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Peeling for whole genome sequence data 2 

Abstract 12 

In this paper we extend multi-locus iterative peeling to be a computationally efficient method for 13 

calling, phasing, and imputing sequence data of any coverage in small or large pedigrees. Our 14 

method, called hybrid peeling, uses multi-locus iterative peeling to estimate shared chromosome 15 

segments between parents and their offspring, and then uses single-locus iterative peeling to 16 

aggregate genomic information across multiple generations. Using a synthetic dataset, we first 17 

analysed the performance of hybrid peeling for calling and phasing alleles in disconnected 18 

families, families which contained only a focal individual and its parents and grandparents. 19 

Second, we analysed the performance of hybrid peeling for calling and phasing alleles in the 20 

context of the full pedigree. Third, we analysed the performance of hybrid peeling for imputing 21 

whole genome sequence data to the remaining individuals in the population. We found that hybrid 22 

peeling substantially increase the number of genotypes that were called and phased by leveraging 23 

sequence information on related individuals. The calling rate and accuracy increased when the full 24 

pedigree was used compared to a reduced pedigree of just parents and grandparents. Finally, hybrid 25 

peeling accurately imputed whole genome sequence information to non-sequenced individuals. 26 

We believe that this algorithm will enable the generation of low cost and high accuracy whole 27 

genome sequence data in many pedigreed populations. We are making this algorithm available as 28 

a standalone program called AlphaPeel.29 
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Introduction 30 

 In this paper we extend multi-locus iterative peeling to be a computationally efficient method 31 

for calling, phasing, and imputing low coverage sequence data in large pedigrees. In the past few 32 

years the use of genomic data has expanded greatly. The widespread genotyping of animals 33 

empowers breeding via genomic selection (Meuwissen et al., 2001, 2016) and biological discovery 34 

via genome wide association studies (Burton et al., 2007; Visscher et al., 2017). The accuracy of 35 

genomic selection and the power of genome wide association studies depend on both the number 36 

of individuals that have genomic data and its density (e.g., Daetwyler et al., 2008; Hayes et al., 37 

2009; Hickey et al., 2014; Gorjanc et al., 2015) . The goal is then to generate genomic data on as 38 

many individuals as possible at as high of a density as possible with the upper limit being the 39 

presence of whole genome sequence on hundreds of thousands or millions of individuals (Hickey, 40 

2013; Daetwyler et al., 2014; Veerkamp et al., 2016).  41 

 Even though the cost of obtaining whole genome sequence data on an individual has 42 

decreased, it is still prohibitively expensive to obtain high coverage whole genome sequence data 43 

on tens of thousands of individuals. An emerging strategy in breeding populations is to obtain a 44 

mix of high and low coverage sequence data on a subset of individuals, and then propagate that 45 

information between related individuals to call whole genome sequence genotypes for all 46 

population members, some of which may only have SNP array genotype data (Hickey, 2013). This 47 

strategy exploits the high degree of relatedness and thus haplotype sharing between individuals in 48 

a breeding population, meaning that a haplotype can be inferred at high accuracy by low coverage 49 

sequencing of different individuals that share the haplotype. Algorithms have already been 50 

developed for selecting the individuals to sequence in such a context (Cheung et al., 2014; Gonen 51 
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et al., 2017; Ros-Freixedes et al., 2017). What remains to be developed is a method for efficiently 52 

propagating the information from sequence data between related individuals. 53 

 Past methods for using mixed coverage sequence data to call, phase, and impute genotypes 54 

have primarily exploited linkage disequilibrium, e.g. MaCH (Li et al., 2010), Beagle (Browning 55 

and Browning, 2016, 2007). Linkage disequilibrium based methods perform well, particularly in 56 

human settings where individuals are mostly unrelated and there is limited pedigree data. However, 57 

these methods do not exploit the large amount of information available when pedigrees are 58 

available (but see, Browning and Browning, 2009; O’Connell et al., 2014). In contrast, pedigree 59 

based methods can have a higher accuracy and lower computational cost than linkage 60 

disequilibrium based methods, particularly in populations with closely related individuals and 61 

accurate pedigrees across multiple generations (e.g., Hickey et al., 2011; Cheung et al., 2013; 62 

VanRaden et al., 2015). Pedigree based methods are particularly appealing for mixed coverage 63 

sequence data on relatives, due to being able to collapse information across the long haplotype 64 

segments shared between individuals, their ancestors and their descendants. 65 

 Single-locus and multi-locus peeling are two pedigree-based methods that model an 66 

individual’s haplotype based on the haplotypes of their parents and offspring. There is a large body 67 

of literature on peeling methods in genetics (e.g., Elston and Stewart, 1971; Cannings et al., 1976, 68 

1978; Lander and Green, 1987; Fernández et al., 2001; Totir et al., 2009; Cheung et al., 2013) and 69 

related methods in other areas (e.g., Lauritzen and Sheehan, 2003; Bishop, 2007; Koller and 70 

Friedman, 2009). Since our interest is in efficient methods that could handle whole genome 71 

sequence data in multi-generational pedigrees with loops, we focus on approximate (iterative) 72 

peeling methods, in particular to the single-locus method of Kerr and Kinghorn (1996) and multi-73 

locus method of Meuwissen and Goddard (2010). In single-locus peeling all loci are treated 74 
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independently and so linkage between loci is not exploited. In contrast multi-locus peeling tracks 75 

the linkage between loci allowing for information at one locus to be used at a neighbouring locus, 76 

which has a large potential with sequence data. Although multi-locus peeling is exploiting more 77 

information and is therefore more accurate, it is computationally more expensive due the high cost 78 

of calculating the segregation estimates at each locus, and currently is ill-suited for whole genome 79 

sequence data. 80 

 In this paper we present a hybrid peeling method that is scalable to whole genome sequence 81 

data on tens of thousands of individuals. In hybrid peeling segregation estimates are calculated on 82 

a small subset of loci, and then fast single-locus style peeling operations are used on the remaining 83 

loci. This approach exploits the benefits of using linkage from multi-locus peeling while still being 84 

able to scale to whole genome sequence data on thousands of animals. In what follows we first 85 

present the hybrid peeling method, and then present results of its performance on a synthetic 86 

dataset based on a real commercial pig population with 60,000 animals on a single chromosome 87 

with 700,000 segregating loci. We found that hybrid peeling substantially increases the number of 88 

genotypes that were called and phased by leveraging sequence information on related individuals. 89 

