- 1
- 2

3 A-to-I RNA editing uncovers hidden signals of adaptive genome evolution in

- 4 animals
- 5 Niko Popitsch^{1,2,§}, Christian D. Huber^{3,§}, Ilana Buchumenski⁴, Eli Eisenberg⁵, Michael Jantsch^{6,7},
- 6 Arndt von Haeseler^{8,9} and Miguel Gallach^{9,*}.
- ⁷ ¹Oxford NIHR Biomedical Research Center, Wellcome Trust Center for Human Genetics.
- 8 University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
- 9 ²Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, A-1090 Vienna, Austria
- ³Department of Ecology and Evolutionary Biology, University of California, Los Angeles.
- 11 621 Charles E. Young Drive South. Los Angeles, CA 90095-1606. USA.
- ⁴The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan
- 13 52900, Israel.
- ⁵Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of
- 15 Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
- ⁶Department for Cell- and Developmental Biology, Center for Anatomy and Cell Biology.
- 17 Medical University of Vienna. Schwarzspanierstrasse 17. A-1090 Vienna. Austria.
- ¹⁸ ⁷Department for Medical Biochemistry. Max F. Perutz Laboratories. Medical University of
- 19 Vienna. Dr. Bohr Gasse 9. A-1030 Vienna. Austria.
- ⁸Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna,
- 21 A-1090 Vienna, Austria.
- ⁹Center for Integrative Bioinformatics Vienna. Max F. Perutz Laboratories, University of Vienna
- 23 and Medical University of Vienna, A-1030 Vienna, Austria.
- 24
- 25 § These authors contributed equally to this work
- 26 *Correspondence to: miguel.gallach@univie.ac.at.
- 27
- 28
- 20
- 29
- 30
- 31
- 32
- 33
- 34

35 Abstract

36	In animals, the most common type of RNA editing is the deamination of adenosines
37	(A) into inosines (I). Because inosines base-pair with cytosines (C), they are interpreted as
38	guanosines (G) by the cellular machinery and genomically encoded G alleles at edited sites
39	mimic the function of edited RNAs. The contribution of this hardwiring effect on genome
40	evolution remains obscure. We looked for population genomics signatures of adaptive
41	evolution associated with A-to-I RNA edited sites in humans and Drosophila melanogaster.
42	We found that single nucleotide polymorphisms at edited sites occur 3 (humans) to 15 times
43	(Drosophila) more often than at unedited sites, the nucleotide G is virtually the unique
44	alternative allele at edited sites and G alleles segregate at higher frequency at edited sites
45	than at unedited sites. Our study reveals that coding synonymous and nonsynonymous as
46	well as silent and intergenic A-to-I RNA editing sites are likely adaptive in the distantly related
40	, , , , , , , , , , , , , , , , , , , ,
47	human and <i>Drosophila</i> lineages.
47	
47 48	human and <i>Drosophila</i> lineages.
47 48 49	human and <i>Drosophila</i> lineages.
47 48 49 50	human and <i>Drosophila</i> lineages. Introduction Through a single nucleotide modification, A-to-I RNA editing may impact the stability of
47 48 49 50 51	human and <i>Drosophila</i> lineages. Introduction Through a single nucleotide modification, A-to-I RNA editing may impact the stability of the corresponding RNA molecule, recode the original protein sequence, and eventually
47 48 49 50 51 52	human and <i>Drosophila</i> lineages. Introduction Through a single nucleotide modification, A-to-I RNA editing may impact the stability of the corresponding RNA molecule, recode the original protein sequence, and eventually modulate its biological function. The role of RNA editing in animal evolution is not well
47 48 49 50 51 52 53	human and <i>Drosophila</i> lineages. Introduction Through a single nucleotide modification, A-to-I RNA editing may impact the stability of the corresponding RNA molecule, recode the original protein sequence, and eventually modulate its biological function. The role of RNA editing in animal evolution is not well understood. A widely accepted hypothesis suggests that A-to-I RNA editing at nonsynonymous

57	be rarely substituted by G nucleotides compared to unedited A sites (hypothesis H1, Table 1).
58	Contrary to this prediction, it was shown that A-to-G nucleotide substitutions between species
59	are more frequent at edited sites than at unedited sites[4,5]. An alternative hypothesis
60	(hypothesis H2, Table1) suggests that nonsynonymous A-to-G nucleotide substitutions between
61	species are more tolerated (i.e., less deleterious) at edited sites than at unedited sites[4],
62	explaining the difference in A-to-G substitution rates. Finally, a third hypothesis (hypothesis H3,
63	Table1) proposes that G nucleotide sites are the ancestral state of currently edited A sites, and
64	that A-to-I RNA editing is a compensation mechanism to reverse the harmful A phenotype
65	caused by G-to-A mutations[5–7]. However, the fact that the editing level is far below 100% (for
66	instance, in <i>D. melanogaster</i> the average editing level is 23%[8]) suggests that A-to-I RNA
67	editing would rarely overcome the deleterious effects of the G-to-A mutations. In any case,
68	each hypothesis predicts different evolutionary outcomes for the non-synonymous edited sites
69	compared to unedited sites (Table 1).
70	
71	To our knowledge, most studies have applied a phylogenetic approach to detect
72	footprints of adaptive evolution of A-to-I RNA editing at coding regions[9–12]. Here, we employ
73	a population genomics approach to search for signatures of selection in both coding and non-
74	coding regions of the genome. To this end, we integrated the <i>D. melanogaster</i> and human
75	editomes into population genomics data and investigated the population genetic patterns of
76	the A-to-I RNA editing sites. Our study contradicts several predictions from previously
77	suggested hypotheses and suggests a new adaptive role of A-to-I RNA editing in Drosophila and
78	humans.

79

80 Results

81 Polymorphism patterns suggest adaptive editing in *Drosophila*

82 We analyzed *D. melanogaster* genome data from the *Drosophila* Genetics Reference

83 Panel 2 (DGRP2)[13], consisting of 205 sequenced inbred lines derived from Raleigh (NC), U. S.

84 A., and two additional wild populations collected in Florida (FL) and Maine (ME), U. S. A.,

85 consisting of 39 and 86 pool-sequenced inbred lines, respectively[14]. We investigated genome-

86 wide nucleotide polymorphisms across more than 171 million nucleotide sites, 3,581 of them

87 corresponding to known edited sites occurring in 1,074 genes[8]. We found that 15% (FL and

ME) to 21% (DGRP2) of the edited sites are polymorphic, in sharp contrast to the 1% to 2%

89 found among unedited sites (Table 2). This result does not support hypothesis H1 (Table 1),

90 which predicts reduced polymorphisms at edited sites, but may be compatible with the

91 hypotheses H2 and H3 (Table 1) which predict similar or slightly increased polymorphism at

92 edited sites. Thus, according to the original study from where hypothesis H2 is derived[4], A-to-

93 G nonsynonymous substitutions at edited sites are twice as frequent compared to

94 nonsynonymous unedited sites (6.92% / 2.98% = 2.32). Although this study[4] compares

95 humans and mice (not Drosophila), the 2.32-fold difference is far below the 10- (DGRP2) to 15-

96 fold (FL and ME) increase in polymorphic rate at edited sites. We did not find a clear

97 quantitative prediction for hypothesis H3[5–7]. Remarkably, we found that the G nucleotide is

98 the alternative allele in at least 98% of the polymorphic edited sites (including both silent and

99 non-synonymous ones), but only in ~47% of the unedited polymorphic sites (Table 2). The

