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Abstract 

The topological analyses of many large-scale molecular interaction networks often provide only 

limited insights into network function or evolution. In this paper, we argue that the functional 

heterogeneity of network components, rather than network size, is the main factor limiting the 

utility of topological analysis of large cellular networks. We have analysed large epistatic, functional, 

and transcriptional regulatory networks of genes that were attributed to the following biological 

process groupings: protein transactions, gene expression, cell cycle, and small molecule metabolism. 

Control analyses were performed on networks of randomly selected genes. We identified novel 

biological features emerging from the analysis of functionally homogenous biological networks 

irrespective of their size. In particular, direct regulation by transcription as an underrepresented 

feature of protein transactions. The analysis also demonstrated that the regulation of the genes 

involved in protein transactions at the transcriptional level was orchestrated by only a small number 

of regulators. Quantitative proteomic analysis of nuclear- and chromatin-enriched sub-cellular 

fractions of yeast provided supportive evidence for the conclusions generated by network analyses. 
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Background  

Biological activities at the cellular level are not isolated but are governed by a set of concerted 

interactions between the functional molecules responsible for performing a given task. For this 

reason, network analysis is often employed to elucidate how these coordinated interactions 

facilitate the functioning of an entire biological system (1). The connectivity graph of a cellular 

network, in which biological entities (such as genes, proteins, or metabolites) are connected through 

edges that represent interactions (such as reactions or structural associations) is often employed to 

identify the network’s topological features (2,3). Examples of the theoretical analysis of such graphs 

were reported by Erdös and Rényi as early as the 1960s, in a study of large random networks (4).   

In early studies of biological networks, the topological structures were observed to depart from 

those of random networks. Biological networks were found to exhibit the following characteristics: a 

power law degree distribution, scale-freeness, ‘small-world’ properties, high tolerance to random 

attacks and low tolerance to targeted attacks, growth by preferential attachment, and the exhibition 

of distinct motif signatures and dense modules (5–8). Deviations from these characteristics (7) were 

usually attributed to incomplete or poor-quality data (6,9,10). However, such “exceptions” persisted, 

even after high-quality interaction data became available and advanced network analysis procedures 

came into play. This required the modification and adaptation of existing models of biological 

network topology, with many of their classical features being challenged as mere artefacts inherent 

in the representation of complex molecular interactions as two-dimensional network graphs (5). This 

has resulted in biological network analysis becoming increasingly focused, not on the global 

network, but on the identification of functionally relevant sub-structures within the network 

(5,9,11). The identification of tightly interconnected substructures (or modules) has proved to be a 

valuable tool with which to explore the workings of living cells in both control/healthy or 

modified/diseased states (12–14). Moreover, the study of even smaller local substructures of only a 
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few nodes has allowed the identification of network motifs that have predictive value for 

interactions of similar nodes in different organisms or systems (15).   

In this paper, we explore the importance of functional homogeneity in gaining biological insights 

from the topological analysis of cellular networks. Using the yeast Saccharomyces cerevisiae as our 

model, we have compiled sets of genes, each of which could be attributed to a broad biological 

process: e.g. the biosynthesis, modification, localization, and degradation of proteins (which we 

define here as protein transactions); gene expression (including both transcription and translation); 

cell cycle; or small molecule metabolism. We then constructed functional, regulatory, or epistatic 

interaction networks for these gene sets, and investigated their topological properties. We observed 

that the large size of the networks under investigation was not the major factor limiting the power 

of these analyses, and that it was possible to gain biological insights from the global topological 

analysis of these functionally homogenous networks. We then focused on the distinctive 

transcriptional regulatory patterns governing protein transactions in yeast, and carried out an in-

depth investigation of the nuclear proteome to confirm the inferences from our global topological 

analysis.  

 

Methods  

The gene and annotation datasets 

Seven different gene product sets were investigated in the study. Gene Ontology (GO) Biological 

Process terms were employed to compile the function-specific sets (16) of Saccharomyces cerevisiae 

gene products associated with the following GO IDs: (i) protein transactions (PT) (GO:0006457, 

GO:0008104, GO:0019538, GO:0006986), (ii) gene expression (GE) (GO:0010467), (iii) cell cycle (CC) 

(GO:0007049), and (iv) small molecule metabolism (SMM) (GO:0044281). The GO term association 

data for these four sets and for the global set (Biological Process root node GO: 0008150) (6447 

genes) were accessed from http://www.geneontology.org/ (access date 03/03/2017) (17).  A pool of 

1000 random sets, with equal size to that of PT (2533 gene products), was constructed by randomly 

selecting entries from the global set. One of these random sets was, itself, randomly selected and 

used for further analyses. The PT-C (complement of PT) set was constructed from all the non-PT 

gene products of the global set (3914). Signalling-associated gene products were identified using the 

GO signalling term (GO:0023046). Haplosufficiency, essentiality, Gene Ontology associations, and 

human protein functional homology information was retrieved from the Saccharomyces Genome 

Database accessed on 22/03/2017 (18). Node data (i.e. gene sets) are provided in Supplementary 

Material 1.  

Network reconstruction 

Curated physical and genetic interactions documented for Saccharomyces cerevisiae were retrieved 

from BIOGRID (19) on 22/02/2017 (release 3.4.145). A dataset by Jansen et al. (20), where the 

authors used 10 permanent complexes as a basis for the classification of most S. cerevisiae 

complexes as permanent or transient, based on correlations with gene expression was used to 

identify the permanent and transient physical interactions. Dosage rescue, synthetic rescue, 

phenotypic suppression and positive genetic interactions were classified as “alleviating” responses, 

whereas synthetic growth defect, phenotypic enhancement, synthetic lethality, dosage growth 

defect, dosage lethality, synthetic haploinsufficiency, and negative genetic interactions were 

classified as “aggravating” phenotypic responses in the analysis of genetic interaction networks. 