The calling rate and accuracy increased when the full pedigree was used compared to a reduced 90 

pedigree of just parents and grandparents. Finally, we found that hybrid peeling accurately imputes 91 

whole genome sequence information to non-sequenced individuals. We are making this algorithm 92 

available as a standalone program called AlphaPeel. 93 

 94 

Materials and Methods 95 

Peeling methods 96 

Peeling is a method for inferring the genotype and phased alleles of an individual based on their 97 
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own genotype information and the genotype information of their ancestors and descendants. The 98 

genotype information can be partially or fully (in)complete or even incorrect for some pedigree 99 

members. This inference problem is computationally intractable when considering whole genome 100 

sequence in the context of large multi-generational pedigrees with loops (Cannings et al., 1978; 101 

Lauritzen and Sheehan, 2003; Piccolboni and Gusfield, 2003; Totir et al., 2009). Iterative peeling 102 

approximates this problem through a series of peeling up and peeling down operations (Van 103 

Arendonk et al., 1989; Kerr and Kinghorn, 1996; Meuwissen and Goddard, 2010). In the following 104 

we refer to iterative peeling simply as peeling. In a peeling up operation information from an 105 

individual’s descendants and their mates is used to infer the individual’s alleles. In a peeling down 106 

operation information from an individual’s ancestors is used to infer the individual’s alleles. 107 

Repeated peeling operations propagates genetic information between distant members of a 108 

pedigree.  109 

 Peeling relies on a model of how alleles are transmitted between a parent and their offspring. 110 

Single-locus and multi-locus peeling differ in how they model the transmission of alleles. In single-111 

locus peeling, both parental alleles are assumed to be inherited with equal probability at all loci. 112 

In multi-locus peeling, it is assumed that there is a high probability that the nearby loci are inherited 113 

from the same paternal gamete. To enable the sharing of information between loci, multi-locus 114 

peeling estimates the segregation at each locus, the likelihood that each pair of grandparental 115 

gametes was inherited at a locus. Hybrid peeling is a computationally efficient approximation to 116 

multi-locus peeling. Like multi-locus peeling it utilizes information from nearby loci to determine 117 

which allele is inherited at a locus. Unlike multi-locus peeling, it only estimates segregation on a 118 

small subset of loci, and linearly interpolates segregation estimates at un-evaluated loci.  119 

 We describe these peeling operations in detail below. For single-locus peeling we follow the 120 
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previous work of Kerr and Kinghorn (1996) and for multi-locus peeling we follow the previous 121 

work of Meuwissen and Goddard (2010). 122 

 123 

Single-locus peeling 124 

 In single-locus peeling we estimate the likelihood of each of an individual’s alleles at a locus 125 

as the product of their parents’ alleles (anterior), offsprings’ alleles (posterior), and their own 126 

genomic data (penetrance). For a biallelic loci, we have a set of four possible ordered pairs of 127 

alleles (aa, aA, Aa, AA), where the first allele in each pair is inherited from the father and the 128 

second allele is inherited from the mother. The probability that individual i has alleles hi is: 129 

 pi(hj) = anteriori(hj) posteriori(hj) penetrancei(hj). (1) 130 

We examine each of these terms separately. 131 

 The penetrance term gives the likelihood that an individual has a given set of alleles based 132 

on the available genomic data, obtained either from a SNP array or sequencing. If no information 133 

is available, we set the penetrance to a constant value, i.e., penetrancei(hj) = 1. If we have SNP 134 

array data, we set penetrancei(hj) = 1-ε if hi is consistent with the genotype on the SNP array, and 135 

penetrancei(hj) = ε otherwise, where ε accounts for a small error rate in SNP array genotype data. 136 

If we have sequencing data with nref sequence reads of the reference allele, a, and nalt sequence 137 

reads of the alternative allele, A, then: 138 

 penetrancei([aa, aA, Aa, AA]) = [(1-𝛿)nref	𝛿 nalt, .5nref+nalt-1 , .5nref+nal-1, 𝛿 nref (1-𝛿)nalt], (2) 139 

where 𝛿 accounts for a small error rate in sequence data. 140 

 The anterior estimate captures the information about an individual’s haplotypes gained from 141 

their parents’ haplotypes. If an individual does not have any genotyped parents, then we use the 142 

minor allele frequency, p, to calculate the anterior estimate: 143 
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Peeling for whole genome sequence data 8 

 anteriori([aa, aA, Aa, AA]) = [p2, p(1-p)/2, p(1-p)/2, (1-p)2]. (3) 144 

For an individual with parents the anterior estimate is: 145 

 anteriori(hj) = Σhm,hf trace(hj | hm, hf) p(hm, hf), (4) 146 

where p(hm, hf) is the joint probability that the mother has alleles hm and the father has alleles hf. 147 

The trace is a function that gives the likelihood that the child inherits alleles hi given their parent’s 148 

alleles, i.e., trace(hj | hm, hf) = p(hj | hm, hf). Examples of the trace function when inheriting from a 149 

single parent are given in Table 1(a). The joint probability of the parental alleles is calculated by 150 

combining the anterior and posterior estimates for both parents except for the information that 151 

pertains to individual i. This gives: 152 

 p(hm, hf)= anteriorm(hm) penetrancem(hm) posteriorm,-f(hm)  153 

   anteriorf(hf) penetrancef(hm) posteriorf,-m(hf) 154 

  posteriorf,m,-i(hm,hf). (5) 155 

The first line calculates the probability of the mother’s alleles, hm, independent of shared children 156 

with f. The second line calculates the probability of the father’s alleles, hf, independent of shared 157 

children with m. The third line calculates the probability of both parents’ alleles based on their 158 

shared children except for individual i. 159 

 There are two types of posterior terms. First, posteriorm,f is the joint probability of two 160 

parents’ alleles, m and f, based on all their shared children. Second, posteriorm is the probability of 161 

a single parent’s alleles based on all their mates and children. We can calculate posteriorm,f by:  162 

 posteriorm,f(hm, hf) = ∏c Σhctrace(hc | hm, hf) posteriorc(hc)penetrancec(hc), (6a) 163 

