
Localization of adaptive variants in human genomes using averaged

one-dependence estimation

Lauren Alpert Sugden1,2,*, Elizabeth G. Atkinson3, Annie P. Fischer4, Stephen Rong2, Brenna M. Henn3,

Sohini Ramachandran1,2,*

1 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA

2 Center for Computational Molecular Biology, Brown University, Providence, RI, USA

3 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA

4 Division of Applied Mathematics, Brown University, Providence, RI, USA

* correspondence should be addressed to LAS (lauren alpert@brown.edu) or SR

(sramachandran@brown.edu)

Abstract

Statistical methods for identifying adaptive mutations from population-genetic data face several obstacles:

assessing the significance of genomic outliers, integrating correlated measures of selection into one analytic

framework, and distinguishing adaptive variants from hitchhiking neutral variants. Here, we introduce

SWIF(r), a probabilistic method that detects selective sweeps by learning the distributions of multiple

selection statistics under different evolutionary scenarios and calculating the posterior probability of a sweep

at each genomic site. SWIF(r) is trained using simulations from a user-specified demographic model and

explicitly models the joint distributions of selection statistics, thereby increasing its power to both identify

regions undergoing sweeps and localize adaptive mutations. Using array and exome data from 45 ‡Khomani

San hunter-gatherers of southern Africa, we identify an enrichment of adaptive signals in genes associated

with metabolism and obesity. SWIF(r) provides a transparent probabilistic framework for localizing

beneficial mutations that is extensible to a variety of evolutionary scenarios.
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Introduction 1

Adaptive mutations that spread rapidly through a population, via processes known as selective sweeps, leave 2

distinctive signatures on genomes. These genomic signatures fall into three categories: differentiation among 3

populations, long shared haplotype blocks, and changes in the site frequency spectrum (SFS). Statistics that 4

are commonly used to detect genomic signatures of selective sweeps include FST
1 for measuring population 5

differentiation, iHS2 for identifying shared haplotypes, and Tajima’s D3 for detecting deviations from the 6

neutral SFS. Some approaches, like SweepFinder4 and SweeD5 integrate information across sites by modeling 7

changes to the SFS. Often, statistical scans for adaptive mutations proceed by choosing a particular genomic 8

signature and a corresponding statistic, obtaining the statistic’s empirical distribution across loci in a 9

genome-wide dataset, and focusing on loci that fall past an arbitrary, but conservative threshold2,6–11. 10

Recently, there has been increased focus on developing composite methods for identifying selective sweeps, 11

which combine multiple statistics into a single framework12–19; we refer to the statistics that are aggregated 12

in composite methods such as these as “component statistics”. Most composite methods draw upon machine 13

learning approaches like support vector machines12,15, deep learning19, boosting14,17, or random forest 14

classification18 in order to identify genomic windows containing selective sweeps. These windows vary in size 15

from 20kb to 200kb, often identifying candidate sweep regions containing many genes18,19. One method, the 16

Composite of Multiple Signals or “CMS”13,16, uses component statistics that can be computed site-by-site in 17

pursuit of localizing adaptive variants within genomic windows, but the output from this method cannot be 18

interpreted without comparison to a genome-wide distribution. In addition, CMS must rely on imputation or 19

other methods of compensation when component statistics are undefined, a complication that typically does 20

not arise when using window-based component statistics. In a subset of populations from the 1000 Genomes 21

Project, we found that more than half of variant sites had at least one undefined component statistic 22

(Supplementary Table 1); iHS was frequently undefined because it requires a minor allele frequency of 5% to 23

be computed2, and along with XP-EHH7, cannot be calculated near the ends of chromosomes or sequenced 24

regions. This poses a particular problem when scanning for complete sweeps, defined here as sweeps in which 25

the beneficial allele has fixed in the population of interest. 26

Here we introduce a Bayesian classification framework for detecting and localizing adaptive mutations in 27

population-genomic data called SWIF(r) (SWeep Inference Framework (controlling for correlation)). 28

SWIF(r) has three major features that enable genome-wide characterization of adaptive mutations: first, 29