Physical and genetic interactions were both regarded as bidirectional and the graph edges were of 
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uniform weight. Multiple instances of experimental evidence for a single interacting pair from one or 

more independent resources were scaled down to a single documented instance. A genetically 

interacting pair was double-counted only when evidence for both aggravating and alleviating effects 

on the phenotype were documented. Self-loops (e.g. homodimers) were excluded from the analyses. 

Transcriptional regulatory network (TRN) interactions were accessed from YEASTRACT (21) (access 

date 22/02/2017). Transcription factor targets were used only when both DNA binding and 

expression evidence were documented. Transcription factors that do not have any curated targets 

were excluded from analysis. Regulatory evidence under all reported environmental conditions was 

included. Edge (interaction) data are available in Supplementary Material 1.  

Network and data analysis 

Cytoscape v3.5.0 was employed for the removal of duplicate interaction pairs and self-loops, and for 

topological network analysis (22). Statistical analyses and network randomisation were conducted in 

MATLAB R2016b. Hubs were defined as nodes connected to at least 10% of the other nodes in the 

network and degree centrality was adopted as the hub-metric. Out-degree was employed as the 

characteristic parameter for the identification of principal transcription factors; i.e. the hub-like 

nodes in the bi-partite graph of the transcriptional regulatory network. Networks were normalised 

against the total number of nodes that they contained as reference. Dissimilarities in structural 

properties that could not be explained by the size effect were then determined by a “difference” 

metric, where a numerical network property was identified to be different from those for other 

networks only if the following relationship held true: 

For any numerically representable network property ��  for any network i = 1…n and where � � �  

�� � 0.2�� 	 ��   ��   ��  0.2�� � �� 

indicating that a property must differ by at least 20% from its peers in order to be identified as 

distinctly different. 

A hypergeometric distribution was used to evaluate the statistical significance of functional 

enrichments (23). Princeton GO tools were employed for Gene Ontology Enrichment Analysis 

(http://go.princeton.edu/cgi-bin/GOTermFinder) accessed on (19/05/2017) (24). MeV: 

MultiExperiment Viewer was used for integrative data analysis (25). K-means clustering was 

employed for data classification (K = 2, distance metric = Pearson correlation, maximum number of 

instances to test all elements in the data set for cluster fit = 10000). Standard protocols were 

followed for multiple linear regression (MLR) and the determination of data normality (26). Symbolic 

regression (SR) was employed as described by (27,28). The gene expression data (Gene Expression 

Omnibus accession number GSE41094) was adopted from Rodríguez-Lombardero et al. (29). Rank 

correlations were employed in evaluating the emPAI values that correspond to protein abundance 

(30). 

Cell culture and pre-treatment for sub-cellular fractionation 

The S. cerevisiae strain used in this study was BY4741 harbouring GFP-tagged Hsp82p (MATa HSP82-

GFP::HIS3 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) (31). Two separate cultures were grown to an OD600 of 

0.6 at 30°C in SD-His media with shaking. In total, 120 OD units were used for the nuclear 

preparation and 240 OD units were used for the chromatin preparation.  

Pre-treatment of cells prior to lysis was based on (32). Cells were incubated at 5 OD units per mL of 

25 mM Tris-HCl, pH 7.5, 10 mM TCEP for 10 minutes at room temperature. Cells were subsequently 

treated for 10 minutes at 30°C with 1 μg zymolyase 100-T (Nacalai Tesque) per OD unit of yeast, in 
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spheroplasting medium (SD-His supplemented with 25 mM Tris-HCl, pH 7.5 and 1.2 M sorbitol), at 20 

OD units per mL. Spheroplasts were washed once in SD-His, supplemented with 1.2 M sorbitol, at 5 

OD units per mL. 

Sub-cellular fractionation  

Nuclei were prepared according to (33), with the modification that lysis was carried out at 20 OD 

units/mL lysis buffer. This yielded a supernatant (SNUC) and a nuclear pellet (PNUC). 

Chromatin was prepared according to (34), but in the absence of thiodiglycol. This yielded a 

supernatant (SCHROMA) and chromatin pellet (PCHROMA). The pellet was additionally treated with 500 U 

benzonase nuclease (Merck Millipore) for 30 minutes on ice and resolubilised in 30 mM Tris-HCl, pH 

6.8, 2% (w/v) SDS.  

Sample preparation for mass spectrometry  

Protein concentrations were estimated and aliquots representing 75 μg total protein per sample 

were resolved on 4-15% linear gradient polyacrylamide gels (Bio-Rad), which were then stained with 

Coomassie brilliant blue. Gel lanes were cut into equally sized bands (16 bands for S50 and P50; 8 

bands for S16 and P16). Bands were destained, reduced (using dithiothreitol), alkylated (with 

iodoacetamide) and subjected to tryptic digestion at 37°C for 16 hours. 

Mass spectrometric analysis of samples 

In all cases, approximately 1 μg of sample was injected on-column per mass spectrometry run. The 

tryptic digests from bands corresponding to S50 and P50 were analysed using a Dionex Ultimate 3000 

RSLCnano UPLC (Thermo Fisher Scientific) system coupled in-line to a Q Exactive Hybrid Quadrupole-

Orbitrap mass spectrometer (Thermo Fisher Scientific). The mass spectrometry method used was 

the same as described in (35), but with the modification that fragmentation was carried out on the 

twenty most intense ions per survey scan with charge state of 2+ and above. 