which is the product of the probability that a child, c, inherits alleles hc, based on their parent’s 164 

alleles, marginalized over the possible alleles for c, and multiplied across all children. We can then 165 

calculate posteriorm(hm) as the product of the posteriorm,f(hm,hf) for all of the mates of m 166 
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marginalized over the likelihood that k has alleles hk: 167 

 posteriorm(hm) = ∏k Σhk posteriorm,k(hm, hk) p(hm,hk).  (6b) 168 

The remaining terms are calculated by removing the individuals that relate to them in the 169 

equations: 170 

 posteriorm,f,-i(hm, hf) = ∏ c≠i Σhctrace(hc | hm, hf) posteriorc(hc) penetrancec(hc),  (6c) 171 

 posteriorm,-f(hm) = ∏k≠f Σhk posteriormk(hm, hk) ) p(hm,hk).  (6d) 172 

 Together the posterior, anterior, and penetrance terms give the probability of individual’s 173 

alleles (Equation 1). Information from siblings, parents, and grandparents is contained in the 174 

anterior term. Information from children, grandchildren, and their mates is contained in the 175 

posterior term. An individual’s own information is only counted a single time, in the penetrance 176 

function. When estimating the genotype of a set of parents in the anterior term, the focal 177 

individual’s penetrance and anterior terms are excluded from the calculation (Equation 5), which 178 

ensures that information from an individual is included in only the anterior or posterior term but 179 

not both. 180 

 To perform peeling we initialize the population by setting all the posterior terms to a constant 181 

value, i.e. 1. We first peel down, updating the anterior terms for all individuals. We then peel up 182 

the pedigree, updating the posterior terms for all individuals. These peeling operations are repeated 183 

until the allele estimates for all of the individuals in the population converge. There are two model 184 

parameters that need to be estimated, the minor allele frequency, p, and error rates, ε and 𝛿. We 185 

found that an easy way to update them is by setting them equal to their observed values after each 186 

pair of peeling (up and down) operations. We tested using a single error rate for all loci or using a 187 

locus specific error rate and found that the locus specific error rate lead to a slight increase in 188 

accuracy and so used a locus specific error rate for ε and 𝛿. Due to the dependence of the anterior 189 
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terms and posterior terms on the anterior terms and posterior terms of other individuals in the 190 

population, the order in which they are updated is important and can decrease the overall number 191 

of peeling operations that need to be performed. We follow the updating pattern given in Kerr and 192 

Kinghorn (1996) by first updating the anterior terms for the oldest individuals in the population, 193 

and then updating the anterior terms for their children and their children’s children. The posterior 194 

estimates are updated in reverse order; from the most recent generation to the most distant. 195 

 196 

Multi-locus peeling 197 

Multi-locus peeling extends single-locus peeling by modifying the trace function to be sensitive to 198 

which grandparental gamete was likely to have been inherited at nearby loci. In single-locus 199 

peeling we assume that each parental allele is inherited with equal probability, and that the alleles 200 

at neighbouring loci are inherited independently. This is not the case; due to the small number of 201 

recombinations per chromosome, children inherit grandparental gametes in large blocks from their 202 

parents. This means that if we know which grandpaternal gamete a child inherits at one locus, we 203 

can also know which gamete they likely inherit from at nearby loci. In the context of the peeling 204 

operations, if we know which grandpaternal gamete a child is inheriting from, we can update the 205 

peeling operations so that only the alleles from that gamete will be transmitted, as in Table 1b. 206 

Uncertainty in haplotype inheritance can be incorporated in the model by marginalizing over 207 

possible inherited gametes. 208 

 More formally, we track the set of inherited haplotypes in terms of a segregation estimate, 209 

which gives the likelihood that a child inherits the each of the four possible pairs of grandpaternal 210 

gametes (pp, pm, mp, mm); relating to whether the father (first allele) or the mother (second allele) 211 

passes their grandpaternal (p) or grandmaternal (m) gamete at that locus. We can then build the 212 
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trace function by marginalizing over segregation estimates: 213 

 trace(hi | hm, hf) = Σs trace(hi | hm, hf, segi,j=s) p(segi,j=s),    (7) 214 

where p(segi,j=s) is the likelihood that individual i has segregation s at locus j. trace(hi | hm, hf, 215 

segi,j=s) is the likelihood that the child inherits allele hi given their parental allele and their 216 

segregation (see Table 1b for an example). To perform peeling, we substitute the trace function in 217 

Equations 4, 6a-d with the trace function Equation 7. 218 

 The segregation estimate at each locus is calculated by measuring how well the segregation 219 

models the current locus and how well the segregation estimate matches that of adjacent loci: 220 

 p(segi,j=s) = p(segi,j=s | segi,j-1, segi,j+1) ΣhiΣhfΣhm p(segi,j | hi, hf, hm). 221 

The first term accounts for the recombination rate between loci and the second term accounts for 222 

the additional information gained from the genotype estimate at the current allele: 223 

 p(segi | segi-1, segi+1) = p(segi | segi-1) p(segi+1|segi), (8) 224 

 p(segi|segi-1) = (1-γ)2-#changesγ#changes, (9) 225 

where, #changes is the number of gametes that switch (up to 2) between segi and segi-1, and γ is 226 

recombination rate. We estimate p(segi|segi-1, segi+1) using the forward-backward algorithm 227 

(Rabiner, 1989). To calculate the likelihood of a segregation estimate given the observed data at a 228 

locus, we marginalize over possible allele combinations: 229 

 p(segi,j | hi, hf, hm) = trace(hi | hf, hm, segij) penetrancei(hi)posteriori(hi)  230 

      anteriorm(hm)penetrancem(hm)posteriorm,-f(hm) 231 

      anteriorf(hf)penetrancef(hf)posteriorf,-m(hf) 232 

      posteriorm,f,-i(hm, hf).      (10) 233 

The first line is the likelihood of the child’s alleles, the second is the likelihood of the mother’s 234 

alleles, the third is the likelihood of the father’s alleles, and the fourth is the joint likelihood of the 235 
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parents’ alleles. 236 

 This algorithm is performed in a series of forward-backward passes where at each locus all 237 

individuals in the population are updated by the peeling up and peeling down operation. 238 