SWIF(r) computes the per-site probability of selective sweep, which is immediately interpretable and does 30

not require comparison with a genome-wide distribution; second, no imputation or compensation mechanisms 31

are necessary in the case of undefined component statistics; and third, we explicitly learn pairwise joint 32
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distributions of selection statistics, which gives substantial gains in power to both identify regions containing 33

selective sweeps and localize adaptive variants. Existing composite methods for selection scans have subsets 34

of these features, but SWIF(r) combines all three in a unified statistical framework. Our approach 35

incorporates the demographic history of populations of interest, while being robust to misspecification of that 36

history, and is also agnostic to the frequency of the adaptive allele, identifying both complete and incomplete 37

selective sweeps in a population of interest. We assess SWIF(r)’s performance in simulations against 38

state-of-the-art univariate and composite methods for identifying genomic targets of selective sweeps, and we 39

confirm that we can localize known adaptive mutations in the human genome using data from the 1000 40

Genomes Project. We then apply SWIF(r) to identify novel adaptive variants in genomic data from the 41

‡Khomani San, an understudied hunter-gatherer KhoeSan population in southern Africa, representing the 42

most basal human population divergence. Open-source software for training and running SWIF(r) is freely 43

available at https://github.com/ramachandran-lab/SWIFr. 44

Results 45

We first describe the theoretical framework of SWIF(r) and compare SWIF(r) to existing sweep-detection 46

methods using simulated data. We also validate the ability of our method to localize known adaptive 47

mutations in data from the 1000 Genomes. To enable the application of SWIF(r) to single-nucleotide 48

polymorphism (SNP) array datasets from diverse populations, we implement an algorithm for modeling 49

ascertainment bias in simulated data used for training. To illustrate the power of our approach, we apply 50

SWIF(r) to SNP array data from the ‡Khomani San of southern Africa. We show that genes bearing 51

“SWIF(r) signals” — which we define as genomic loci at which SWIF(r) reports a posterior sweep probability 52

greater than 50% — are associated with metabolism and obesity, and we use exome data to show that these 53

genes contain multiple candidate adaptive mutations. Note that we train SWIF(r) on simulations of hard 54

sweeps (Online Methods); our focus here is not on the relative roles of various modes of selection in shaping 55

observed human genomic variation (for recent treatments on this question see 18,20–23), although we note 56

that SWIF(r) is extensible to multi-class classification, and could be used in future applications to explore 57

multiple modes of selection. In this study, our focus is on localizing genomic sites of adaptive mutations that 58

have spread through populations of interest via hard sweeps. 59

Implementation of SWIF(r) 60

SWIF(r) draws on Bayesian inference and machine learning to localize the genomic site of a selective sweep 61

based on probabilities that incorporate dependencies among component statistics. Unlike genomic outlier 62
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approaches, the output of SWIF(r) can be interpreted directly for each genomic site: given a set of n 63

component statistics for a site, SWIF(r) calculates the probability that the site is neutrally evolving or, 64

alternatively, is the site of a selective sweep. We will refer to these two classes as “neutral” and “adaptive” 65

respectively, and these posterior probabilities can be computed as follows: 66

P (adaptive|S1 = s1, ..., Sn = sn) =
⇡P (s1, ..., sn|adaptive)

⇡P (s1, ..., sn|adaptive) + (1� ⇡)P (s1, ..., sn|neutral)
(1)

P (neutral|S1 = s1, ..., Sn = sn) = 1� P (adaptive|S1 = s1, ..., Sn = sn)

where s1, ..., sn represent observed values for n component statistics such as iHS and FST, and ⇡ is the prior 67

probability of a sweep, which may be altered to reflect different genomic contexts. If a component statistic is 68

undefined at a site, it is simply left out of Equation 1, and does not need to be imputed. The data for 69

learning the likelihood terms, P (s1, ..., sn|adaptive) and P (s1, ..., sn|neutral), come from calculating 70

component statistics on simulated haplotypes from a demographic model with and without simulated 71

selective sweeps comprising a range of selection coefficients and present-day allele frequencies (Online 72

Methods). We note that this general framework is similar to that used by Grossman et al.13 for CMS, which 73

assumes that the component statistics are independent, and computes the product of posterior probabilities 74

P (adaptive|si) for each statistic si. SWIF(r) strikes a balance between computational tractability and model 75

accuracy by learning joint distributions of pairs of component statistics, thereby relaxing this strict 76

independence assumption. 77

We base SWIF(r) on a machine learning classification framework called an Averaged One-Dependence 78