The tryptic digests from bands corresponding to S16 and P16 were analysed using a nanoAcquity UPLC 

system (Waters) coupled in-line to an LTQ Orbitrap Velos Hybrid Ion Trap mass spectrometer 

(Thermo Fisher Scientific). The mass spectrometry method used was the same as described in (36), 

but the Orbitrap was operated at a resolution of 30,000 and fragmentation was carried out on the 

twenty most intense ions per survey scan with charge state of 2+ and above. The details of the 

proteomics analysis are provided in Supplementary Material 2. 

Mass spectrometry data processing 

Files of raw mass spectrometry data were converted to Mascot Generic Format (MGF) using 

MSConvert (version 3.0.9283, Proteowizard). MGF files were searched using an in-house Mascot 

server (version 2.6.0, Matrix Science) against a canonical S. cerevisiae database, downloaded from 

UniProt (March 2017; 6,749 sequences). Samples corresponding to each gel lane were merged for 

searching, yielding a “master” results file of mass spectrometry runs for a given sample. 

Carbamidomethylation of cysteine was specified as a fixed modification and oxidation of methionine 

as a variable modification. A 1% FDR threshold for protein identifications was imposed, based on the 

search of a decoy database of reversed protein entries. Relative protein quantification was inferred 

using the built-in emPAI score (30) feature of Mascot (Supplementary Material 3).  
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Results and Discussion 

We investigated the network organization and transcriptional regulation of the genes and their 

products involved in “Protein Transactions” (PT). We define PT as comprising the biosynthesis, 

modification, localization, and degradation of proteins. This set of processes is orchestrated by 2533 

gene products in the yeast Saccharomyces cerevisiae, approximately 38% of the genes encoding 

protein, rRNA, snRNA, snoRNA or tRNA molecules. The physical, genetic and transcriptional 

regulatory interaction networks of this set of gene and gene products were constructed and these 

networks were topologically investigated to identify whether network topology could provide 

biological insight, which we will refer to as ‘functional signatures’ from this point forward. We 

investigated the effects of both the size and functional homogeneity of the network on the detection 

of these functional signatures. The ubiquity of the identified signatures was then assessed by 

analysing other large networks of gene sets dedicated to other specific functions in yeast; gene 

expression (GE, 2128 gene products), cell cycle (CC, 786 gene products), and small molecule 

metabolism (SMM, 835 gene products). A summary of the biological networks constructed for all 

sub-systems and for the genome-scale system of 6447 genes and their products are provided in 

Supplementary Material 4 and in Figure 1a.  

We discuss here our findings on the necessary and sufficient criteria for gaining biological insight by 

topological analysis of the protein transactions in yeast. This analysis revealed unusual properties 

regarding transcriptional regulation.  

Transcriptional regulation of protein transactions in yeast 

The topological analysis (Supplementary Material 4) of the transcriptional regulatory network (TRN) 

of PT indicated that only 17 of the 2533 gene products in the yeast protein transactions network 

encoded TFs.  Transcription factors in the protein transaction network indicated either a direct role 

in the regulation of the protein transaction by transcription, or regulation of a transcription factor by 

a protein transaction.  

The number of genetic and physical interactions reported between these TFs and the protein 

transactions domain were significantly lower than what would be observed for all transcription 

factors in the global network (under-enrichment by 2.98-fold with �  ����� � 10���� , and by 

2.78-fold with �  ����� � 10����, for PIN and GIN, respectively). However, an investigation of 

these 17 TFs in the global network revealed that they had a significantly higher number of 

interactions than those for all TFs (over-enrichment by 1.89-fold with �  ����� � 0.002, and by 

1.77-fold with �  ����� � 0.004, for PIN and GIN, respectively). This indicated that although these 

TFs were highly interactive nodes, their specific role in protein transactions was tightly defined and 

allowed less interaction (i.e. communication) with other nodes in the network. Despite the fact that 

none of these TFs was identified as a hub in the PIN and GIN of protein transactions, they were all 

linker proteins between hubs in both networks. In other words, despite their relatively low degree, 

their “strength” (37), indicating how important or central they are for the network, was very high. 

The non-TF nodes of the TRN of PT were observed to be significantly enriched for genes that can 

complement human gene function (11% vs 8.5% of that of the global TRN, 1.31-fold over-enrichment 

with �  ����� � 10����, reflecting the conservation of genes involved in protein transactions 

across the eukarya.  Hsf1p, a heat shock protein regulating gene transcription in response to stress, 

was the only transcription factor that is included in the TRNs of both PT and the global set, and 

which has been experimentally shown to complement the function of its cognate human gene. In 

contrast, 42 transcription factors were present in SMM TRN. Therefore a much smaller repertoire of 
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transcription factors were associated with the large PT network (2533 nodes) compared with the 

SMM (835 nodes) or the global network (6447 nodes).  