Segregation estimates are then re-estimated for each individual. At the end of each pass we updated 239 

the recombination rate, γ, error rate, ε and 𝛿, and minor allele frequency, p, by setting them to their 240 

observed values. Similar to the error rate we found that using a locus specific recombination rate 241 

slightly increased accuracy and so used a locus specific recombination rate. We found that between 242 

10-20 cycles was enough to obtain convergence in large multi-generational livestock pedigrees 243 

with 60,000+ members. 244 

 245 

Hybrid peeling 246 

 Hybrid peeling is a computationally efficient approximation to multi-locus peeling. In 247 

preliminary work we found that the primary computational cost of multi-locus peeling stemmed 248 

from updating the segregation estimates, Equation 10. When evaluating many loci on a 249 

chromosome we should expect that the segregation estimates at nearby loci should be identical. 250 

Because of this, it should be possible to evaluate the segregation estimates at only a subset of loci, 251 

and interpolate segregation estimates on the remaining loci. These estimates can then be used to 252 

create a new trace function for peeling operations. 253 

 More formally, we divide the set of loci into two sets, A and B, with |A| << |B|, e.g., A is a 254 

subset of loci on a high-density SNP array, and B is the entire set of segregating loci. We perform 255 

multi-locus peeling on A to calculate segregation estimates. We then perform single-locus peeling 256 

on B using Equation 7 as the trace function with interpolated segregation estimates: 257 

 segi,k = a segi,j + (1-a) segi,j+1, (11) 258 
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where j and j+1 are the loci in the set A that flank locus k, and a is the proportional distance 259 

between locus k and locus j: 260 

 a = d(k, j) / d(j, j+1). (12) 261 

Distance can be calculated either in terms of base pairs, centiMorgans, or number of intermediary 262 

loci. The exact measure of distance should only have a minimal impact on performance: if a 263 

sufficiently large number of loci is used in the set A then adjacent segregation estimates should be 264 

nearly equal, i.e., segi,j = segi,j+1, leading Equation 11 to reduce to segi,j and no longer depend on the 265 

distance metric used. 266 

 The aim of the hybrid technique is to make multi-locus peeling more computationally 267 

tractable when applying it to large pedigrees. We evaluate the performance of this algorithm on a 268 

synthetic dataset. 269 

 270 

Analysis 271 

 We examined the performance of hybrid peeling for calling, phasing, and imputing alleles 272 

with sequence data of different coverages in pedigrees. To perform these analyses, we simulated 273 

genomes for 64,598 animals using a multi-generational pedigree derived from a real commercial 274 

pig breeding line. We assumed some animals had high-density or low-density SNP array genotypes 275 

from routine genomic selection. In addition, we generated mixed coverage sequence data for a 276 

subset of focal animals. We then carried out three sets of analyses. First, we analysed the 277 

performance of hybrid peeling in calling and phasing in disconnected families, families which 278 

contained only a focal animal and its parents and grandparents. Second, we analysed the 279 

performance of hybrid peeling in calling and phasing in the context of the full pedigree. Third, we 280 
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analysed the performance of hybrid peeling for whole genome sequence imputation. In the 281 

following we describe in detail how we simulated and analysed data. 282 

 283 

Data 284 

 Genomes were generated using the Markovian Coalescent Simulator (MaCS) (Chen et al., 285 

2009) and AlphaSim (Faux et al., 2016). We generated 1,000 base haplotypes for each of 10 286 

chromosomes, assuming a chromosome length of 108 base pairs, a per site mutation rate of 287 

2.5×10−8, a per site recombination rate of 1×108, and an effective population size (Ne) that varied 288 

over time in accordance with estimates for a livestock population (MacLeod et al., 2013). The 289 

resulting haplotypes had about 700,000 segregating loci per chromosome. On each of the 290 

chromosomes we designated 2,000 evenly distributed loci as markers on a high-density SNP array 291 

and a subset of 500 as markers on a low-density SNP array. 292 

 We used AlphaSim to drop the base haplotypes through a multi-generational pedigree of 293 

64,598 animals from a real commercial pig breeding line. We assigned SNP array data to animals 294 

in line with routine genotyping for genomic selection in the population; 45,592 animals were 295 

genotyped with high-density SNP array, 11,015 animals were genotyped with low-density SNP 296 

array, and 7,991 animals were not genotyped. We generated sequence data in line with the 297 

strategies implemented in the population. The goal was to use roughly $300,000 worth of resources 298 

to sequence and impute the entire population. First, the top 475 sires (all sires with more than 25 299 

progeny) were sequenced at 2x. Second, AlphaSeqOpt (Gonen et al., 2017) was used to identify 300 

focal animals and their parents and grandparents (211 in total) to sequence and the coverages they 301 

should be sequenced at. AlphaSeqOpt was run using the high-density SNP array data on all 302 

chromosomes with an option to assign an individual sequencing coverage of either 1x, 2x, 15x, or 303 
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30x, and a total budget of $71,000. Third, the top 50 dams (based on number of offspring and 304 

grandoffspring with and without a sequenced sire) were sequenced at 2x and the next 450 dams 305 

were sequenced at 1x. Finally, AlphaSeqOpt2 (Ros-Freixedes et al.) was used to identify 800 306 

individuals to be sequenced at 1x, to top-up the accumulated coverage of common haplotypes to 307 

10x. In total, we generated sequenced data for 1,912 animals at a range of coverages for a cost of 308 

$289,312. We partitioned this data into three sequencing sets: i) the focal identified with 309 

AlphaSeqOpt, ii) the focal plus low coverage sires which also included the top 475 sires, and iii) 310 

focal plus all low coverage individuals which included all the sequenced animals. A breakdown 311 

of the total cost and sequencing coverage by these sets is given in Table 2. We assumed that the 312 

cost of obtaining a DNA library for an individual was $39 and the cost of sequencing that library 313 

for an individual at 1x was $68, at 2x was $136, at 15x was $408, and at 30x was $816.The costs 314 

were assumed to be non-linear to reflect current industry costs.    315 

 Sequence data was simulated by sampling sequencing reads for the 700,000 segregating loci 316 

on the chromosome 10. The number of reads was generated using a Poisson-Gamma distribution 317 

which allowed the number of sequence reads per locus to vary along the genome and between 318 

individuals (Li et al., 2010). First, a sequenceability (γj) of each of the 700,000 loci along the 319 

genome was sampled from a gamma distribution, with shape and scale parameters respectively 320 

equal to α =4 and 1/α = .25. Second, the number of reads (ri,j) per individual i at locus j was then 321 

sampled from a Poisson distribution with mean equal to µi,j=xiγj, where xi was the targeted 322 

coverage for individual. Third, sequencing reads were generated by randomly sampling alleles 323 

from the two gametes of individual i at locus j, accounting for a sequencing error (ε = 0.001).  324 