Estimator (AODE)24, which is built from multiple One-Dependence Estimators (ODEs), each of which 79

conditions on a different component statistic in order to compute a posterior sweep probability at a given 80

site. An ODE conditioning on Sj assumes that all other component statistics are conditionally independent 81

of one another, given the class (neutral or adaptive) and the value of Sj . As shown in Equation 2, this 82

assumption effectively reduces the dimensionality of the likelihood terms P (s1, ..., sn|class) in Equation 1. 83

The AODE then reduces variance by averaging all possible ODEs to produce a posterior probability that 84

incorporates all pairwise joint probability distributions (Equation 3; Online Methods). 85

Assumption made by ODEj (One-Dependence Estimator conditioning on Sj): 86

P (s1, ..., sn|class) = P (Sj = sj |class)
Y

i 6=j

P (Si = si|Sj = sj , class) (2)
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SWIF(r): 87

P (adaptive|S1 = s1, ..., Sn = sn) =

⇡
Pn

j=1

⇥
P (Sj = sj |adaptive)

Q
i 6=j P (Si = si|Sj = sj , adaptive)

⇤

[⇡
Pn

j=1

⇥
P (Sj = sj |adaptive)

Q
i 6=j P (Si = si|Sj = sj , adaptive)

⇤

+ (1� ⇡)
Pn

j=1

⇥
P (Sj = sj |neutral)

Q
i 6=j P (Si = si|Sj = sj , neutral)]

⇤
(3)

Calibration of posterior probabilities calculated by SWIF(r). A desirable property of 88

probabilities, like those calculated by SWIF(r), is that they be well calibrated: in this context, for the variant 89

positions where the posterior probability reported by SWIF(r) is around 60%, approximately 60% of those 90

sites should contain an adaptive mutation, and approximately 40% should be neutral. We implemented a 91

smoothed isotonic regression scheme to calibrate the probabilities calculated by SWIF(r) (Online Methods). 92

Briefly, when applying SWIF(r) to a given dataset, we calculate the empirical frequencies of neutral and 93

sweep variants that are assigned posterior probabilities between 0 and 1 in simulation, and use isotonic 94

regression25 to map the posterior probabilities to their corresponding empirical sweep frequencies 95

(Supplementary Figure 1, Supplementary Figure 2). We then impose a smoothing function that prevents 96

multiple posterior probabilities from being mapped to the same calibrated value (Supplementary Figure 3, 97

Supplementary Figure 1E, Supplementary Figure 2E). This calibration procedure relies on the relative 98

makeup of the training set; a classifier that is calibrated for a training set made up of neutral and sweep 99

variants in equal parts would not be well-calibrated for a training set in which sweep variants only make up 100

1% of the whole. For each application of SWIF(r) in this study, we calibrated SWIF(r) for a specific training 101

set makeup (Online Methods; see also Supplementary Figure 1 and Supplementary Figure 2). 102

The calibrated probabilities reported by SWIF(r) can be interpreted directly as the probability that a site 103

contains an adaptive mutation, or fed into a straightforward classification scheme by way of a probability 104

threshold; in this study, we classify sites with a posterior probability above 50% as adaptive SWIF(r) signals. 105

The classifier may be tuned by altering either this threshold or the prior sweep probability ⇡ (Supplementary 106

Figure 4. 107

Performance of SWIF(r) using simulated data 108

We implemented SWIF(r) using the following component statistics, which can each be calculated site-by-site 109

in a genomic dataset: FST
1, XP-EHH7 (altered as in Wagh et al.26; Supplementary Note), iHS2, and 110

difference in derived allele frequency (�DAF). Training simulations used the demographic model of 111
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Europeans, West Africans, and East Asians inferred by Schaffner et al.27, and simulated selective sweeps 112

within each of those populations (Online Methods). We compared SWIF(r)’s performance against each 113

component statistic, SweepFinder4, composite method CMS13 (altered by excluding �iHH because of 114

non-normality; Supplementary Note, Supplementary Figure 5), and window-based sweep-detection methods 115

evoNet19 (using the same component statistics as SWIF(r)), and evolBoosting14. We also evaluated the 116

robustness of SWIF(r) to both demographic model misspecification and background selection. 117