Hubs in the PT network 

Seven genes (VAM6, RPN11, HSP82, CDC28, UBP3, RPN10 and BRE5) were identified as hubs in both 

the physical and the genetic interaction networks of PT, whereas no common hubs were identified 

for the PIN and GIN of the global set. These genes were tightly connected (through physical or 

genetic interactions) with other members of PT. Since these seven genes could only be defined as 

hubs for the PIN and GIN of PT, they are thought to assume a pivotal role in protein transactions, 

whereas their impact on the global network was less dominant. The genetic interactions involving 

these common PI/GI hubs was found to be exclusively aggravating. Indeed, synthetic-lethal genetic 

interactions were previously reported to significantly overlap with protein–protein interactions, and 

were reported to be largely confined to genes within pathways that contain at least one essential 

gene (38). The hubs of the PT GIN (and consequently the aggravating GIN) were significantly 

enriched for the GO Process Terms ‘protein localisation’ ��  ����� � 10��	� and ‘transport’ 

(�  ����� � 10����. A similar analysis on the hubs of the PT PIN revealed no enrichment other 

than the uninformative common parents of the PT network terms. In contrast, the hubs in the 

physical or genetic interaction networks of the global set were not significantly enriched for any 

biological process.  

The identification of hubs found in both the physical and genetic interaction networks for the PT 

gene/gene product set led us to search for common genes that act as principal TFs in the TRN and as 

hubs in either the PIN or GIN of PT. However, the nodes of the TRN were very significantly 

underrepresented in either the GIN or PIN of PT in comparison to what was observed for the global 

set (under-enrichment by <2.5-fold; �  ����� � 10��	�, and by 3.5-fold; �  ����� � 10�

� 

compared to expectation, respectively). This could potentially be the result of the downsizing of the 

PT TRN, indicated by the very low number of TFs identified within the PT subset.  

Small network size is neither necessary nor sufficient 

Identification of the features of the PT interaction networks that were different from those of the 

global interaction networks of yeast raised two related questions regarding the topological analysis 

of biological systems: (i) Did these system-specific characteristics appear due to the fact that the 

global network was reduced down to 38% of its original size, in line with earlier arguments on the 

necessity to work with smaller networks in order to extract biologically relevant information (39), or 

(ii) did functional coherence among the gene members contribute to the understanding of the 

system under investigation? We addressed these questions by investigating 1000 randomly selected 

sub-sets of the global yeast gene set that comprised 2533 genes (the size of the PT set). On average, 

39.30 � 0.79% of these random sets were associated with genes from the PT set. Since, the PT set 

itself constituted 38% of the global set in yeast, we concluded that this randomisation was both a 

robust and realistic downsizing of the global set.  One of these 1000 random sub-sets was then 

randomly selected to construct genetic interaction, protein interaction, and transcription regulatory 

networks. The characteristics of these networks were compared to those of both global gene/gene 

product set and the bona fide PT gene/gene product set (Table 1). Node-wise comparisons revealed 

that the random network was a realistic scale-down of the global network whereas PT was enriched 

with signalling-associated or essential genes. Although both the random and the PT subset had a 

higher number of nodes identified as hubs, this was considerably more prominent in the physical 

and genetic interaction networks of PT, and was only a slight increase for the random subset.  
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Scaling down reduced the available information at the interaction level for both random and PT 

networks since only the interactions between the genes of a given set were considered in the 

analysis. The random GIN and PIN were observed to be more severely affected, having fewer 

interactions, than PT GIN and PIN. The functional homogeneity in PT resulted in a higher within-

graph connectivity characterised by higher network density by 45% and 40%, and shortened the 

characteristic path lengths by 10% and 8% for PIN and GIN, respectively. However, the 

transcriptional regulatory events, at both the node and interaction levels, were severely 

underrepresented in PT – indicating that there were (i) fewer nodes identified as TFs, (ii) fewer 

nodes identified as target genes of these TFs, and (iii) fewer TF-gene binding interactions between (i) 

and (ii). This feature could not be explained by differences in any topological measures of the TRN, 

and therefore was regarded as novel biological insight, rather than an inherent artefact of 

topological network analysis.  

This analysis of random networks demonstrated that reducing the size of the set of nodes from 

which the biological networks are constructed did not markedly affect the analysis of the network; 

rather, it was found that functional integrity within the set allowed novel biological insights to be 

garnered from the available information.   

Functional specificity is necessary but not sufficient 

The next question to be explored was whether topological features identified for PT were peculiar to 

the protein transactions gene/gene product set or whether they could be found for other well-

defined gene/gene product sets. For this purpose, four functionally distinct (but non-exclusive) 

subsystems: PT, GE, CC, and SMM were analysed. Although each subsystem constituted all the 

genes/products attributed to a broad but single cellular process, many genes had multiple 

functionality, and were thus shared across the different subsystems. The overlap between PT and GE 

was especially striking, with nearly 47% of all PT shared with GE (Figure 1b), largely due to the 

presence of the biological process “translation” in both protein transactions and gene expression. 

Although each subsystem had unique members, it was not possible to identify a biologically relevant 

functional subgroup that would exclude overlapping genes from the analysis, and still provide 

meaningful large datasets.  

Since the number of genes in each functional subset was different, the topological features for the 

PINS, GINS and TRNS of PT, GE, CC, and SMM were normalised for their number of constituent nodes 

relative to that for the global network (Table 2, Supplementary Materials 4, 5).  A broad classification 

of these topological features by k-means clustering revealed that the topological network properties 

of PT, GE and CC were similar, and clustered separately from those of the random subsystem, SMM 

and PT-C, which were also similar(Figure 1c). Interestingly, the network topology of SMM was 

different to that of the other functional networks. The gene products of the members of SMM are 

most frequently involved in metabolic routes in the cell or in the regulatory events controlling these 

metabolic pathways. The flow and exchange of information often takes place through the small 

molecules, themselves, rather than the genes or gene products in the metabolic network. In 

contrast, the expression of genes or proteins, or the cell cycle, where the genes or gene products 

themselves undergo changes, relay or exchange information, and this could have resulted in the 

topological properties of the SMM being different to those of PT, GE and CC. Parallel linear cascades 

of information flow with fewer connections are more common in metabolic networks. This 

functional difference was observable at the level of network connectivity. The PIN diameter of SMM 

was identified to be the largest (d=11) among all PINs, and 37.5% higher than the second largest 

identified in this study. In line with these results, Szappanos et al. reported a unique property of 
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metabolic networks, highlighting the underrepresentation of genetic interactions, specifically of 

those that take place between pathways, in yeast (40). 