 325 

Calling and phasing in disconnected families 326 
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 We tested the ability of hybrid peeling to call genotypes and phase alleles in sequenced 327 

individuals using information from their parents and grandparents. For this we selected 10 328 

disconnected families (consisting of a focal individual and its parents and grandparents) from the 329 

full pedigree, and analysed the effect of sequencing coverage on our ability to call and phase the 330 

individual’s genotypes. To perform this, we ran the hybrid peeling when the focal individual was 331 

sequenced at 1x, 2x, 5x, 15x, or 30x coverage, and when its parents or grandparents were 332 

sequenced at 0x, 1x, 2x, 5x, 15x, or 30x coverage. We generated data for each of these scenarios 333 

separately. We assumed that all of the parents or all of the grandparents were sequenced at the 334 

same coverage, and that all family members had high-density SNP array data.  335 

 To call genotypes and phased alleles, we extracted the allele probabilities generated by 336 

hybrid peeling and made a call if the probability of an allele was greater than a pre-defined 337 

threshold. For all analyses we used a calling threshold of .98. Scenarios were compared on the 338 

percentage of called genotypes (genotype yield) and phased alleles (phase yield).  339 

 340 

Calling and phasing with the full pedigree 341 

 Next, we tested the ability of hybrid peeling to call genotypes and phase alleles in sequenced 342 

individuals using information from the full pedigree. To perform this, we ran hybrid peeling twice. 343 

First, we ran it separately for each disconnected family, consisting of an individual, their parents, 344 

and their grandparents, with (potentially missing or low coverage) SNP array and sequence data. 345 

Second, we ran it with SNP array and sequence data on all individuals in the pedigree. The 346 

sequencing coverage for each individual was determined by their coverage in the focal and all low 347 

coverage condition. We compared the genotype and phase yield between runs and compared the 348 

correlation between individual’s called genotypes and the true genotypes (genotype accuracy) and 349 
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correlation between individual’s phased alleles and the true phase/haplotype (phase accuracy) 350 

between runs. 351 

 352 

Imputing whole genome sequence 353 

 Last, we tested the ability of hybrid peeling to impute whole genome sequence for non-354 

sequenced individuals in the full pedigree. We ran hybrid peeling on all of the individuals in the 355 

full pedigree, using all available sequence and SNP array data. Hybrid peeling was run three times, 356 

using either the sequence coverages from the focal, focal and low coverage sires, or focal and all 357 

low coverage conditions. Imputation accuracy was measured as correlation between an 358 

individual’s imputed dosages and the true genotypes.  359 

 360 

Data availability 361 

Simulated genotype and sequence data are available from the authors upon request. 362 

 363 

Code availability 364 

To perform hybrid peeling we used the software package AlphaPeel, which is available from the 365 

AlphaGenes website (http://www.alphagenes.roslin.ed.ac.uk). The code for generating simulated 366 

sequence data from genotype data is available from the authors on request. 367 

 368 
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Results 369 

Overall, we found that hybrid peeling had high yield and accuracy for called genotypes and phased 370 

alleles. It also had a high accuracy of imputing whole genome sequence data to non-sequenced 371 

individuals. 372 

 373 

Calling and phasing in disconnected families 374 

We found that hybrid peeling gave high yield and accuracy of called genotypes and phased alleles 375 

even in the presence of low coverage sequence reads. The results of these simulations are given in 376 

Figure 1. 377 

 The primary determiner of genotype yield was the individual’s own degree of sequencing 378 

coverage. If neither the individual’s parents nor grandparents were sequenced, then if the 379 

individual was sequenced at 1x the genotype yield was 0.6%, and increased to 5% at 2x, 39% at 380 

5x, 76% at 10x, and 98% at 30x. These values greatly increased if the parents were sequenced at 381 

high coverage. If the individual’s parents were both sequenced at 30x, then the genotype yield was 382 

56% at 1x, 61% at 2, 75% at 5x, 90% at 10x, and 99% at 30x. Adding in additional coverage on 383 

grandparents increased accuracy even if the parents had 30x coverage. If both the parents and the 384 

grandparents had 30x coverage then the genotype yield was 88% at 1x, 90% at 2x, 94% at 5x, 97% 385 

at 10x, and 99% at 30x. In all cases, the ratio of correctly called genotypes to incorrectly called 386 

genotypes was greater than .995 (median .999). 387 

 A similar pattern of results was found when evaluating phase yield. In this case, although 388 

an individual’s own sequencing coverage was an important determiner for phase yield, high 389 

coverage on both the parents and the grandparents were needed to phase all the alleles. If neither 390 

the individual’s parents nor grandparents were sequenced, then the phase yield was .7% at 1x, 6% 391 
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at 2x, 35% at 5x, 59% at 10x, and 70% at 30x. The low phase yield at 30x is due to the inability to 392 

phase heterozygous loci without information from relatives. Sequencing the parents at high 393 

coverage substantially increased the phase yield, and continued to do so even if the individual was 394 

sequenced at high coverage. If the parents of the individual were sequenced at 30x, then the phase 395 

yield was 72% at 1x, 74% at 2x, 82% at 5x, 89% at 10x and 94% at 30x. If both the individual’s 396 

parents and grandparents were sequenced at 30x, then the phase yield increased to 94% at 1x, 95% 397 

at 2x, 96% at 5x, 98% at 10x, and 99% and 30x. In all cases, the ratio of correctly phased alleles 398 

to incorrectly phased alleles was greater than 0.989 (median .999). 399 

 400 

Calling and phasing with the full pedigree 401 

We examined the effect of using all sequence data and the full pedigree on calling genotype and 402 

phase yield and accuracy of sequenced individuals. The gains in yield and accuracy in comparison 403 

to using data from disconnected families are plotted in Figure 2. We found that including the full 404 

pedigree greatly increased both genotype and phase yield and accuracy. The gains were smaller 405 

for high coverage individuals compared to low coverage individuals. For example, phase accuracy 406 

increased on average from 0.85 to 0.97 for 30x individuals, but increased on average from 0.67 to 407 