In Figure 1A and Supplementary Figure 6, we evaluate the ability of SWIF(r) to localize the site of an 118

adaptive mutation against that of its component statistic, the composite method CMS, and SweepFinder. 119

The performance of each component statistic varies with different sweep parameters: for example, iHS is most 120

powerful for identifying adaptive mutations that have not yet risen to high frequency within the population 121

of interest, while XP-EHH and �DAF are more effective for those that have (Supplementary Figure 7). This 122

underscores the advantage of composite methods for detecting selective sweeps when the parameters of the 123

sweep are unknown12–19. Aggregating over many different sweep parameters, SWIF(r) outperforms each 124

component statistic, as well as CMS and SweepFinder, improving the tradeoff between the false positive rate 125

(fraction of neutral variants incorrectly classified as adaptive) and true positive rate (fraction of adaptive 126

mutations that are correctly classified as such) (Figure 1, Supplementary Figure 6). SWIF(r) also 127

outperforms CMS in distinguishing adaptive mutations from linked neutral variation (Supplementary Figure 128

8). The performance of SWIF(r) is particularly striking for incomplete sweeps: for example, in Figure 1B, 129

SWIF(r) achieves up to a 50% reduction in the false positive rate relative to CMS for adaptive mutations 130

that have only swept through 20% of the population at the time of sampling (see also Supplementary Figure 131

6A-C, noting that SweepFinder was designed to identify complete sweeps in a population of interest). For 132

the same incomplete sweep simulations summarized in Figure 1B, Figure 1C shows the performance of each 133

of the individual ODEs (Equation 2); in this particular evolutionary scenario, conditioning on FST or �DAF 134

results in the best performance. However, the best-performing ODE changes based on the parameters of the 135

selective sweep (Figure 1D). By averaging across all ODEs, SWIF(r) is robust to variable performance of 136

ODEs in the absence of prior knowledge of the true sweep parameters (Figure 1A-C). 137

While few composite methods for sweep detection operate site-by-site, there are a handful of 138

machine-learning composite approaches that identify genomic windows containing adaptive mutations14,17–19. 139

In order to compare SWIF(r) against such methods, we had to alter SWIF(r) to calculate window-based 140

sweep probabilities; there are many potential ways to do this that may be differentially powerful, and here 141

we chose simply to use the highest probability assigned to any variant within a given genomic window as the 142

probability for that window. We compared window-based SWIF(r) to two state-of-the-art composite 143

window-based methods: evolBoosting14, which combines 120 statistics using boosted logistic regression, and 144
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evoNet19, which was developed to jointly infer demography and selection using a deep learning framework 145

(Online Methods). Since both SWIF(r) and evoNet are frameworks that are designed to incorporate any set 146

of statistics, we implemented evoNet to use the same statistics as SWIF(r). When comparing SWIF(r) with 147

evolBoosting, we used 40kb windows following Lin et al.14, and show that SWIF(r) outperforms evolBoosting 148

across a range of sweep parameter values (Supplementary Figure 9). For comparison with evoNet, we used 149

100kb windows following Sheehan et al.19 (Supplementary Figure 10). We find that SWIF(r) performs 150

similarly to or better than evoNet in this implementation, although we note that this analysis likely 151

downplays the strengths of both methods, as each method has been altered from its original design to enable 152

a direct comparison. 153

While ROC curves are informative for illustrating the performance of different sweep detection methods, 154

it is important to note that the genome has far more neutral variants than adaptive mutations. Therefore, 155

more relevant performance comparisons can be made by illustrating the predicted false discovery rate (FDR) 156

for a given true positive rate using Power-FDR curves. These curves depend on the composition of the 157

training set, since the false discovery rate rises as the proportion of adaptive variants in the training set 158

decreases. In Figure 1E and Supplementary Figure 6F, we plot Power-FDR curves for all methods using the 159

same training set composition we use for calibration of SWIF(r) for application to the ‡Khomani San dataset 160

(99.95% neutral variants and 0.05% adaptive variants). Curves for other training set compositions can be 161

found in Supplementary Figure 11. Power-FDR comparisons between SWIF(r) and evolBoosting and evoNet 162

can be found in Supplementary Figure 9F and Supplementary Figure 10F assuming that 1% of windows 163

contain a sweep. SWIF(r) performs well relative to its component statistics, CMS, and SweepFinder, 164

however, these analyses illustrate the inherent difficulty of site-by-site detection of adaptive mutations. 165