Networks of all functionally coherent sets were comprised of fewer interactions, which could not be 

restored by normalising the networks with respect to the number of nodes that possess. This down-

sizing effect was considered as an artefact of the network reconstruction process,  due to only 

interactions within the members of each set being considered, and is not discussed further. On the 

other hand, the GE and SMM networks were enriched for the number of TFs that are present among 

the participating genes/products; this contrasts with PT, in which TFs were strikingly 

underrepresented. This emphasises the significance of the identification of substantially fewer 

transcriptional regulatory interactions among the members of PT. Consequently, fewer nodes were 

identified as principal TFs (by out degree) in the TRN of PT than of GE, SMM, or CC. On the other 

hand, more hubs were identified in the GINs and PINs of all functionally specific sets, with CC 

networks possessing more hubs than the others (Supplementary Materials 4, Figure 2).  

The underrepresentation of TFs within the PT set was striking, but excluded the possibility of any 

non-PT TF regulating the transcription of PT genes. This was addressed by identifying all TFs, which 

had documented binding and expression evidence for the members of PT, GE, SMM, or CC. A size-

normalised analysis indicated 1-2 fold additional TFs regulating the transcription of the genes of 

these functional sets but which were not themselves members of these sets, but no significant 

differences were observed between the sets (p-value>0.1) indicating that the transcriptional 

regulatory signature of PT remained unique among the analysed sets (Figure 2).  

We investigated the underrepresentation of TFs in the PT TRN further by artificially replacing a 

fraction of the PT nodes by those that were known not to have any role in protein transactions (i.e. 

introducing false positives). Even upon the random replacement of only 10% of the nodes, the 

reconstructed TRN had up to 75% more transcription factors and 63% more interactions. If 40% of 

the nodes were randomly replaced by those that are known not to be involved with protein 

transactions, the reconstructed TRN had 237% more TFs and 257% more interactions. Despite 

extensive studies, a considerable fraction (nearly 17%) of the protein-coding genes in S. cerevisiae 

are still not assigned to known biological processes (18). Therefore, such nodes would highly likely 

be encountered, or even be included unintentionally, in network analysis. As an additional exercise, 

we tested if the inclusion of such nodes would interfere with the topological structure of the TRN. 

We introduced nodes with unknown functionality so as to increase the size of PT by 10%. This 

expanded the PT-TRN by increasing the number of TFs and transcriptional regulatory interactions by 

only 13% and 11%, respectively. Similarly, a 40% increase in node size was accompanied by a 39% 

increase in the number of TFs in the TRN and 49% more transcription factor-gene interactions to be 

introduced into the PT-TRN. Therefore, the expansion of the PT network by unknown nodes was 

observed to be correlated with the fraction of nodes introduced and did not create any structural 

changes. 

The reorganisation of the hub and principal node structures in these genetic, physical, and 

transcriptional regulatory interaction networks was examined for any unique signatures that might 

provide further biological insight. All hubs in the PIN of SMM (vs 14% of the hubs in the global 

network) and 50% of all hubs in alleviating GIN of CC (vs none in the global network) were observed 

to be yeast genes that are able to complement the cognate human gene function. More than twice 

as many PT, GE, and CC PIN hubs were essential genes or genes whose absence impairs growth 

significantly, in comparison to the global PIN hubs (45%, 48%, and 52%, respectively, vs 21%). In 

contrast SMM GIN hubs comprised markedly fewer such genes (8% vs 52% of that of global GIN). 

The principal TFs identified for PT were strikingly different, being both enriched for growth and 
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viability genes (43% vs 15% for the global TRN) and for functional orthologs of human  genes (14% vs 

1% for the global TRN) (Supplementary Material 5).  

Characteristic signatures were determined in the physical and genetic interaction networks of CC 

and SMM, and in the transcriptional regulatory network of PT. A striking result was that a unique 

topological signature could not be attributed to the GE for any of the network parameters studied 

despite the set’s substantial overlap with PT. This indicated that topological signatures were indeed 

function-specific rather than ubiquitous in the present analysis.  

Functional homogeneity is necessary  

The final question we addressed was whether the biological relevance of our findings could be 

attributed to the fact that the network analysis was carried out on a functionally coherent set, or 

whether the topological network analysis of a set of gene products that can be attributed to 

different and unrelated biological processes could also be as informative.  For this purpose, a similar 

analysis to that conducted for PT was conducted for PT-C. The PT-C set was functionally 

heterogeneous; it comprised gene products from various specific functional subnetworks, some of 

which were investigated here; a major fraction of this subset belonged to the small molecule 

metabolism. The topological properties of the interaction networks for the PT-C gene/gene product 

set closely resembled that of the random networks. Transient protein-protein interactions and 

aggravating genetic interactions were observed slightly more in the PT-C subset than among the 

members of the random network, but this difference was not statistically significant. Both the PIN 

and GIN were sparser than randomly constructed networks of the same number of nodes, by 50% 

and 28%, and had longer characteristic path lengths by 17% and 8%, respectively. Only 2 hubs were 

identified in the PIN and 11 in the GIN of PT-C. These findings indicated that PT-C did not reveal any 

further biological insight into the system, possibly due to this weak connectivity between network 

components (nodes) since these nodes represented a collection of genes/products with diverse 

functions in the cell, and did not constitute a cohesive subset (Supplementary Material 4). 