100 percentage of each polymorphism type at unedited sites fits the transition (A-to-G) and

101	transversion mutation (A-to-C and A-to-T) frequencies in <i>Drosophila</i> [15]. This result seems
102	incompatible with hypotheses H1-H3 as all polymorphism types should be found, at least at
103	silent edited sites (Table 1).
104	
105	These observations hold two important implications: 1) because C and T alleles are
106	virtually absent at edited sites, A-to-I RNA editing is functionally constrained and likely adaptive
107	relative to C and T, and 2) unless the A-to-G mutation rate is much higher at edited sites than at
108	unedited sites due to an unknown molecular mechanism, the 10 to 15-fold increase in
109	nucleotide polymorphism indicate that the G allele is likely adaptive at edited sites (hypothesis
110	H4, Table1). We thus looked for additional evidence supporting the adaptive hypothesis.
111	
112	Derived G alleles at edited sites are likely adaptive in Drosophila
113	Among the 3,581 edited sites in <i>Drosophila</i> , 1,015 are protein coding nucleotides.
114	Because of the potential deleterious effects caused by mutations in coding regions, nucleotide
115	polymorphisms in such regions are expected to be similar or even lower than in noncoding
116	regions[16]. This is what we see for unedited sites, where nucleotide polymorphisms remain at
117	2% (DGRP2) or even decreases from 1% to 0.5% (FL and ME; S1 Table). In contrast, nucleotide
118	polymorphism at edited sites increases, on average, from 17% to 25% if we only consider
119	coding regions. In other words, edited sites show a 16- to 44-times higher polymorphic rate
120	than unedited sites at coding regions (S1 Table). This observation is not predicted by the
120 121	than unedited sites at coding regions (S1 Table). This observation is not predicted by the hypotheses H1-H3 (Table 1) and prompted us to further investigate the relative contribution of

123 unedited sites.

124

125	To understand the A,G polymorphism on a genome wide scale, we scanned the
126	reference genome for coding A sites where a G mutation would result in a synonymous change.
127	We found <i>S</i> = 777,461 A sites in the reference genome that would result in synonymous
128	changes if replaced by G, 84,246 of which are actual synonymous A,G polymorphisms in the
129	DGRP2 population, thus leading to a genomic rate of synonymous A,G polymorphisms f_s^{DGRP2} =
130	84,246 / $S = 0.108$. Similarly, we computed for edited sites the rate of synonymous A,G
131	polymorphisms (251) per potentially synonymous A,G site (S^{edited} = 370) as $f_s^{edited, DGRP2}$ = 251 /
132	S^{edited} = 0.678. For the FL and ME populations we computed $f_s^{edited,FL}$ = 0.524, f_s^{FL} = 0.029 and
133	$f_s^{edited,ME}$ = 0.511, f_s^{ME} = 0.027, respectively. Therefore, the rate of synonymous A,G
134	polymorphisms for edited sites is 6 to 19 times higher than for unedited sites in Drosophila. This
135	result is rather inconsistent with hypotheses H1-H3 (Table 1) that predict similar rates of
136	synonymous polymorphism at edited and unedited sites. Remarkably, for nonsynonymous sites,
137	the differences between rates are even more pronounced: $f_n^{edited, DGRP2} = 0.105$ and $f_n^{DGRP2} = 0.105$
138	0.007, which implies a 15-fold increased rate for edited nonsynonymous sites in DGRP2, while
139	for the ME and FL populations the rate increase is 45-fold and 51-fold, respectively (Table 3).
140	
141	A common way to determine the evolutionary force driving coding sequence evolution
142	is the ratio of the number of nonsynonymous substitutions per nonsynonymous site (d_N) to the
143	number of synonymous substitutions per synonymous site (d_s). The estimates of f_s and f_n fall

144 within the distribution of d_s (0.030 – 0.128; 5th and 95th percentiles, respectively) and d_N (0.000

- 0.022; minimum and 95th percentile, respectively) estimations for *D. melanogaster* genes[17]. 145 146 We therefore applied the same reasoning behind the d_N / d_S ratio[18] to our f_s and f_n estimations. This is: if selection does not act on synonymous sites, then $f_n^{edited} / f_s^{edited} > 1$ may 147 148 be considered as an evidence of positive selection on nonsynonymous edited sites. However, the large polymorphism rate that we observe for edited sites and the fact that $f_s^{edited(mean)} \sim 14 \text{ x}$ 149 150 f_s^{mean} indicates that edited synonymous sites are not neutral but likely adaptive due to the 151 pervasive roles of RNA editing in the posttranscriptional regulation of gene expression[19,20]. We therefore used $f_s^{mean} = 0.055$ as the neutral rate for synonymous A,G polymorphisms in the 152 genome, and obtained $f_n^{edited(mean)} / f_s^{mean} = 1.34$ (P = 0.012, one-sided Binomial test for the null 153 hypothesis $f_n^{edited(mean)} \leq f_s^{mean}$). We conclude that the alleles encoding the same protein variant 154 155 that is obtained through A-to-I RNA editing are likely adaptive.

156

157 According to population genetics theory, if the G alleles at polymorphic edited sites 158 were adaptive, they would segregate at higher frequencies than G alleles at unedited sites 159 originated at the same time[21]. This effect should be detectable by comparing the allele 160 frequency spectrum for edited and unedited A,G polymorphisms. We used D. simulans 161 population genomics data[16] to infer the ancestral state (i.e., polarize) of the polymorphic A-162 sites across the genome in the DGRP2 population and to be confident that the derived G alleles 163 at edited and unedited sites are of similar age. We detected 462,498 A-to-G polymorphisms 164 across the genome where the (derived) G allele most likely originated in *D. melanogaster*'s 165 lineage, 303 of them occurring at edited sites (S2 Table). Fig 1a displays the allele frequency 166 spectrum of the derived G alleles at edited and unedited A-to-G polymorphic sites. Remarkably,

167	the frequency spectrum for the derived G alleles at edited sites is shifted to the right and quite
168	distinct from that of unedited sites and from the expected allele frequency spectrum under
169	neutral evolution, indicating that a significant fraction of A-to-G mutations at edited sites is
170	likely adaptive. Our analysis in FL and ME populations supports this observation (S1 and S2
171	Figs). Because 266 (i.e., 88%) of the 303 polarized polymorphisms correspond to non-coding
172	edited sites, the allele frequency spectrum analysis reveals a likely functional role of noncoding
173	edited sites and endorses the use of f_s^{mean} = 0.055 as the neutral rate for A, G polymorphisms in
174	the genome (see previous paragraph). This result is incompatible with the hypotheses H2 and
175	H3, as the frequency spectrum for the derived G-allele at non-coding edited sites should fit the
176	neutral expectation (Table 2).
177	
1//	
178	Differentiated genomic footprints around edited and unedited sites in Drosophila
	Differentiated genomic footprints around edited and unedited sites in Drosophila Two different scenarios may explain the higher frequency of the derived G allele at
178	
178 179	Two different scenarios may explain the higher frequency of the derived G allele at
178 179 180	Two different scenarios may explain the higher frequency of the derived G allele at edited sites: directional selection in favor of the G allele or long-term balancing selection. We
178 179 180 181	Two different scenarios may explain the higher frequency of the derived G allele at edited sites: directional selection in favor of the G allele or long-term balancing selection. We further looked for genomic signatures across the polarized polymorphisms that helped us to
178 179 180 181 182	Two different scenarios may explain the higher frequency of the derived G allele at edited sites: directional selection in favor of the G allele or long-term balancing selection. We further looked for genomic signatures across the polarized polymorphisms that helped us to
178 179 180 181 182 183	Two different scenarios may explain the higher frequency of the derived G allele at edited sites: directional selection in favor of the G allele or long-term balancing selection. We further looked for genomic signatures across the polarized polymorphisms that helped us to distinguish between these two scenarios.
178 179 180 181 182 183 184	Two different scenarios may explain the higher frequency of the derived G allele at edited sites: directional selection in favor of the G allele or long-term balancing selection. We further looked for genomic signatures across the polarized polymorphisms that helped us to distinguish between these two scenarios. According to the theory of selective sweeps, a new adaptive mutation appears on a