Because there are so many more neutral variants than adaptive variants in the genome, even a small false 166

positive rate can result in a substantial false discovery rate. Window-based methods, including window-based 167

SWIF(r), may appear to have lower false discovery rates (since there are many fewer windows than variants, 168

and thus fewer opportunities for false positives to arise; see Supplementary Figure 9 and Supplementary 169

Figure 10), but this comes at the cost of a longer list of putative SNP targets, since each classified window 170

contains a large number of individual variants. 171

Robustness of SWIF(r) to demographic model misspecification. We first assessed the sensitivity 172

of SWIF(r) to the demographic model used in training simulations using two very different demographic 173

models of West Africans, Europeans, and East Asians, from Schaffner et al.27 (“Schaffner model”) and 174

Gronau et al.28 (“Gronau model”). These demographies differ in multiple evolutionary parameter estimates: 175

the Schaffner model includes an ancient population expansion and post-divergence bottlenecks, features not 176
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Figure 1. SWIF(r) outcompetes existing site-based sweep-detection methods for a range of
sweep model parameters. For comparison against window-based sweep-detection methods, see
Supplementary Figure 9 and Supplementary Figure 10. A) Receiver operating characteristic (ROC) curves
comparing SWIF(r) with CMS13, FST, iHS, XP-EHH, and �DAF across all simulated neutral and sweep
scenarios (Online Methods). False positive rate is defined as the fraction of simulated neutral sites that are
incorrectly classified as adaptive by a given method, and the true positive rate is defined as the fraction of
simulated sites of adaptive mutations that are correctly classified as such. In the context of SWIF(r), sites
with posterior sweep probabilities greater than 50% are classified as adaptive. SWIF(r) constitutes an
improvement in this tradeoff between true and false positives. For this panel and panel B, the ranges on both
axes are such that the ROC curve for SweepFinder4 is not visible (Supplementary Figure 6.)
B) ROC curves for incomplete sweeps in which the beneficial allele has a population frequency of 20%. For
these simulations, SWIF(r) reduces the false positive rate by up to 50% relative to CMS. C) ROC curves for
SWIF(r) and the five component ODEs for incomplete sweeps in which the beneficial allele has a frequency
of 20%. Since the AODE is an average of the ODEs, there will always be individual ODEs that match or
outperform SWIF(r); in this case the ODEs conditioned on FST and �DAF both achieve this. D) The two
highest-performing ODEs for different sweep parameters. Performance is defined as area under the ROC
curve. The statistic that leads to the highest-performing ODE is listed on top in bold, followed by the second
best. Text colors correspond to ROC curves in panels A-C. While ODEs conditioned on �DAF tend to
perform extremely well for sweeps that are at lower frequency, ODEs conditioned on FST and XP-EHH tend
to perform better for sweeps that are near-complete or complete in the population of interest. By averaging
the ODEs, SWIF(r) is robust to uncertainty about the true parameters of the sweep. E) Power-FDR curves
for SWIF(r), CMS, FST, iHS, XP-EHH, �DAF, and SweepFinder. Power is equivalent to true positive rate
as defined in panels A-C, and false discovery rate is defined as the fraction of sites classified as adaptive that
are actually neutral. These curves assume a training set composed of 99.95% neutral variants and 0.05%
adaptive variants. See Supplementary Figure 11 for curves based on other training set compositions.
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included in the Gronau model. Divergence times differ almost two-fold in some cases between the two 177

models, with the Yoruban/Eurasian split at 47kya in the Gronau model and 88kya in the Schaffner model. 178

Furthermore, the Schaffner model allows migration between East Asian, European, and West African 179

populations, while the Gronau model does not. Effective population sizes also differ dramatically, in some 180

cases over six-fold (see Supplementary Figure 12 for a full comparison). 181

We trained SWIF(r) using simulations from the Gronau model (including simulation of ascertainment 182

bias; Online Methods), and tested SWIF(r) on simulated haplotypes drawn from the Schaffner model (with 183

and without selective sweeps). As shown in Supplementary Figure 13, even with dramatic demographic 184

differences and thinning to simulate ascertainment bias, SWIF(r) is quite robust to this misspecification. 185