0.89 for 1x individuals. 408 

The gains in accuracy were also not equal for all individuals in the pedigree; some 409 

individuals had only a small gain in accuracy, whereas others had a large gain in accuracy. This 410 

difference was particularly pronounced for 1x individuals where the phase yield on average 411 

increased from 0.11 to 0.67, but the standard deviation increased from 0.13 to 0.28. If all 412 

individuals were influenced equally by including the full pedigree, we should expect an increase 413 

in mean but not a corresponding increase in standard deviation. The increased variability is a 414 
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consequence of the different sequencing coverages on relatives who are outside of the immediate 415 

family. We found that amount of sequencing coverage on immediate relatives (parents and 416 

grandparents) is a good predictor for the phase accuracy of 1x individuals in the disconnected 417 

family (r2 = 0.37), but is a weak predictor for the phase accuracy of those individuals in the full 418 

pedigree (r2 = 0.13). In contrast, adding in the sequencing coverage on all ancestors increased our 419 

ability to predict accuracy when assessing the phase accuracy in the full pedigree (r2 increased 420 

from 0.13 to 0.42), compared to when assessing the phase accuracy in the disconnected families, 421 

(r2 increased from 0.37 to 0.55). The higher overall r2 for disconnected families is likely due to the 422 

fact that performance in a disconnected family is easier to estimate because of the limited 423 

interaction between coverage levels for far away ancestors. A similar pattern of results was found 424 

for genotype accuracy and the genotype and phase yields. 425 

 426 

Imputing whole genome sequence 427 

Finally, we analysed the ability of hybrid peeling to impute whole genome sequence data to all 428 

non-sequenced individuals in the pedigree. Figure 3 plots the imputation accuracy for every 429 

individual as a function of their position in their pedigree. In Table 3 we present the median 430 

imputation accuracy stratified by the used sequencing sets and individual’s SNP array genotype 431 

status. Overall, we imputed highly accurate allele dosages across the entire pedigree using the focal 432 

plus all low coverage sequencing set, with an accuracy of 0.987 for individuals with high-density 433 

SNP array data, 0.967 for individuals with low-density SNP array data, and 0.881 for non-434 

genotyped individuals. We observed a qualitative difference in imputation accuracy in older 435 
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individuals. Because of this we stratified results for the first quintile (first 12,919 individuals) and 436 

the entire pedigree. 437 

We observed three trends in imputation accuracy. First, individuals in the first quintile had 438 

on average lower imputation accuracy then the rest of the population. When we used the focal plus 439 

all low coverage sequencing set the imputation accuracy for the first quintile was 0.908, compared 440 

to the average imputation accuracy of 0.970. This decrease in imputation accuracy is due to the 441 

lower average sequencing coverage of ancestors for individuals in the first quintile (83x compared 442 

to the population average of 308x) and the small number of individuals with high-density SNP 443 

array data (0.2% in the first quintile compared to the population average of 70%). 444 

Second, increasing the amount of sequencing resources increased accuracy for all 445 

individuals in the population. The largest contribution came from using focal individuals and their 446 

parents and grandparents, which gave imputation accuracy of 0.945. Further, adding low coverage 447 

sequence data of top sires increased imputation accuracy to 0.963. Finally, adding sequence data 448 

of top dams and the remaining low-coverage individuals increased the imputation accuracy only 449 

to 0.970, but had a proportionally larger influence on individuals in the first quintile where the 450 

imputation accuracy increased from 0.885 to 0.908. The effect is likely due to the fact that 78% of 451 

the top dams and top up individuals came from the first quintile. 452 

Third, imputation accuracy for an individual depended on their SNP array genotype status. 453 

A comparison of the accuracies depending on their SNP array density is given in Table 3. Overall 454 

the difference between having high-density or low-density SNP array data tended to be small, 455 

whereas the difference between having SNP array data or not tended to be larger, although this 456 

difference decreased in the later generations. For the final four quintiles, the difference between 457 

having high-density or low-density SNP array data was negligible (both had an accuracy above 458 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228999doi: bioRxiv preprint 

https://doi.org/10.1101/228999
http://creativecommons.org/licenses/by-nc-nd/4.0/


Peeling for whole genome sequence data 22 

0.987), and the difference between having SNP array data or not was small (0.988 vs 0.959). In 459 

comparison, in the first quintile the difference between having high-density or low-density SNP 460 

array data was relatively larger (0.983 vs 0.951) and the difference between having SNP array data 461 

or not was much larger (0.951 vs 0.868). 462 

 463 

Computational requirements 464 

The computational requirements of hybrid peeling were much less than those for multi-locus 465 

peeling. We compared the time it took multi-locus peeling to process the high-density SNP array 466 

with 2,000 markers used as an initial step of hybrid peeling to the time it took hybrid peeling to 467 

process the remaining sequence with 700,000 segregating loci when using the focal plus all low 468 

coverage sequencing set. We found that the initial multi-locus peeling step took 823 minutes and 469 

41 GB of memory to process 2,000 SNPs on 64,598 individuals, which translates to 6.3 hours per 470 

1,000 individuals per 1,000 loci. The hybrid peeling step was split across 1000 jobs of 700 SNPs 471 

each. Each job took an average of 40 minutes and 2.3 GB of memory, which translates to 53.5 472 

minutes per 1,000 individuals per 1,000 loci and a total of 40,344 minutes (roughly 28 core-days). 473 

 474 

Discussion 475 

In this paper we present a hybrid peeling method for calling, phasing, and imputing sequence data 476 

of any coverage in large pedigrees. This method is computationally efficient and enables the 477 

benefits of multi-locus peeling to be realised for data sets with tens of thousands of individuals on 478 

tens of millions of segregating variants. We evaluated the performance of hybrid peeling in calling 479 

and phasing sequence data in a livestock population and in imputing that sequence data to the non-480 

sequenced individuals in the population. Hybrid peeling successfully used the pedigree to 481 
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propagate information between relatives to call genotypes and phase alleles for individuals with 482 

low and high sequencing coverage. Further, calling and phasing these individuals was most 483 

effective when the full pedigree was used. Hybrid peeling was also able to whole genome sequence 484 

to 60,000 animals with an accuracy above 0.98. We discuss these results in more detail below. 485 