Further insight into transcriptional regulation of protein transactions 

PT, CC and GE, which were clustered together with respect to the topological properties of their 

cellular networks (Figure 1c), were investigated for the subcellular localisation of their proteins, 

using existing GO annotation.  The gene products of CC were significantly localised only in the 

nucleus ��  ����� � 10���� whereas those of GE significantly localise in the nucleus, or in the 

cytosol ��  ����� � 10����. On the other hand, the nucleus (or any of its sub-compartments) 

were not among the enriched cellular compartments for the gene products of PT (Figure 3). The 

over-representation of the PT gene products in the nuclear compartment related only to the nuclear 

outer membrane-endoplasmic reticulum membrane network term, only. This difference in 

localisation pattern, along with the underrepresentation of the transcriptional regulatory elements, 

led to the investigation of the proteomic landscape of yeast focusing on the nuclear-enriched and, 

more specifically, the chromatin-enriched fractions of the yeast cell, as well its remaining sub-

cellular compartments (Supplementary Material 3).  

A total of 1572 and 3272 proteins were identified in the analysis of the chromatin-enriched and 

nuclear-enriched subcellular fractions, respectively. In order to simplify the description, we will refer 

to these two independent experiments as CHROMA and NUCLEA, respectively. 1541 of the 1572 

proteins identified in CHROMA were also identified in NUCLEA. Proteins, which were exclusively 

detected in the chromatin-enriched fraction, were significantly enriched for involvement in 

chromatin-remodelling processes, as would be expected ��  ����� � 10���, and those exclusively 
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identified in the non-chromatin fraction were significantly associated with small molecule, oxidation-

reduction, and nitrogen compound metabolic processes ��  ����� � 10���. Proteins specific to 

the nuclear-enriched fraction were associated with the cellular component organisation or 

biogenesis process term ��  ����� � 10����. In contrast, proteins detected exclusively in the 

supernatant of NUCLEA were enriched for small molecule metabolic process ��  ����� � 10����. 

Approximately 80% of the proteins identified in CHROMA had a lower abundance in the chromatin-

enriched subcellular fraction than in the supernatant, and they were identified to be functionally 

associated with small molecule metabolism ��  ����� � 10����. In contrast, 76% of the proteome 

identified in NUCLEA were present at higher levels in the nuclear-enriched subcellular fraction than 

in the supernatant (cellular component organization or biogenesis ��  ����� � 10���	�), possibly 

indicating active gene expression process ongoing in the non-chromatin nuclear-enriched sub-

cellular compartment. Our analysis of the shotgun proteome of the nucleus (specifically, that of the 

non-chromatin fraction) indicated its high specificity, with only a few proteins ubiquitously being 

detected in more than one enriched fraction (Supplementary Material 3).  

The proteomes identified in CHROMA and NUCLEA were both significantly enriched for the 

components of the PT TRN ��  ����� � 10���� indicating satisfactory coverage of the 

investigation space by the experimental datasets. Only 7 of the 17 TFs in the TRN of PT were 

detected in the proteome analysis; Gzf3p, Hsf1p, Rap1p, Rlm1p, Rtg3p, Skn7p, and Mot2p. However, 

neither the chromatin-enriched nor the nuclear-enriched proteome was significantly 

overrepresented for the 17 TFs of the PT set ��  ����� 	 0.1�. Furthermore, the TRN components 

of PT were underrepresented among those proteins identified in the chromatin-enriched subcellular 

fraction, as well as in both fractions in NUCLEA data, with a low level of significance associated with 

the findings ��  ����� � 0.3�. On the other hand, the TRN components were significantly 

overrepresented in the supernatant of the CHROMA data, which is enriched with the non-chromatin 

fraction of the nuclear components ��  ����� � 10���, possibly indicating a role in the regulation 

of nuclear processes by protein transactions (Supplementary Material 3).  

Sixteen genes in PT were identified as targets for all of the 7 TFs detected in the proteome analysis 

of the nucleus. These TFs and the genes that are regulated by all 7 TFs, retrieved from YEASTRACT  

based on experimental and expression evidence, were used to construct a matrix of TF protein 

abundance (obtained from the nuclear-enriched fraction of the NUCLEA dataset) against the gene 

transcript abundance (obtained from (41) under similar experimental conditions to those for the 

proteomics analysis carried out here). This information matrix was then employed to construct a 

mathematical abstraction of the functional fingerprints of these transcriptional regulatory proteins 

of the yeast protein transactions (Figure 4a). The non-normality of the population from which the 

data matrix was constructed (fat-tailed, with excess kurtosis = 2.4, positively skewed = 1.5) was 

taken into consideration in constructing a non-linear regression model employing symbolic 

regression, and this method was observed to model the data with a satisfactory goodness-of-fit 

��	 � 0.82� (vs. MLR �	 � 0.66� (Figure 4b, Supplementary Material 3). This empirical 

mathematical model allowed us to predict the transcription of 16 common targets of these 7 TFs 

with reasonable accuracy. Protein transactions are closely related with the growth and proliferation 

of the cell. Growth-associated processes were previously reported to depend on precise 

transcriptional control (42), and this reasonably high level of success in the prediction of the 

expression levels of these 16 transcripts could be attributed to the functional specificity of the PT 

network.  We note that this analysis rests on the principles for constructing non-linear predictive 

models of gene expression and the performance of these models is limited by the size of the dataset 

under investigation. Therefore, the small size of the dataset investigated here should be taken into 

consideration in evaluation of the results.   
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Conclusions 