Both the Schaffner model and the Gronau model, as implemented, do not include very recent population 186

expansion, so we implemented a third demographic model from Gravel et al.29 that includes exponential 187

population growth within the last 23,000 years. Since cosi cannot simulate selective sweeps overlapping with 188

demographic changes, we only simulated sweeps beginning 5kya, allowing for 18,000 years of exponential 189

expansion (Online Methods). In Supplementary Figure 13, we show that SWIF(r) is also robust to this 190

recent population expansion. 191

Robustness of SWIF(r) to background selection. We also assessed the sensitivity of SWIF(r) to 192

background selection by generating a set of training simulations containing neutral regions, selective sweeps, 193

and exonic regions, using forward simulator slim30 (Online Methods). We trained SWIF(r) on both neutral 194

and sweep simulations, and tested the ability of SWIF(r) to distinguish between exonic and sweep sites, 195

relative to its ability to distinguish between neutral and sweep sites. We find that SWIF(r) is fully robust in 196

this scenario, meaning that we would not expect background selection in genic regions to result in false 197

positive sweep signals (Supplementary Figure 14). These results are aligned with those of Enard et al.31, who 198

have shown that background selection has little to no effect on haplotype-based statistics iHS and XP-EHH 199

(and in fact makes iHS more conservative). 200

SWIF(r) correctly localizes canonical adaptive mutations in humans 201

For application to data from phase 1 of the 1000 Genomes Project, we used training simulations from the 202

Schaffner demographic model27, calibrated SWIF(r) for a training set composed of 0.01% sweep variants and 203

99.99% neutral variants (Supplementary Figure 1), and applied it to SNP array data from West African 204

(YRI), East Asian (CHB and JPT), and European (CEU) populations. SWIF(r) reports high sweep 205

probabilities at multiple SNPs within known and suspected selective sweep loci in each of these populations 206

(Supplementary Table 2, Supplementary Table 3). Figure 2 illustrates the ability of SWIF(r) to localize sites 207
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of adaptive mutations within genomic regions containing canonical sweeps. Adaptive SNPs have been 208

determined via functional experiments in SLC24A5 32, DARC 33, and HERC2 34; we find that modeling the 209

dependency structure among component statistics within SWIF(r) enables statistical localization of these 210

experimentally identified adaptive mutations (Figures 2A,C,D). Methods that treat component statistics as 211

independent, as CMS does, cannot localize these experimentally identified adaptive SNPs (Supplementary 212

Figure 15, Supplementary Figure 16). In CHB and JPT, SWIF(r) recovers a strong adaptive signal in the 213

vicinity of EDAR, offering new hypotheses for targets of selection in this genomic region. Whole-genome 214

results with gene annotations can be found in Supplementary Figure 17, Supplementary Figure 18, 215

Supplementary Figure 19 and Supplementary Table 2 (see also Supplementary Figure 20). False discovery 216

estimates can be found in Supplementary Table 4. Of the 126 genes across these populations with SWIF(r) 217

signals (i.e. at least one variant within the gene has posterior hard sweep probability greater than 50%), 63% 218

were identified in at least one positive selection scan conducted in humans (Supplementary Table 3). 219

Adaptive loci in the ‡Khomani San are enriched for metabolism- and 220

obesity-related genes 221

We applied SWIF(r) to samples from the ‡Khomani San, a formerly hunter-gatherer KhoeSan population of 222

the Kalahari desert in southern Africa, using Illumina SNP array data for 670,987 phased autosomal sites 223

genotyped in 45 individuals45 (Supplementary Note). The KhoeSan have likely occupied southern Africa for 224

⇠100,000 years, and maintain the largest long-term Ne of any human population46,47, a feature that 225

facilitates adaptive evolution. We trained SWIF(r) on simulations from the Gronau demographic model28 226

(Supplementary Figure 21, Supplementary Table 5, and Online Methods), and implemented an ascertainment 227

modeling scheme to produce a training dataset with population-level site frequency spectra similar to the 228

observed array data. Briefly, for each simulated haplotype, SNPs were subsampled to match the empirical 229

three-dimensional unfolded SFS for YRI, CEU, and CHB+JPT individuals in the 1000 Genomes Project on 230

the chips used to genotype the ‡Khomani San (Online Methods, Supplementary Figure 22, Supplementary 231

