adjust the higher-level predictions. Our finding that AG activates for both structure

updating and weight updating (albeit in anatomically distinct loci), and predicts subsequent choice behavior, fits with

the idea that AG acts as a cross-modal hub that integrates prior knowledge with incoming information.

One candidate region where such top-down predictions might originate is lateral prefrontal cortex, an area with strong

functional connectivity with the inferior parietal lobule (IPL, which includes AG) (Vincent et al., 2008; Boorman et
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al., 2009). Previous studies on cognitive control (Koechlin et al., 2003; Koechlin and Summerfield, 2007; Badre and

D’Esposito, 2007) have proposed the existence of a functional gradient in lateral PFC, with more anterior regions

encoding representations of progressively higher levels of abstraction, culminating in rlPFC. Donoso et al. (2014)

found evidence that rlPFC performs inference over multiple counterfactual strategies by tracking their reliability,

while the triangular part of IFG is responsible for switching to one of those strategies if the current one is deemed

unreliable. If causal structures are likened to alternative strategies, then these results may relate to our finding

that rlPFC tracks structure updating, while IFG tracks both structure and weight updating. These updates can be

interpreted as discrepancies indicating that the current causal structure and/or its associative weights are unreliable,

thus warranting a revision of the weights or a switch to an alternative causal structure.

Our results also resonate with follow-up work on hierarchical reinforcement learning (Badre et al., 2010; Frank and

Badre, 2012), which extends the notion of a functional hierarchy in lateral PFC to the acquisition of abstract latent

rules that guide stimulus-outcome associations. Frank and Badre (2012) proposed a Bayesian mixture of experts

(MoE) model which arbitrates between hypotheses about stimulus features that are relevant for predicting the outcome,

assigning greater weight to experts that make better predictions. Most pertinent to our study is a model developed by

Collins and Frank (2016) that groups different mappings between stimulus features and responses into distinct task

sets. Different contextual stimuli can elicit different task sets, akin to the occasion-setting function of modulatory

context in our study.

Despite the apparent similarities, there are several notable distinctions between our theoretical framework and those

previous modeling efforts. The term “structure” is used with a different meaning in those studies, either referring to the

hierarchical structure of the hypothesis space (Frank and Badre, 2012), or to the mapping between contextual stimuli

and task sets (Collins and Frank, 2016). While the model of Collins and Frank (2016) can support an infinite number

of task sets, it does not model summation across cues, and therefore cannot represent the additive causal structure

from our study. Some form of summation is widely believed to be important for capturing classic animal learning

phenomena such as blocking, overshadowing, and overexpectation (Rescorla and Wagner, 1972; Soto et al., 2014).
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Our results point to potential avenues for future research that could further interrogate the functional role of the regions

we identified. For example, if AG supports causal structure updating, as our data suggest, then temporarily disrupting

it during the first half of training (e.g., using transcranial magnetic stimulation) should result in the same response

pattern on the test trials across all conditions, since subjects would not be able to update their structural beliefs and to

infer different causal structures in the different task conditions. On the other hand, disrupting AG during the second

half of training should have little impact on test responses, as learning has usually plateaued by then. Conversely, if

the areas identified in lateral PFC maintain the full distribution over causal structures, then disrupting them during the

first half of training may slow down learning but would not necessarily result in uniform test responding, as subjects

would still be able to catch up during the second half of training. However, disrupting those regions during the second

half of training could affect the learned distribution over causal structures and result in uniform test response patterns

across all conditions.

An important question that remains open is how structure learning might be implemented in biologically realistic

neural circuits. Tervo et al. (2016) noted the parallels between the hierarchical architecture of cortical circuits and the

hierarchical nature of structure learning, with empirical evidence suggesting that different layers of the hierarchy tend

to be associated with separate cortical circuits. If the brain indeed performs Bayesian inference over causal structures,

this raises the more fundamental question of how ensembles of neurons could represent and perform operations on

probability distributions. Different theories have been put forward, ranging from probabilistic population codes to

Monte Carlo sampling (Pouget et al., 2013). Teasing apart the different possible mechanisms would require developing

behavioral frameworks that lend themselves to computational modeling and quantitative predictions about the inferred

probability distributions (Tervo et al., 2016). We believe this study is an important step in that direction.

In summary, we used a combination of behavioral, neural and computational techniques to tease apart the neural

substrates of structure learning and associative learning. Inference over the space of causal structures recruited

prefrontal regions that have been previously implicated in higher-order reasoning and state representations (rlPFC and

OFC), whereas learning the associative weights activated regions that have been implicated in reward-based learning

(ventral striatum). Both forms of learning elicited bilateral activations in IFG and AG, a region involved in integrating
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multimodal sensory input with top-down predictions. Moreover, activity in the voxels that correlated most strongly

with causal structure updating in AG and IFG predicted the similarity between subsequent subject behavior and the

predictions of the causal structure learning model. Finally, representational similarity analysis revealed regions that

encode the full distribution over causal structures: a multivariate signature of the prior was found in IFG, while the

posterior was associated with a broader set of brain areas, including IFG, AG, and inferior temporal cortex. Together,

these results provide strong support for the idea that the brain performs probabilistic inference over latent structures in

the environment, enabling inductive leaps that go beyond the given observations.
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