188 diversity in genomic regions around polymorphic edited sites compared to unedited sites. We

189	computed the number of single nucleotide polymorphisms (SNPs) in 10kb windows centered on
190	edited A-to-G polymorphisms across the genome and tested whether these windows had the
191	same nucleotide diversity than those centered on unedited A-to-G polymorphisms (Fig 1b). The
192	average number of SNPs are 346, 125 and 116 for windows centered on edited sites (DGRP, FL
193	and ME, respectively) and 398, 144 and 131 for windows centered on unedited sites (DGRP, FL
194	and ME, respectively). Such a reduction of nucleotide diversity is significant in the three
195	populations ($P < 10^{-4}$ for each paired comparison; one-sided Mann-Whitney-U test) and a
196	similar reduction of diversity is observed for 1kb windows (S3 Fig).
197	
198	Another prediction of directional selection is that, because the adaptive G allele
199	increases in frequency relatively fast, it will locate on an unusually long haplotype of low
200	nucleotide diversity[23]. On the other hand, the haplotypes carrying the original A allele should
201	be shorter than the haplotypes carrying the adaptive G allele but of similar length to haplotypes
202	from a neutral genomic background. We used the genotypes of the 205 inbred lines from the
203	DGRP2 to compute the integrated haplotype score (iHS)[23], an index that compares the
204	extended homozygosity of the haplotypes carrying the derived G allele with that of the
205	ancestral A allele. The iHS values at unedited A-to-G polymorphism (median iHS = 0.003)
206	indicate that the haplotypes carrying the alleles at unedited SNPs have the same length and are
207	likely neutral[23]. In contrast, the negative median iHS = -0.202 at edited A-to-G polymorphism
208	(Fig 1c) indicate unusually long haplotypes carrying the derived G allele and suggest that these
209	haplotypes have increased in frequency faster than neutral expectation. However, when testing
210	one edited site at a time, only 12 of the iHS values are significant (<i>P</i> < 0.05, one-sided t-test for

the null hypothesis $iHS^{edited} \le iHS^{unedited}$), revealing the limitations of our analysis (see Discussion for further details).

213

214 The reduced nucleotide diversity near the edited A-to-G polymorphism and the longer 215 haplotypes carrying the derived G alleles at edited sites is inconsistent with long term balancing 216 selection, as a prediction of balancing selection is a local increase in nucleotide diversity[24]. To 217 further evaluate long term balancing selection as one reason for the higher population 218 frequency of the derived G allele at edited sites, we tested whether the local increase in 219 nucleotide diversity relative to nucleotide divergence (i.e., fixed differences between species) is 220 stronger near polymorphic edited sites than near polymorphic unedited sites[24]. To do so, we 221 gathered a total of 100 nucleotide sites upstream and downstream of the polarized A-to-G 222 polymorphisms across the genome, where a site is either a SNP or a fixed difference between 223 D. melanogaster and D. simulans. For each window, we computed a log-likelihood ratio (LLR) 224 that compares a balancing selection model against a neutral model based on the background 225 genome pattern of polymorphisms[24]. Our analysis shows that the likelihood of the balancing 226 selection model relative to that of the neutral model is lower in windows centered on A-to-G 227 polymorphic edited sites than in windows centered on A-to-G polymorphic unedited sites (Fig 228 1d). The average LLRs comparing both models are 78, 120 and 111 for windows centered on A-229 to-G edited sites (DGRP2, FL and ME, respectively) and 83 and 136 for windows centered on A-230 to-G unedited sites (DGRP2 and both FL and ME, respectively). This result indicates that the 231 signal of balancing selection is less prominent at A-to-G edited sites than at A-to-G unedited 232 sites.

233

234	Differentiated polymorphism pattern and allele frequency spectrum between edited
235	and unedited sites of <i>Alu</i> repeats
236	We further applied our comparative analysis in humans to determine whether the
237	selective footprints found in Drosophila were unique to this lineage or, otherwise common
238	between these two distantly related species. Because the human genome is about two orders
239	of magnitude larger than <i>Drosophila</i> 's, several difficulties arose, in particular: the list of (coding)
240	edited sites is proportionally shorter than in <i>Drosophila</i> (in part due to the filtering by SNPs that
241	is normally done to annotate the human editome) and the proportion of homologous
242	nucleotide sites sequenced in other apes' genomes (needed to polarize polymorphisms) is
243	greatly reduced. Consequently, our approach in humans is inevitably more challenging and
244	limited than in Drosophila. For instance, in our first attempt to apply our approach to humans,
245	we integrated a recent list of 2,042 known coding edited sites[9] into a population genomics
246	database compiled from the 1,000 Genomes Project[25] and the Great Ape Genome
247	Project[26]. However, only 10 of the 2,042 edited sites were represented in our database,
248	impeding any further genome-wide analysis.
249	
250	Because humans have more than a million copies of Alu[27] and virtually all adenosines

within *Alu* repeats that form double-stranded RNA undergo A-to-I editing[28], we used our population genomic approach on *Alus*. By using *Alus* we are limiting our analysis to silent (most genic *Alu* repeats occur in introns and 3' UTRs) and intergenic A sites, but we gain in numbers enough to look for genome-wide polymorphism patterns. With this in mind, we analyzed RNA-

255 Seg data from 105 control (healthy) breast samples from The Cancer Genome Atlas (TCGA) and 256 annotated de novo a list of 28,322 highly-edited sites at Alu repeats, 1,838 of them represented 257 in our database (1,208 genic and 630 intergenic; Table 2). Remarkably, we found a 3-fold 258 increase in the nucleotide polymorphism at edited Alu sites (19%) compared to unedited Alu A-259 sites (6%) located in genes. In addition, the G nucleotide is the alternative allele in 97% of the 260 polymorphic edited sites, but only in 58% of the unedited polymorphic sites (Table 2). We used 261 chimpanzee and bonobo population genomic data to infer the ancestral state of the A,G 262 polymorphisms occurring at genic Alus, and compared the frequency spectrum of the derived G 263 alleles segregating at edited and unedited sites. Fig 1e shows that derived G alleles at edited 264 sites segregate at higher frequency than derived G alleles at unedited sites. Notably, we 265 observed a similar nucleotide polymorphism pattern (Table 2) and allele frequency spectrum 266 (S5 Fig) for edited sites in intergenic Alu repeats. Our study in humans therefore confirms our 267 results in Drosophila and suggest that a significant fraction of A-to-G mutations at edited sites is 268 also adaptive in humans, including those occurring in intergenic regions. 269 270 Discussion 271 The binary classification (edited/unedited) of Drosophila and human population 272 genomic data based on a posttranscriptional modification uncovered an evolutionary footprint

that, otherwise, would remain hidden. Several of these footprints seem incompatible with the

274 current hypotheses on the evolution of A-to-I RNA editing and prompt us to suggest an

additional hypothesis that may better explain our results.