Figure 23). We calibrated SWIF(r) for this dataset based on a training set composed of 0.05% sweep variants 232

and 99.95% neutral variants (Supplementary Figure 2). After applying SWIF(r) to SNP data, we then 233

examined whether genomic regions identified by SWIF(r) contain annotated functional mutations identified 234

in high-coverage exome data from the same 45 individuals48 (Supplementary Note). 235

SWIF(r) identifies a number of genomic regions bearing signatures of selective sweeps in the ‡Khomani 236

San, driven by extreme values in multiple component statistics that together produce a posterior sweep 237

probability greater than 50% (Figure 3A,B; see also Supplementary Figure 24, Supplementary Figure 25, and 238
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Figure 2. SWIF(r) localizes canonical adaptive mutations and provides additional evidence
for suspected sweeps in YRI, CHB+JPT, and CEU35. Plotted points indicate the calibrated
posterior sweep probability calculated by SWIF(r) at each site, using prior sweep probability ⇡ = 10�5. Plots
were made with LocusZoom36. Where available, functionally verified adaptive SNPs are depicted as filled
diamonds and labeled with rsids. A-B) In YRI, two loci where SWIF(r) reports high sweep probabilities are
DARC and DOCK3. DARC encodes the Duffy antigen, located on the surface of red blood cells, and is the
receptor for malaria parasites. The derived allele of the causal SNP shown has been determined to be
protective against Plasmodium vivax malaria infection33. DOCK3, along with neighboring genes
MAPKAPK3 and CISH, are all associated with variation in height, and have previously been shown to
harbor signals of selection in Pygmy populations37. CISH may also play a role in susceptibility to infectious
diseases, including malaria38. C-D) In CEU, we uncover multiple loci in genes involved in pigmentation,
including rs1426654 in SLC24A5, which is involved in light skin color32, and rs12913832 in the promotor
region of OCA2, which is functionally linked with eye color and correlates with skin and hair pigmentation34.
rs1426654 has the highest sweep probability reported by SWIF(r) in SLC24A5 (0.999173321, after smoothed
calibration; see Supplementary Table 2); note each panel depicts genomic windows containing multiple genes.
E-F) In CHB and JPT, SWIF(r) recovers a strong adaptive signal in the vicinity of EDAR; multiple GWA
studies have shown rs3827760 to be associated with hair and tooth morphology39–41. SWIF(r) also identifies
variants with high sweep probability in ADAM17, which is involved in pigmentation42, and has been
identified in other positive selection scans in East Asian individuals43,44.
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Supplementary Table 6). These signals comprise 108 SNPs, of which 94 are distributed across 80 genes, and 239

the remaining 14 are intergenic, defined as genomic variants that do not land within 50kb of an annotated 240

gene (Supplementary Table 7). We observe an abundance of SWIF(r) signals within the Major 241

Histocompatibility Complex (MHC), a region of immunity genes for which studies have indicated ongoing 242

selection in many populations49–52, including an iHS outlier scan in the ‡Khomani San53. We show in 243

Supplementary Figure 26 that the SWIF(r) signals in this region are not qualitatively different from the 244

SWIF(r) signals we see throughout the genome, despite the fact that balancing selection is typically thought 245

to be the primary mode of selection in the MHC54. 246

We tested for a common functional or phenotypic basis among the 80 genes bearing SWIF(r) signals by 247

conducting a gene ontology enrichment analysis across public databases with Enrichr55. We find that these 248

genes are significantly enriched for dbGaP categories related to adiponectin, body mass index, and 249

triglyceride phenotypes (Figure 3C, Table 1). Specifically, SNPs in genes related to adiponectin (ADIPOQ, 250

PEPD, DUT, and ASTN2) have among the highest posterior sweep probabilities (all � 75%). SWIF(r) also 251

identified SNPs within three other genes (PDGFRA, SIDT2, and PHACTR3) that have previously been 252

associated with obesity and metabolism phenotypes (Figure 3B, Table 1). Some of the genes highlighted in 253