We employed simple network analysis to gain novel biological insights about the extensively studied 

protein transactions in yeast. Our analysis showed that despite the high number of genes involved in 

these protein transactions, which comprised of nearly 38% of the gene products of Saccharomyces 

cerevisiae, only a limited number of transcription factors were associated with this dataset, and 

through a small network of interactions.  Transcription factors are only annotated to the regulation 

of a process, if that process is directly initiated/activated by that target gene’s transcription, and not 

if the process is activated by an independent mechanism following the biosynthesis of the 

participating gene products.  Transcription factors annotated in the PT network were therefore i) 

directly regulating the process performed by the PT gene or ii) represent an instance where a PT 

regulates the transcription factor. 

Although the TFs identified were highly interactive nodes, their specific role in protein transactions 

was tightly defined, and allowed less interaction (i.e. communication) with other nodes in the 

network. This reduced interactivity of the identified TFs makes it more likely that they represent 

instances where the protein transaction regulates a TF (see ii), above). Inspection of the TFs in the PT 

network showed that 9 identified protein transactions regulating transcription (usually via protein 

recruitment to chromatin; Gis1p, Gzf3p, Hap1p, Hsf1p, Mac1p, Mot2p, Rap1p, Rph1p, and Xbp1p), 

and 3 represented TF’s directly regulating processes performed by the PT (Hac1p, Skn7p, and Yap1p; 

all related to the Unfolded Protein Response). The remaining 4; Rlm1p, Rpn4p, Rtg3p, and Smp1p 

were annotated in error. They were either annotated by computational inference (IMP-type 

annotation), or their function was not correctly described. For example, Rpn4p has a role in 

regulating the transcription of the proteasome, but is not involved in the positive regulation of 

proteasomal ubiquitin-dependent protein catabolic process, as previously annotated. These 

annotation errors were corrected in Saccharomyces Genome Database upon the authors’ request. 

In contrast, 42 transcription factors were present in SMM TRN, all representing direct regulation of 

SMM processes by transcription. Therefore a much smaller repertoire of transcription factors were 

responsible for the direct regulation of processes associated with the PT network compared with the 

SMM or the global network. Even when considering TFs regulating PT genes, which were not 

themselves in the PT set, the network still had a reduced number of TFs indicating that the 

transcription of these genes is also orchestrated by a smaller set of TFs. 

Our analysis was shown to be independent of the size of the networks that were constructed; large 

networks were shown to be as informative as smaller networks. On the other hand, the ability to 

capture biological information from network topology was shown to depend predominately on the 

functional homogeneity of the genes; networks that were constructed from gene components that 

play roles in a specific biological function were observed to be informative, whereas multiple 

functions in the network caused interruptions in connectivity. Moreover, different topological 

properties were identified to be specific to different biological processes.  

This analysis has demonstrated that the “execution” of protein transactions is rarely directly 

transcriptionally regulated but the execution of metabolic processes often is. The SMM network 

provides the elemental building blocks required for energy generation and growth (nucleotides, 

amino acids, co-factors). Pathways in this network are often activated by direct and specific 

transcriptional activation in response to nutrient and environmental conditions. Gene products are 

often functional as expressed, and the metabolic pathway is fine-tuned by “within pathway” rate-
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limiting steps executed by substrate activation and inhibition when nutrients are replete or limited. 

The large number of transcription factors controlling the processes encoded by this network is a 

consequence of the need to respond rapidly and specifically to the external environment and 

express pathway components to utilise available nutrients. 

In contrast, the processes orchestrated by the PT network are frequently related to managing the 

temporal events of cell division once per cell cycle. Here, the effectors are provided transcriptionally, 

by a smaller number of transcription factors, constitutively or in advance of cell cycle’s phase-

specific needs. Expression of a gene product does not appear to directly regulate these processes 

except in response to stresses; rather, they are largely activated post-translationally in response to 

signalling pathways. The observations we make here are consistent with the direct regulation of 

metabolic processes by transcription, and the regulation of cell division processes by post-

translational modification. 

Our observations were also supported by the identification of a relatively low number of 

transcription factors (7) in the nuclear-enriched fraction of the proteome, which were universally 

responsible for the transcriptional regulation of protein transactions in yeast under normal growth 

conditions. A model-based analysis on the TFs and their common target genes involved in protein 

transactions indicated that interestingly, the TFs that regulate the transcription of some candidate 

genes could be used to construct a model to describe the expression of their common target genes. 

Although it would not have been possible to predict the transcription levels of all target genes of a 

single TF, the transcription of a group of genes could be mathematically described by the protein 

expression levels of functionally linked TFs that target all these genes.  