276

277 The extraordinary differences of the polymorphic rates and polymorphism types 278 between edited and unedited sites are very unlikely affected by differences in the usage of 279 synonymous codons (Fig 2a), gene expression level (Fig 2b) or recombination rates (Fig 2c and 280 S4 Fig) between edited and unedited sites. Higher GC biased gene conversion (i.e., the unequal 281 exchange of genetic material between homologous loci) is also an unlikely source of bias as 282 there is no GC biased gene conversion in *Drosophila*[29] and we restricted our analysis in 283 human to A-sites of Alu elements, ensuring identical local sequence for both edited and 284 unedited sites. In addition, we did no find significant differences in the nucleotide composition 285 around edited and unedited A-sites in *D. melanogaster* that might suggest context-driven local 286 mutation rates (Fig 2d). Finally, we found similar results for Drosophila and human out of 287 different editing annotation strategies and population genomic datasets, suggesting that 288 annotation artifacts are not likely affecting our analysis.

289

290 The fact that the nucleotides C and T are virtually absent at edited sites suggest strong 291 functional constraints upon edited A-sites in humans and flies. This implies that the relative 292 fitness (s) of edited A-sites is much higher than that of the alternative C and T alleles ($s_A >> s_{C,T}$). 293 In addition, the fact that derived G alleles at edited A-sites segregate at higher frequencies than 294 expected (Fig 1a and 1e) indicates that the A-to-G mutations at edited sites are generally 295 adaptive. In other words: $s_G > s_A >> s_{C,T}$ at edited sites. These two observations are also difficult to explain according to the current hypotheses on editing and shed light on the adaptive roles 296 297 of the G mutations at edited sites and on the A-to-I RNA editing itself. Our hypothesis is that a 298 genomically encoded G nucleotide is generally adaptive at edited sites because it mimics the

299	function of the edited RNA. This implies that A-to-I RNA editing is also generally adaptive
300	(hypothesis H4, Table 1). If A-to-I RNA editing were not adaptive, the G allele would not reveal
301	signatures of adaptation and C and T alleles would be also found at edited SNPs (both coding
302	and non-coding).
303	
304	We showed that directional selection in favor of the derived G allele is more likely than
305	balancing selection acting at A,G polymorphic edited sites. However, the evidence is weak for
306	several reasons. First, we can only analyze incomplete selective sweeps because we do not
307	know which G nucleotide sites currently fixed in <i>D. melanogaster</i> were edited A-sites in the
308	past. Second, the selection strength may depend on the dominance of the derived G allele. For
309	instance, it is likely that the dominance has a more prominent effect at nonsynonymous G
310	mutations than at silent mutations. Third, although directional selection may be more
311	prominent, balancing selection may still occur at some edited sites. Despite these limitations,
312	by averaging over many sites, the footprint for directional selection, and not balancing
313	selection, becomes more evident (but not conclusive).
314	
315	The adaptive potential of A-to-I RNA editing by modifying the protein sequence have
316	been recently proven. Garrett and Rosenthal[30] showed that the editing level of the mRNA
317	encoding the octopus' potassium Kv1 channels correlates with the water temperature where

- 318 the octopus' species were captured. Most importantly, a concomitant physiological
- 319 amelioration at cold Antarctic temperatures indicates that RNA editing may play a significant
- 320 role in thermal adaptation in this species. The important role of A-to-I RNA editing on

321	posttranscriptional regulation, including editing of genic Alu sequences[1], also suggest an
322	adaptive potential of editing as a checkpoint to gene expression control. In summary, the
323	adaptive role of the G mutation at edited sites may come in two ways: by encoding the same
324	protein variant and "encoding" the same RNA secondary structure as in the edited RNA.
325	
326	The adaptive role of the G mutations at edited A-sites of intergenic Alu repeats is less
327	obvious to explain. It has been shown that ADAR1 mutants over-express genes containing
328	edited Alu repeats and that Alu editing is involved in the nuclear retention of the cognate
329	mRNA[31]. We suggest that A-to-I RNA editing (and A-to-G mutations mimicking the editing
330	function) might be an adaptive mechanism to prevent the deleterious effect of
331	retrotransposition of intergenic Alu repeats and could work in two flavors: 1) by silencing the
332	expression of the Alu repeats or 2) by retaining the transcribed Alu repeats to impede their
333	retrotranscription in the cytoplasm.
334	
335	We expect that new population genomics data and new editome annotations will help
336	us to find additional signs of positive selection in other animal classes and confirm the pervasive
337	adaptive potential that A-to-I RNA editing offers to these two distantly related species, D.
338	melanogaster and human. Our novel approach will hopefully help to expose similar genome-
339	wide adaptive patterns associated with the expanding epitranscriptome landscape.
340	

341 Methods

342 **Population genomic data**

- 343 We downloaded the genotypes of the 205 inbred lines annotated in the *Drosophila*
- 344 Genetic Reference Panel 2[13] (<u>http://dgrp2.gnets.ncsu.edu/</u>). In addition, we also analyzed
- 345 pooled DNA-Seq data from *D. melanogaster* flies collected in 2010 from outbred populations in
- 346 Maine (86 lines) and Florida (39 lines)[14]. We trimmed 101 bp paired-end reads with
- 347 ConDeTri[32] using the following parameters: hq=20, lq=10, frac=0.8, minlen=50, mh=5, ml=1,
- 348 and mapped with NextGenMap[33] the remaining reads longer than 50 bp to the D.
- 349 *melanogaster* reference genome, release r5.40 (<u>ftp://ftp.flybase.net/genomes/</u>). Next, we
- removed reads with a mapping quality value lower than 20 with SAMtools[34]. We called SNPs
- for each dataset when the coverage was \geq 10 at this nucleotide site and at least two reads
- 352 carried the alternative allele.
- 353

A pileup from 6 *D. simulans'* sequenced genomes was downloaded from the *Drosophila* Population Genomics Project (<u>http://www.dpgp.org/</u>). We used UCSC's liftover tool[35] to convert dm2 coordinates into dm3 coordinates (BDGP Release 5).

357

Primate population genomic data was downloaded from the Great Ape Genome Project[26]. We converted the coordinates from hg18 to hg19 using liftover and used hg19 nucleotide site ID to merge the Great Ape population genomics data with the human data from the 1,000 Genomes Project[25]. The merged population genomics database consists of 179,546,112 entries indicating homologous nucleotide sites in great apes and allele frequency

information in humans.

364

365 A-to-I RNA editing data

366 We used the latest annotation of the A-to-I RNA editing sites in *D. melanogaster*, which 367 consists of 3,581 sites[8]. In this study, editing events were called when G allele expression was 368 detected from a homozygous AA genotype. The potential editing sites were further confirmed by the absence of G allele expression at putative editing sites in ADAR^{-/-} mutants generated 369 370 from the same isogenic line. 371 372 We annotated *de novo* the A-to-I RNA editing sites occurring in *Alu* repeats in a 373 conservative way. Briefly, we mapped RNA-Seq data from 105 control (healthy) breast tissue 374 samples available at The Cancer Genome Atlas (TCGA) project (http://cancergenome.nih.gov/) 375 against the human reference genome (hg19) with STAR aligner v2.3.0[36]. Only uniquely 376 mapped reads with less than 5% mismatches were kept for further analysis, allowing us to test 377 a total of 148,961,882 A sites for A-to-I RNA editing. For the purpose of this study, we defined a 378 site to be edited if 1) the G allele were found at >1% of the reads in >50% of the breast samples 379 and 2) the G allele was not found in the dbSNP (build 146) at frequency >0.5. Otherwise, the A 380 site was defined as unedited. This definition allowed us to detect 28,322 highly edited sites out 381 of the ~149 million A sites tested.