 486 

Hybrid peeling as a genotype calling and phasing method 487 

We found that hybrid peeling effectively used pedigree information to call genotypes and phase 488 

alleles in a population of sequenced individuals. When using hybrid peeling, sequence data from 489 

an individual’s parents and grandparents increased the number and accuracy of called genotypes 490 

and the number and accuracy of phased alleles compared to just using an individual’s own 491 

sequence data. We also found that further increases in yield and accuracy could be gained by using 492 

more distant relatives. The benefits of using the full pedigree were most apparent for individuals 493 

that had low coverage sequencing data (1x and 2x), where in some cases the total genotype yield 494 

could rise from 0.1 based on the individuals own sequence data to over 0.9 using the sequence data 495 

from the entire pedigree. These results suggest that hybrid peeling could be used to increase the 496 

yield of calling and phasing sequence data in pedigrees. The application of hybrid peeling is not 497 

limited to individuals with whole genome sequence data, but may also be useful when handling 498 

data generated through genotyping via a reduced-representation sequencing (e.g. RAD-seq (Davey 499 

et al., 2011) or genotyping-by-sequencing (Elshire et al., 2011; Gorjanc et al., 2015)).  500 

 In addition to increasing genotype yield, hybrid peeling also allows for the phasing of many 501 

alleles. Using an individual’s own sequence data limits the number of alleles that can be phased to 502 

just homozygous loci. In contrast, the number of phased heterozygous loci greatly increased if 503 

there was significant sequence coverage on the individual’s parents, grandparents, or even more 504 
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distant relatives. The ability to accurately phase alleles will be important for downstream 505 

imputation and other analyses. Pedigree based methods, like hybrid peeling offer one route for 506 

obtaining this information. There are alternative methods that are based on hidden Markov models, 507 

e.g. Beagle (Browning and Browning, 2007). These methods phase individual’s alleles by finding 508 

shared chromosome segments between an individual and its distant relatives. However, these 509 

methods currently do not scale well to performing whole genome sequence phasing and imputation 510 

for tens of thousands of individuals (Gilly et al., 2017), making them impractical for many 511 

livestock settings.  512 

  The power of hybrid peeling comes from its ability to combine sequence data across many 513 

related individuals. Hybrid peeling identifies shared chromosome segments between parents and 514 

their offspring, and propagates that information to all the individuals who share those segments. 515 

In many cases, particularly with low coverage sequence data it is not possible to clearly identify 516 

shared chromosome segments. Hybrid peeling handles those cases by marginalizing over the 517 

uncertainty of which chromosome was inherited and so potentially increases the accuracy rate over 518 

methods that initially require a high accuracy of determination of shared chromosome segments. 519 

By marginalizing over uncertainty, hybrid peeling is able to exploit even low coverage sequence 520 

data over many generations. When analysing the performance increase between phasing 1x 521 

individuals in the case of disconnected families, versus the case of the full pedigree, we found that 522 

most reliable indicator of phasing accuracy was the total amount of sequencing coverage for all of 523 

the individual’s ancestors, and not the amount of sequencing coverage on the individual’s parents 524 

and grandparent, suggesting that hybrid peeling is able to use even distant relatives to phase 525 

individuals. 526 
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 The heavy reliance of pedigree based imputation is both a boon and a curse for hybrid 527 

peeling. As we discuss above, using pedigree information can lead to high accuracy, high yield 528 

genotype calling and phasing for low coverage individuals. The usefulness of this technique relies 529 

on multi-generational pedigree information being available. Although there is some benefit on 530 

using sequence information on an individual’s parents and grandparents, the primary benefit comes 531 

from aggregating sequencing information across many generations. The availability of multi-532 

generational pedigree information is generally routinely available in commercial livestock 533 

populations, but may be less available for human or wild animal populations. When limited 534 

pedigree information is unavailable, the performance of hybrid peeling may be less than that of 535 

non-pedigree based imputation methods that rely on linkage disequilibrium to call and phase 536 

sequence data (VanRaden et al., 2015). There may be some benefit in combining linkage based 537 

information with pedigree based information for calling and phasing animals in populations with 538 

shallow pedigrees where linkage information between disconnected populations can be exploited. 539 

Existing methods have already considered combining linkage based information on the context of 540 

multi-locus peeling (Meuwissen and Goddard, 2010), and for using pedigree based information in 541 

the context of linkage disequilibrium based calling and phasing algorithms (Chen et al., 2013; 542 

O’Connell et al., 2014). Future work is needed to analyse the optimal integration of hybrid peeling 543 

with linkage based methods for use in low-depth pedigrees.   544 

 545 

Hybrid peeling as a whole pedigree imputation method 546 

We found that hybrid peeling could effectively use mixed coverage sequence data to impute whole 547 

genome sequence into the non-sequenced individuals in the pedigree. For the majority of 548 

individuals we obtained imputation accuracy of 0.98. Imputation accuracy was lower at the 549 
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beginning of the pedigree compared to the end of the pedigree due to the low ancestral sequencing 550 

coverage and the high number of individuals genotyped with low-density SNP arrays early in the 551 

pedigree. This trend identifies a difficulty that many pedigree based imputation methods face, i.e., 552 

it is generally easier to impute children from their parents then it is to impute parents from their 553 

children. This difficulty arises from the fact that it is often challenging to phase parents based on 554 

their children’s genotype. Doing so requires finding patterns of shared inheritance across multiple 555 

offspring, and generally requires many children (Ferdosi et al., 2014). In contrast, it is relatively 556 

easy to phase a child’s genotype based on its parents’ genotypes. 557 

 One of the more surprising results was the high accuracy observed for non-genotyped 558 

individuals. Restricted to the last four quintiles of individuals in the pedigree, non-genotyped 559 

individuals had an imputation accuracy of 0.959, which is only slightly less than the 0.988 accuracy 560 

for individuals that had high-density SNP array data. The only information that hybrid peeling had 561 

for non-genotyped individuals was their position in the pedigree and the list of parents, mates, and 562 

offspring. Using this information hybrid peeling was able to accurately reconstruct inheritance of 563 

chromosomes across generations, and impute these individuals up to whole genome sequence. The 564 

ability of hybrid peeling to impute non-genotyped pedigree members highlights the difference 565 

between pedigree and linkage disequilibrium based methods such as Beagle (Browning and 566 