We feel that this notion of regulation should be approached carefully, as metabolic regulation 

information at the global scale is rarely available. So the “regulation” discussed in this context 

remains strictly “hierarchical” (43) restricted to epigenetic, transcriptional, translational or post-

translational control. Protein transactions, because they are mainly relevant to large numbers of 

proteins (e.g. translation relating to all proteins), or proteins always required at least once every cell 

cycle, are not transcriptionally regulated; they are post-transcriptionally regulated and so they are 

controlled by a small number of transcription factors. Although this hypothesis will have its 

exceptions, what we observe is significant. The results imply a very strong functional difference, 

especially considering that all of "translation" is part of GE as well as PT.  
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Figure and table captions 

Figure 1. Summary of network properties of the systems under investigation. (a) The number of 

nodes and interactions for each system under investigation; the global network, PT, the random 

network, PT-C, GE, CC, and SMM are provided in two plots. In both plots, the sub-systems are 

compared against the global network denoted by the light blue bar in the background. The primary 

vertical axis on the left hand side represents the values for the global network; whereas the 

secondary vertical axis on the right is used for the sub-systems. (b) The overlap of nodes amongst 

different sub-systems with defined biological functionality. The percentage values given in 

parentheses denote the relative proportion of the numbers among the total number of unique 

nodes from all 4 sub-systems. (c) Classification of the sub-networks by K-means clustering based on 

the topological properties summarised in Table S1. The two main classes of sub-networks are 

highlighted in the rounded boxes on their respective similarity profiles. Note that the abbreviations 

adopted in the Figure are consistent throughout the article. 
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Figure 2. Relative differences in topological parameters about functionally defined subsystems. 

Radar plots were employed to highlight the relative differences between PT, GE, SMM, and CC. The 

size of each subnetwork is normalised against that of the global network and the topological 

properties displayed in the Figure represent the ratio of the numerical value for that property to that 

of the global network.  

Figure 3. Principal subcellular locations for the genes in the subnetworks of the PT-GE-CC class. The 

main subcellular components were identified by the Gene Ontology Component and only 

components populated by at least 30% of the nodes constituting a subsystem are displayed. NB: 

Cytoplasm, as defined by the Gene Ontology, is comprised of all of the contents of a cell excluding 

the plasma membrane and nucleus, but including other subcellular structures. Cytosol, on the other 

hand, defines the part of the cytoplasm that does not contain organelles, but which does contain 

other particulate matter, such as protein complexes. 

Figure 4. Transcription factor abundance as a proxy for target gene mRNA expression. (a) Nuclear 

abundance patterns of the transcription factors from PT quantified in the proteomics study. The 

mRNA levels for their target genes were adopted from a study conducted under similar conditions 

(41). (b) and (c) The goodness of fit measures for the non-linear model predicting target gene mRNA 

expression levels utilising transcription factor protein abundance. 

Figures and tables  

Table 1. A network-based comparison of the protein transactions gene set against a random set of 

the same size 
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fraction of genes contributing to network analysis 0.38 0.38 

fraction of signalling-associated genes 0.65 0.36 

fraction of essential genes represented 0.47 0.37 

fraction of hubs in PIN 1.57 0.50 

fraction of hubs in GIN 2.39 0.42 

fraction of TFs 0.09 0.37 

fraction of principal TFs by outdegree 0.11 0.46 

fraction of interactions in TRN 0.03 0.16 

fraction of interactions in PIN 0.33 0.17 

fraction of  interactions in permanent protein complexes 0.64 0.16 

fraction of  interactions in transient protein complexes 0.33 0.17 

fraction of interactions in GIN 0.25 0.16 

fraction of alleviating genetic interactions 0.28 0.16 

fraction of aggravating genetic interactions 0.25 0.15 

 

Table 2. Distinct network properties of PT, GE, and CC that cannot be explained by a size effect.* 

 ��
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fraction of genes contributing to TRN 0.27 0.28 0.11 

fraction of principal transcription factors by out-degree 0.11 0.75 0.20 

fraction of TFs 0.09 1.00 0.12 
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fraction of interactions in TRN 0.03 0.26 0.02 

fraction of genes that are not a target for any TF 0.45 0.48 0.02 

signalling 0.65 0.21 0.31 

fraction of interactions in PIN 0.33 0.31 0.07 

 fraction of  interactions in permanent protein complexes 0.64 0.47 0.00 

fraction of  interactions in transient protein complexes 0.33 0.31 0.07 

fraction of signalling-associated genes 0.65 0.21 0.31 

*Red and blue denote the underrepresentation and overrepresentation of the property relative to that of the 

global system, respectively.  

 

Supplementary material 

Supplementary Material 1: This document includes the node information, the genetic interaction 

network (GIN), physical interaction network (PIN), transcriptional regulatory network (TRN), and the 

permanent protein complexes for the global network, PT, the random network, the PT-C, GE, CCN, 

and SMM. The file also includes miscellaneous data on signalling-associated proteins, gene 

essentiality, human functional homology, haplosufficiency, and permanent protein complex 

information (format: .xlsx). 

Supplementary Material 2: This document details out the experimental protocols employed in the 

proteomics analysis. (format: .docx). 

Supplementary Material 3: This document includes the relative abundance (provided as emPAI 

scores) of the proteins identified in the mass spectrometric analysis of the chromatin enriched and 

nuclear enriched subcellular fractions along with the details on the statistical and model-based 

analyses of the datasets in the subsequent worksheets (format: .xlsx). 

Supplementary Material 4: Table S1 summarises the topological analysis of the networks re-

constructed in this study for of the systems under investigation; the global network, PT, the random 

network, PT-C, GE, CCN, and SMM (format: .docx). 

Supplementary Material 5: Table S2 summarises the analysis of the hubs in the genetic (alleviating 

and aggravating genetic interaction networks also investigated separately) and physical interaction 

networks as well as the principal TFs in the transcriptional regulatory network of the systems under 

investigation; the global network, PT, the random network, PT-C, GE, CCN, and SMM. The fraction of 

the hubs whose null mutants are reported to have impaired viability, and those that can 

complement human gene functionality are provided in the Table.  
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