382

383 Polarizing A-to-G mutations in D. melanogaster and human

384 We downloaded pairwise *D. melanogaster/D.simulans* axt alignment files from UCSC

385	(http://hgdownload.soe	e.ucsc.edu/goldenPath	/dm3/vsDroSim1/)). A script was	generated to
-----	------------------------	-----------------------	------------------	-----------------	--------------

- 386 parse the alignment files and detect the homologous sites in *D. simulans* reference genome and
- 387 in six additional *D. simulans* genomes downloaded from the *Drosophila* Population Genomics
- 388 Project (<u>http://www.dpgp.org/</u>). A-to-G mutations were inferred to occur on the D.
- 389 *melanogaster* lineage (DGRP, ME and FL populations) when the homologous site in the D.
- 390 *simulans* lines was A (i.e., monomorphic in *D. simulans* population).
- 391

We parsed the pileup file from the Great Ape Genome Project and compiled the list of human A,G SNPs that likely originated by A-to-G mutation in the human lineage. The ancestral state of an A,G polymorphism was already inferred in the original study and stored in the pileup file as *node 18*[26].

- 396
- 397 Allele frequency spectrum

Low coverage in pool-sequencing experiments may inflate the frequency estimation of alleles segregating at low frequencies. We tested for different coverage among edited and unedited polymorphisms and for a correlation between coverage and minor allele frequency in ME and FL populations. S2 Fig shows that the coverage is not different between edited and unedited sites and that allele frequency and coverage do not correlate. Therefore, we are confident that the higher frequency of the G allele in edited sites is not due to an artifact associated with coverage.

405

406

After polarizing the polymorphism data with *D. simulans*, we found 462,801, 110,844

407	and 125,807 A-to-G polymorphic sites in DGRP2, ME and FL populations, respectively, that most
408	likely originated from A-to-G mutations. 303, 155 and 179 of these sites are edited sites in
409	DGRP2, ME and FL populations, respectively (S2 Table).

410

For DGRP2 data, we computed the frequency of the derived G allele as $\pi_G^{DGRP2} = GT_G/$ 411 412 $(GT_G + GT_A)$, were GT_G and GT_A are the number of lines with genotype GG and genotype AA, respectively. For ME and FL populations, we computed the frequency of the G allele as $\pi_G^{ME,FL}$ = 413 414 g/r, as suggested for pool-sequencing data[37], where g is the number of DNA-Seq reads 415 carrying the G allele and r is the total number of reads mapped at this site. To compute the 416 allele frequency spectrum of the derived G alleles across the genome, we sampled 303, 155 and 417 179 sites from the 462,801, 110,844 and 125,807 polarized A-to-G polymorphic sites in DGRP2, 418 ME and FL populations, respectively. We repeated the sampling 100,000 times (per population) 419 to compute the average distribution and the 95% confidence interval for each frequency class. 420 The expected neutral allele frequency spectrum of the G alleles segregating at the edited sites 421 was computed by plugging the 303, 155 and 179 allele frequencies into Kimura and Crow's 422 formula[38]

423
$$\Phi(x) = \theta(1-x)^{(\theta-1)x^{-1}},$$

424 where x is the allele frequency and $\theta = 4N_ev$. We used $\theta = 0.007$, as previously 425 estimated for DGRP2[13,39], and ME and FL populations[14]. The expected neutral allele 426 frequency spectrum fits the observed frequency spectrum of the 462,801, 110,844 and 125,807 427 polarized unedited sites in DGRP2 (Fig 1a), ME and FL populations (S1 Fig). To plot the neutral 428 allele frequency spectrum for Fig 1a, we only considered G alleles segregating at frequencies

429 higher that 1% and lower than 99%.

430

431	We polarized 176,311 tested A,G human polymorphisms occurring at genes that most
432	likely originated from A-to-G mutations; 231 of them corresponded to edited sites in genes
433	(Table 2). To compute the allele frequency spectrum of the G allele at genes, we sampled 231
434	sites from the 176,311 unedited A,G polymorphisms. We repeated the sampling 100,000 times
435	and compute the average allele frequency spectrum and the 95% confidence interval for each
436	frequency class. We took the frequency of the G alleles from the 1,000 Genomes Project. With
437	regards to intergenic regions, we polarized 196,140 tested A,G human polymorphisms that
438	most likely originated from A-to-G mutations; 110 of them corresponded to edited sites (Table
439	2). The sampling procedure was as explained for genic A,G polymorphism with sampling size
440	110.
441	
441 442	Testing for balancing selection and directional selection
	Testing for balancing selection and directional selection To test for directional selection in favor of the derived G allele in edited sites, we first
442	
442 443	To test for directional selection in favor of the derived G allele in edited sites, we first
442 443 444	To test for directional selection in favor of the derived G allele in edited sites, we first tested whether diversity was lower around edited sites than around unedited sites. To this aim,
442443444445	To test for directional selection in favor of the derived G allele in edited sites, we first tested whether diversity was lower around edited sites than around unedited sites. To this aim, we counted the number of SNPs in windows of 10kb centered on each polarized A-to-G
 442 443 444 445 446 	To test for directional selection in favor of the derived G allele in edited sites, we first tested whether diversity was lower around edited sites than around unedited sites. To this aim, we counted the number of SNPs in windows of 10kb centered on each polarized A-to-G polymorphism. The ancestral allele was again determined based on data from <i>D. simulans</i> . We
 442 443 444 445 446 447 	To test for directional selection in favor of the derived G allele in edited sites, we first tested whether diversity was lower around edited sites than around unedited sites. To this aim, we counted the number of SNPs in windows of 10kb centered on each polarized A-to-G polymorphism. The ancestral allele was again determined based on data from <i>D. simulans</i> . We also used the recombination rate data from Ref.[40] to linearly interpolate local recombination

451

452	We also computed the integrated haplotype score (iHS)[23] using the software rehh[41]
453	as a second approach to test for directional selection in favor of the derived G allele in edited
454	sites. G alleles raising rapidly due to strong selection will have less chances to accumulate new
455	mutations around and will tend to have high levels of haplotype homozygosity extending much
456	further than expected under a neutral model. The rationale of the iHS approach is therefore to
457	test whether the derived G allele at an edited site tends to segregate on an unusually long
458	haplotype of low diversity[23]. Because haplotypes cannot be inferred for pool-sequencing, we
459	computed iHS only for the DGRP2 population. Negative values of iHS indicate unusually long
460	haplotypes carrying the derived G allele compared to the ancestral A allele. Values of iHS close
461	to zero indicate that the haplotypes carrying both the ancestral and the derived alleles are
462	equally large and the tested SNP is likely neutral[23].
463	
464	To scan for polymorphic sites under balancing selection, we used the software
465	ballet[24]. Ballet combines intraspecies polymorphism and interspecies divergence with the

466 spatial distribution of polymorphisms and substitutions around a selected site. The signature of

467 balancing selection is that of a local increase in diversity relative to divergence, and a skew of

468 the site frequency spectrum towards intermediate frequencies. The method outperforms both

the HKA test and Tajima's D under a diverse set of demographic assumptions, such as a