Browning, 2007), Impute2 (Howie et al., 2009), or MaCH (Li et al., 2010), which require all 567 

individuals to be genotyped at, at least, with a low-density SNP array. 568 

 We also noted significant computational gains of hybrid peeling compared to the multi-locus 569 

peeling of Meuwissen and Goddard (2010). Both methods scale as O(NL) – linearly with the 570 

number of individuals (N) and number of loci (L). However, compared to full multi-locus peeling 571 

we found that hybrid peeling ran about 6 times faster and used less memory than full multi-locus 572 
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peeling. The increased speed stems from not having to update the segregation estimates at each 573 

locus. The decreased memory stems from being able to run each locus independently. This means 574 

that memory requirements of hybrid peeling scale linearly with the number of individuals O(N), 575 

while multi-locus peeling memory requirements scale linearly both with the number of individuals 576 

and number of loci O(NL). The gains in speed and memory also lead to practical gains in 577 

implementing hybrid peeling. Because each locus is considered independent of the other loci given 578 

the segregation estimates, hybrid peeling is trivial to parallelize. Further, the lower memory 579 

requirement allows this parallelization to be done on even small machines. Parallelisation meant 580 

that although overall imputation time for 700,000 segregating loci on 64,598 individuals took 28 581 

days of CPU time, we were able to run it on a computing cluster in under 24 hours of real time. 582 

 583 

Conclusions 584 

This paper presents hybrid peeling, a computationally tractable multi-locus peeling algorithm for 585 

whole genome sequence data. We demonstrated the effectiveness of hybrid peeling in calling, 586 

phasing, and imputing whole genome sequence in a large livestock population. We found that 587 

hybrid peeling could effectively use multiple generations of variable coverage sequence data to 588 

easily increase the yield and accuracy of called genotypes and phased alleles compared to using 589 

an individual’s own sequence data. We also found that hybrid peeling could accurately impute 590 

whole genome sequence into non-sequenced individuals. We implemented a version of this 591 

method in the software package AlphaPeel, which is available from the AlphaGenes website 592 

(http://www.alphagenes.roslin.ed.ac.uk). Hybrid peeling has the potential to open the door the 593 

routine utilization of whole genome sequence in large pedigreed populations, increasing the 594 

accuracy of genomic prediction and the power to detect quantitative trait loci. 595 
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713 

Figure 1 714 

Genotype and phase yield while varying coverage in the focal individual and its parents and 715 

grandparents. Panels (a) and (b) give the percentage of called genotypes while varying (a) the 716 

coverage in parents and (b) the coverage in grandparents. Panels (c) and (d) give the percentage of 717 

phased alleles while varying (c) the coverage in parents and (d) the coverage in grandparents. In 718 

panels (b) and (d) the coverage in parents was constant at 30x. In all four panels the accuracy was 719 

> .98. Error bars represent plus or minus one standard error based on ten replications. 720 
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 722 

Figure 2 723 

Genotype and phase yield and accuracy when hybrid peeling is run on a series of disconnected 724 

families containing a focal individual and its parents and grandparents, or as part of the full 725 

pedigree. Panels (a) and (c) give the performance of genotyping individuals, measured either with 726 

(a) the genotype yield or (c) the correlation between the true genotypes and the imputed genotype 727 

dosages. Panels (b) and (d) give the performance of phasing individuals, measured either with (a) 728 

the phase yield, or (c) the correlation between the true phase and the imputed phase. 729 
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732 

Figure 3 733 

Individual imputation accuracy as a function of birth order (ID number). The green, blue, and red 734 

lines track the running average of 1000 individuals when respectively the focal individuals, the 735 

focal and low coverage sires, or the focal and all low coverage individuals were used for 736 

imputation. The grey dots show results for every individual when the focal and all low coverage 737 

individuals were used for imputation. The vertical dotted line represents the break between the 738 

first quintile of individuals and the remaining four quintiles of individuals.  739 

740 
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Table 1 741 

Examples of the trace function under single-locus peeling (a) and multi-locus peeling (b) when the 742 
child inherits the grandpaternal (first) allele. 743 
 744 
(a) Equal likelihood of inheritance  (b) Grandpaternal inheritance 

Parental 
haplotype 

Inherited 
allele 

Trace 
probability  

Parental 
haplotype 

Inherited 
allele 

Trace 
probability 

aa a 1  aa a 1 
aA a 0.5  aA a 1 
Aa a 0.5  Aa a 0 
AA a 0  AA a 0 
aa A 0  aa A 0 
aA A 0.5  aA A 0 
Aa A 0.5  Aa A 1 
AA A 1  AA A 1 

  745 
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Table 2 746 

Number of sequenced animals and cost by sequence coverage and the three sequencing sets. 747 

 Focal 
 

Focal and low coverage 
sires 

Focal and all low 
coverage 

Coverage N Cost ($) N Cost ($) N Cost ($) 
1x 33 3,531 33 3,531 1,282 137,174 
2x 78 13,650 479 83,825 530 92,750 
15x 64 28,608 64 28,608 64 28,608 
30x 36 30,780 36 30,780 36 30,780 
Total 211 76,569 612 146,744 1,912 289,312 

  748 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228999doi: bioRxiv preprint 

https://doi.org/10.1101/228999
http://creativecommons.org/licenses/by-nc-nd/4.0/


Peeling for whole genome sequence data 38 

Table 3 749 

Median imputation accuracy for non-sequenced individuals as a function of used sequencing data 750 
sets and individual’s SNP array genotype status. These measures were taken over (a) all non-751 
sequenced individuals or (b) the final four quintiles of the population. . 752 
All individuals High density Low density No genotype 
Focal 0.967 0.936 0.855 
Focal and low coverage sires 0.983 0.952 0.863 
Focal plus all low coverage 0.987 0.971 0.881 

 753 
Final four quintiles High density Low density No genotype 
Focal 0.968 0.968 0.939 
Focal and low coverage sires 0.984 0.985 0.953 
Focal plus all low coverage 0.987 0.988 0.959 

 754 
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