- 470 population bottleneck and growth[24]. We calculated a log-likelihood ratio (LLR) for each
- 471 polymorphic site implemented in the test type T1. The input files for ME and FL population
- 472 consisted of the polymorphic state inferred from the pool-sequencing data. Because ballet can

473 only handle a maximum of 100 lines, we used a random sample of 50 isogenic DGRP2 lines (Fig 474 1d) and of 100 randomly sampled lines to carry out the LLR computation. The result obtained 475 for 100 lines are similar to the result for 50 lines (not shown). We specified a window size of 476 200 sites, as little is gained by incorporating information from additional sites[24], where a site 477 is an intraspecies polymorphism or a divergent site. Divergent sites to *D. simulans* were defined 478 as single nucleotide substitution: i.e., homologous non-polymorphic (fixed) sites that contain 479 different nucleotides between D. melanogaster and D. simulans. Ballet also utilizes information 480 regarding the recombination distance between sites. We used the recombination rate data 481 from Ref.[40] to linearly interpolate recombination distance between two consecutive sites. 482 483 Estimation of f_s and f_n 484 To estimate f_s and f_n in *D. melanogaster*, we first compiled all A sites from the reference

485 genome, release r5.40, and generated a variant call file with all potential A,G polymorphisms.

486 We used this file as input to CooVar[42], which analyzed the effect of each A-to-G mutation in

487 coding regions. The output files were integrated into the DGRP2, FL and ME polymorphism

488 database to identify the potential A,G synonymous and nonsynonymous polymorphism that are

489 actual A,G polymorphisms.

- 490
- 491

Gene expression and codon usage data

We download gene expression data from the GEO (acc. GSE67505). The expression data
was obtained from pooled RNA-Seq data for the DGRP2 lines, as described in the original
study[43]. The published expression tables are given separately for male and females in FPKM

495	units. To test for correlation between gene expression levels and non-random usage of codons
496	(i.e., codon bias), we downloaded two measurements of codon bias (the effective number of
497	codons or ENC and the frequency of optimal codons or FOP) from the sebida database[44] and
498	fused the DGRP2 expression data with sebida data by means of the FlyBase gene IDs. Genes
499	containing at least one edited site were coined edited genes and unedited genes otherwise.
500	
501	Nucleotide profiles
502	The nucleotide profile around edited sites was calculated as the fraction of A, C, G and T
503	nucleotides at each nucleotide site upstream and downstream (± 10 bp and $\pm 1,000$ bp) the
504	edited site. For the background data, we sampled $a = 1,657$ genic A sites and $t = 1,549$ T sites
505	from the <i>D. melanogaster</i> genome, where <i>a</i> and <i>t</i> are the number of annotated edited sites in
506	the direct and inverted strands, respectively, and repeated this operation 100 times to compute
507	the fraction of each nucleotide type at each nucleotide position upstream and downstream the
508	sampled A/T unedited sites.
509	
510	Data availability: Computer code and data is available upon request to the authors.
511	
512	Acknowledgments: We thank Angela M. Hancock and Michael DeGiorgio for valuable
513	comments and suggestions, Nadia Singh for providing data and Jennifer Gage for proofreading
514	the manuscript. Funded by Austrian Science Foundation grant SFB F43-13 and P26882 (M.J.)
515	and Israel Science Foundation grant 379/12 (E.E.). Author contributions: MJ, AvH and MG
516	conceived the project. MG designed the experiments. NP, CDH, I.B, E.E and MG analyzed the

517 data. MG wrote the paper. NP, CDH, I.B, E.E, MJ, AvH and MG revised the paper.

518 **References:**

- Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79: 321–49. doi:10.1146/annurev-biochem-060208-105251
- Gommans WM, Mullen SP, Maas S. RNA editing: a driving force for adaptive evolution?
 Bioessays. 2009;31: 1137–45. doi:10.1002/bies.200900045
- Li JB, Levanon EY, Yoon J-K, Aach J, Xie B, Leproust E, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science. 2009;324: 1210–3. doi:10.1126/science.1170995
- Xu G, Zhang J. Human coding RNA editing is generally nonadaptive. Proc Natl Acad Sci U S
 A. 2014;111: 3769–74. doi:10.1073/pnas.1321745111
- Pinto Y, Cohen HY, Levanon EY. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol. 2014;15: R5. doi:10.1186/gb-2014-15-1-r5
- Chen L. Characterization and comparison of human nuclear and cytosolic editomes. Proc Natl Acad Sci U S A. 2013;110: E2741-7. doi:10.1073/pnas.1218884110
- Tian N, Wu X, Zhang Y, Jin Y. A-to-I editing sites are a genomically encoded G:
 implications for the evolutionary significance and identification of novel editing sites.
 RNA. 2008;14: 211–6. doi:10.1261/rna.797108
- 8. St Laurent G, Tackett MR, Nechkin S, Shtokalo D, Antonets D, Savva Y a, et al. Genomewide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat Struct Mol Biol. Nature Publishing Group; 2013;20: 1333–9. doi:10.1038/nsmb.2675
- 9. Xu G, Zhang J. In Search of Beneficial Coding RNA Editing. Mol Biol Evol. 2014;32: 536–

541. doi:10.1093/molbev/msu314

- Yu Y, Zhou H, Kong Y, Pan B, Chen L, Wang H, et al. The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection. PLoS Genet. 2016;12: 1–28. doi:10.1371/journal.pgen.1006191
- Zhang R, Deng P, Jacobson D, Li JB. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing. PLoS Genet. 2017;13: 1–24. doi:10.1371/journal.pgen.1006563
- 12. Duan Y, Dou S, Luo S, Zhang H, Lu J. Adaptation of A-to-I RNA editing in Drosophila [Internet]. PLOS Genetics. 2017. doi:10.1371/journal.pgen.1006648
- Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, Tarone AM, et al. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 2014;24: 1193–1208. doi:10.1101/gr.171546.113
- 14. Fabian DK, Kapun M, Nolte V, Kofler R, Schmidt PS, Schlötterer C, et al. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol. 2012;21: 4748–69. doi:10.1111/j.1365-294X.2012.05731.x
- 15. Keightley PD, Trivedi U, Thomson M, Oliver F, Kumar S, Blaxter ML. Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines. Genome Res. 2009;19: 1195–201. doi:10.1101/gr.091231.109
- 16. Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh Y-P, Hahn MW, et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol. 2007;5: e310. doi:10.1371/journal.pbio.0050310
- 17. Singh ND, Larracuente AM, Clark AG. Contrasting the efficacy of selection on the X and

autosomes in Drosophila. Mol Biol Evol. 2008;25: 454–67. doi:10.1093/molbev/msm275

- Hurst LD. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet.
 2002;18: 486–487. doi:10.1016/S0168-9525(02)02722-1
- Wang IX, So E, Devlin JL, Zhao Y, Wu M, Cheung VG. ADAR Regulates RNA Editing, Transcript Stability, and Gene Expression. Cell Rep. The Authors; 2013;5: 849–860. doi:10.1016/j.celrep.2013.10.002
- 20. Chamary J V, Parmley JL, Hurst LD. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet. 2006;7: 98–108. doi:10.1038/nrg1770
- 21. Kimura M. The neutral theory of molecular evolution. 2005th ed. Cambridge University press; 1983.
- Olson-Manning CF, Wagner MR, Mitchell-Olds T. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet. Nature Publishing Group; 2012;13: 867–877. doi:10.1038/nrg3322
- 23. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4: 0446–0458. doi:10.1371/journal.pbio.0040072
- DeGiorgio M, Lohmueller KE, Nielsen R. A Model-Based Approach for Identifying
 Signatures of Ancient Balancing Selection in Genetic Data. PLoS Genet. 2014;10:
 e1004561. doi:10.1371/journal.pgen.1004561
- McVean GA, Altshuler (Co-Chair) DM, Durbin (Co-Chair) RM, Abecasis GR, Bentley DR, Chakravarti A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491: 56–65. doi:10.1038/nature11632
- 26. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B, et al. Great ape

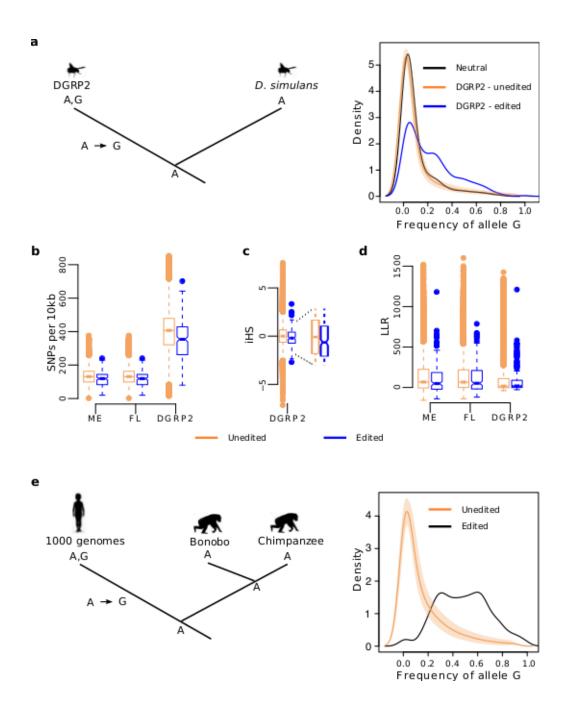
genetic diversity and population history. Nature. 2013;499: 471-475.

doi:10.1038/nature12228

- 27. Lander ES, Heaford a, Sheridan a, Linton LM, Birren B, Subramanian a, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409: 860–921.
 doi:10.1038/35057062
- Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24: 365–76. doi:10.1101/gr.164749.113
- 29. Robinson MC, Stone EA, Singh ND. Population genomic analysis reveals no evidence for GC-biased gene conversion in Drosophila melanogaster. Mol Biol Evol. 2014;31: 425–33. doi:10.1093/molbev/mst220
- 30. Garrett S, Rosenthal JJC. RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science. 2012;335: 848–51. doi:10.1126/science.1212795
- Osenberg S, Yaacov NP, Safran M, Moshkovitz S, Shtrichman R, Sherf O, et al. Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS One. 2010;5. doi:10.1371/journal.pone.0011173
- Smeds L, Künstner A. ConDeTri--a content dependent read trimmer for Illumina data.
 PLoS One. 2011;6: e26314. doi:10.1371/journal.pone.0026314
- Sedlazeck FJ, Rescheneder P, von Haeseler A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics. 2013;29: 2790–1. doi:10.1093/bioinformatics/btt468
- 34. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence

Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–9.

doi:10.1093/bioinformatics/btp352


- Hinrichs A, Karolchik D, Baertsch R, Barber G, Bejerano G, Clawson H. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006;34: D590–D598. doi:10.1093/nar/gkj144
- 36. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012; doi:10.1093/bioinformatics/bts635
- 37. Gautier M, Foucaud J, Gharbi K, Cézard T, Galan M, Loiseau A, et al. Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping. Mol Ecol. 2013;22: 3766–79. doi:10.1111/mec.12360
- 38. Kimura M, Crow JF. The number of alleles that can be maintained in a finite population.Genetics. 1964;49: 725–38. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1210609&tool=pmcentrez& rendertype=abstract

- Mackay TFC, Richards S, Stone E a, Barbadilla A, Ayroles JF, Zhu D, et al. The Drosophila melanogaster genetic reference panel. Nature. 2012;482: 173–8. doi:10.1038/nature10811
- 40. Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 2012;8: e1002905. doi:10.1371/journal.pgen.1002905
- Gautier M, Vitalis R. Rehh An R package to detect footprints of selection in genome-wide
 SNP data from haplotype structure. Bioinformatics. 2012;28: 1176–1177.
 doi:10.1093/bioinformatics/bts115

- 42. Vergara IA, Frech C, Chen N. CooVar: Co-occurring variant analyzer. BMC Res Notes. BMC Research Notes; 2012;5: 615. doi:10.1186/1756-0500-5-615
- 43. Huang W, Carbone MA, Magwire MM, Peiffer JA, Lyman RF, Stone EA, et al. Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2015;112: E6010-9. doi:10.1073/pnas.1519159112
- 44. Gnad F, Parsch J. Sebida: A database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics. 2006;22: 2577–2579.

doi:10.1093/bioinformatics/btl422

Fig 1. **Properties of the G alleles segregating at edited sites in** *D. melanogaster* **and human. a,** We used *D. simulans* as an outgroup to infer the ancestral state of the A,G polymorphisms in *D. melanogaster*. The right panel shows the average frequency spectrum and 95% confidence interval of the derived G alleles at unedited sites (peach) and the frequency spectrum for the derived G alleles at edited sites (blue). The shift of the blue distribution towards higher G allele

frequencies is a signal of positive selection for the derived G alleles at edited sites. The black curve shows the expected frequency distribution of the derived G alleles at edited sites if they were neutral. **b**, Windows centered on polarized A-to-G mutations have lower diversity (in SNPs per 10kb) for edited SNPs than for unedited SNPs ($P < 10^{-4}$ for each paired comparison; onesided Mann-Whitney-U test). c, At polarized edited sites, the extended homozygosity of the haplotype carrying the derived G allele is longer than that of the haplotypes carrying the ancestral A allele (average iHS score < 0). At unedited sites, the extended homozygosity is similar for both haplotypes (average iHS score \sim 0). P = 0.004, one-sided Mann-Whitney-U test for the null hypothesis iHS (edited) \geq iHS (unedited). **d**. The LLR comparing a long-term balancing selection model versus a neutral model tend to be lower for edited sites than for unedited sites (expected to be higher if balancing selection were more prominent for edited sites). P >> 0.05 for each paired comparison; two-sided Mann-Whitney-U test. **e**, We used Bonobo and Chimpanzee as an outgroup to infer the ancestral state of the genic A,G polymorphisms in the human genome. The right panel shows that G alleles segregate at higher frequencies in edited sites (black line) than in unedited sites (peach).

bioRxiv preprint doi: https://doi.org/10.1101/228734; this version posted December 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

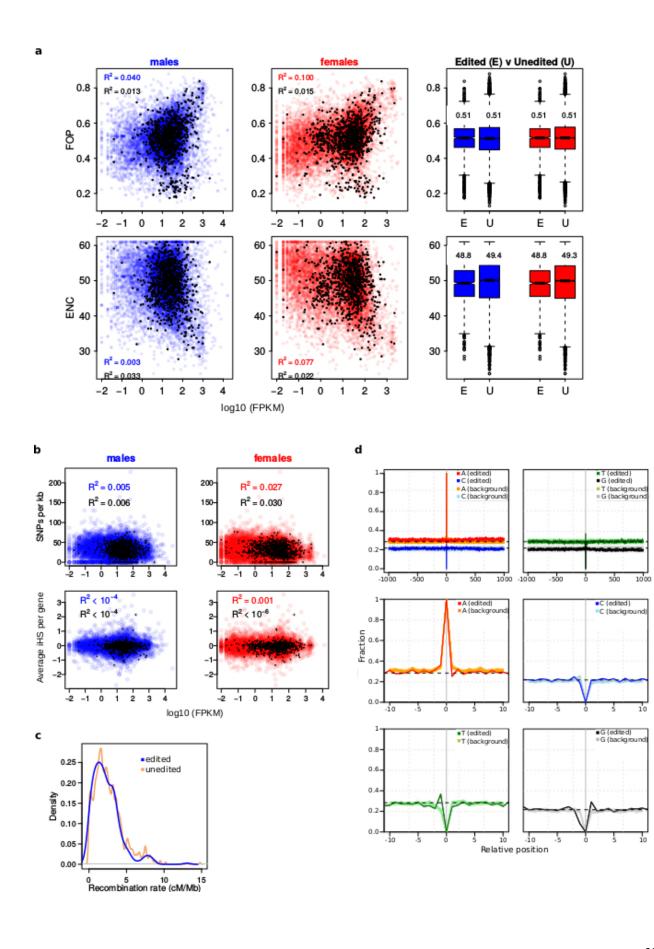


Fig 2. Control analyses for differences in polymorphic rates and polymorphism types as a byproduct of gene expression level, recombination rate and local sequence composition in *Drosophila*. **a**, Bias in synonymous codon usage per gene is represented as a function of gene expression level in males (blue) and females (red). Gene expression level only explains 4% (males) to 10% (females) of the total variance in codon bias when measured as the frequency of optimal codons (FOP; the higher, the more biased) and 0.3% (males) to 7% (females) of the total variance in codon bias when measured as the effective number of codons (ENC; the lower, the more biased). The coefficient of determination for edited sites (black dots) is even lower than for unedited sites. Numbers in the boxplots refer to the mean. **b**, Nucleotide diversity (SNPs per kb per gene) and iHS (averaged per gene) does not correlate with gene expression level. Black dots: genes containing edited sites. Blue and red dots: unedited genes. **c**, Local recombination rates in 10 kb windows centered on edited (blue) and on unedited (peach) sites show identical distributions. **d**, Nucleotide profiles show that local sequence context around edited and unedited sites (±1000 bp and ±10 bp) are virtually identical.

Table 1. Hypotheses suggested for the evolution of A-to-I RNA editing target sites

	Hypothesis							
	H1: Transcriptome diversity is beneficial (1-3)	H2: G is slightly deleterious (4)	H3: Compensatory hypothesis (5-7)	H4: Adaptive hypothesis (current study)				
Features								
Ancestral state	А	A	G	А				
Adaptive value of editing	Editing is adaptive because provides diversity to transcript population.	Editing is very deleterious and currently detected edited sites are generally slightly deleterious.	Editing is adaptive as it reverses the harmful effect of G- to-A mutations.	Editing is adaptive because A-to-I replacements an beneficial at these nucleotide sites.				
Relative fitness (S) of the derived allele	$S_A > S_G \ge S_{C,T}$	$S_A \ge S_G \ge S_{C,T}$	$S_G \ge S_A \ge S_{C,T}$	$S_G > S_A >> S_{C,T}$				
Population genetics predictions compared to unedified sites								
Overall polymorphic rate	Polymorphism at edited sites should be reduced as A-to- G, A-to-C and A-to-T mutations are slightly deleterious.	Polymorphism at edited sites should be slightly Increased as A-to-G mutations are slightly more tolerated than at unedited sites.	Polymorphism at edited sites should be similar or slightly increased as editing somehow reduces the deleterious effect of G-to-A mutations.	Polymorphism at edited sites should be increased as a to-G mutations are largely adaptive.				
Polymorphism type	A,G should be slightly more frequent than A,C and A,T polymorphisms at edited sites.	A,G should be slightly more frequent than A,C and A,T polymorphisms at edited sites.	A,G should be slightly more frequent than A,C and A,T polymorphisms at edited sites.	A,C and A,T polymorphism should be rarely found				
Polymorphic rate at coding regions		Similar or reduced at both edited and unedited sites due to potential deleterious effects at non-synonymous sites.	Similar or reduced at both edited and unedited sites due to potential deleterious effects at non-synonymous sites.	Increased at edited sites as the G allele mimics the protein variant obtained through editing.				
Synonymous polymorphic rate	Similar at both edited and unedited sites.	Similar at both edited and unedited sites.	Similar at both edited and unedited sites.	Increased at edited sites.				
Frequency spectrum of the derived allele	Derived G allele should segregate at similar or lower frequency (i.e., purifying selection or neutral at most).	Derived G allele should segregate at similar frequency (i.e., neutral or nearly neutral).	Derived G allele should segregate at similar frequency (i.e., neutral or nearly neutral).	Derived G allele should segregate at higher frequer				
Nucleotide diversity around edited sites	Similar	Similar	Similar	Reduced				

References supporting each hypothesis are indicated between brackets. Predictions confirmed in this study are shaded in green.

Table 2. Number of single nucleotide polymorphism sites and polymorphism types among edited and unedited sites in *Drosophila* populations and human.

	DGRP2		Florida		Maine		Human - genic ^c		Human - intergenic ^c	
	edited	unedited ^b	edited	unedited	edited	unedited	edited	unedited	edited	unedited
Polymorphic	755 (21%)	3,951,070 (2%)	543 (15%)	1,367,160 (1%)	507 (14%)	1,235,454 (1%)	231 (19%)	176,080 (6%)	110 (18%)	196,030 (6%)
Not polymorphic	2,826 (79%)	171,048,930 (98%)	3,038 (85%)	118,920,513 (99%)	3,074 (86%)	119,052,219 (99%)	977 (81%)	2,811,804 (94%)	520 (82%)	3,017,246 (94%)
Polymorphism ^ª A,G	740 (98%)	817,333 (45%)	536 (99%)	337,098 (48%)	502 (99%)	309,347 (49%)	225 (97%)	102,842 (58%)	105 (96%)	112,936 (58%)
A,C	3 (0%)	355,952 (20%)	1 (0%)	142,183 (21%)	0 (0%)	131,624 (20%)	4 (2%)	35,491 (21%)	3 (3%)	38,772 (20%)
A,T	12 (2%)	649,599 (35%)	6 (1%)	217,230 (31%)	5 (1%)	195,528 (31%)	2 (1%)	37,747 (21%)	2 (1%)	42,971 (22%)

a: Only biallelic polymorphisms

b: Assuming an average genome coverage of 175 Mb over the 205 lines[13]

c: Polarized data

In bold: increased proportion in edited sites compared to unedited sites

Table 3. Potential A,G synonymous and nonsynonymous replacements in *Drosophila* populations.

Population	Potential A,G synonymous replacements					Potential A,G nonsynonymous replacements					
	Edited ($S^{edited} = 370$)		Genome (<i>S</i> = 777,461)		Ratio	Edited (N ^{edited} = 645)		Genome (<i>N</i> = 4,448,133)		Ratio	
	Polymorphic	Rate (f_s^{edited})	Polymorphic	Rate (f _s)	f_s^{edited}/f_s	Polymorphic	Rate (f_n^{edited})	Polymorphic	Rate (f _n)	f_n^{edited}/f_n	
DGRP2	251	0.678	84,246	0.108	6	68	0.105	29,727	0.007	15	
ME	181	0.511	21,198	0.027	19	29	0.045	4,349	0.001	45	
FL	194	0.524	22,603	0.029	18	33	0.051	4,647	0.001	51	