Figure 3B are also involved in muscle-based phenotypes (Supplementary Note), but here we focus on the 254

substantial evidence supporting the association of the highlighted genes with obesity and metabolism 255

phenotypes in prior GWA and functional studies (Table 1). 256

One variant that SWIF(r) identifies, rs6444174, has a calibrated sweep probability of 90%, driven by 257

extreme values at this SNP in FST, XP-EHH, and �DAF (Figure 3A; empirical p-values 4.4⇥ 10�4, 258

4.0⇥ 10�4, 5.5⇥ 10�4 respectively). This variant lies in ADIPOQ, which is expressed predominantly in 259

adipose tissue56, and codes for adiponectin, a regulator of glucose and fatty acid metabolism. In a study of 260

associations between ADIPOQ variants and adiponectin levels and obesity phenotypes in 2968 African 261

American participants, rs6444174 was found to be associated with serum adiponectin levels in female 262

participants (p = 6.15⇥ 10�5), and with body mass index in all normal-weight participants 263

(p = 3.66⇥ 10�4). The allele at high frequency in the ‡Khomani individuals studied here corresponds to 264

decreased adiponectin levels and increased BMI, respectively57. 265

Exome-based support for targets of selection identified by SWIF(r). This SWIF(r) scan was 266

performed using SNP array data ascertained from primarily Eurasian polymorphisms, a common feature of 267

commercial SNP array platforms. Thus, the observed SWIF(r) signals are likely tagging haplotypes common 268

in the ‡Khomani San, and may not themselves be causal polymorphisms. We examined high-coverage exome 269

data48 within each gene to identify putatively functional mutations near the sites identified by SWIF(r) (see 270
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Supplementary Table 8 for full results). This allows us to identify variants not captured on SNP array 271

platforms, including variants that are unique to the ‡Khomani San. We note that we did not include the 272

MHC genes in this exome analysis, because of potential issues with mapping and phasing of exome sequence 273

data in the MHC region. In ADIPOQ, we identify a missense mutation, rs113716447, for which the nearest 274

SNP that is present on the SNP array is rs6444174 (less than 1kb away); rs6444174 has a calibrated SWIF(r) 275

sweep probability of 90%, the highest in ADIPOQ (Figure 4). The missense T allele at rs113716447 is at 276

high frequency in the ‡Khomani San relative to all other populations sequenced in the 1000 Genomes Project 277

(27% vs. <0.5%; Figure 4). Furthermore, in the Simons Genome Diversity Project (SGDP), whose samples 278

are drawn from 130 diverse and globally distributed human populations, only four copies of the missense 279

allele at rs113716447 are found: two copies in a ‡Khomani San individual, and one copy each in a Namibian 280

San individual and a Ju|’hoansi San individual. This SNP defines the two major haplogroups within the 281

ADIPOQ gene in a median-joining haplotype network for the gene region (Supplementary Figure 27), 282

providing some support for selection at this SNP. 283

Two other genes highlighted in Figure 3B harbor promising polymorphisms that may be related to the 284

underlying causal haplotypes. In PEPD, we identify a novel polymorphism at 10% frequency in the 285

‡Khomani (chr19:33882361) which is a missense mutation approximately 42kb from the SNP identified by 286

SWIF(r). We also identify a missense mutation in the first exon of PHACTR3 at 38% frequency in this 287

sample, which is at <2% frequency in other global populations including other Africans sequenced as part of 288

the 1000 Genomes Project. Because the SNP array density is low, we expect that SWIF(r) signals in this 289

population may in many cases be somewhat removed from the causal variants that these signals tag. We 290

note that intronic variants in both PEPD and PHACTR3 have been identified as cis-eQTLs that affect 291

RNAseq expression in adipose tissue, in two independent northern European cohorts58. 292

For some of the genes identified by SWIF(r), exome data either was not generated, or did not reveal 293

nearby functional polymorphisms with differential allele frequencies between the ‡KhomaniSan and other 294

worldwide populations. One such gene is RASSF8, previously annotated as under positive selection in the 295

Namibian and ‡Khomani San populations relative to western Africans using XP-EHH59; in our SNP array 296

analysis, we detect a cluster of four SNPs in RASSF8 within 70kb of each other, each with SWIF(r) sweep 297

probability >98%. RASSF8 is present in the BMI, Triglycerides, Lipids, and Cholesterol dbGaP categories 298

(Figure 3C), yet functional mutations underlying this SWIF(r) signal remain elusive. 299
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Adiponectin (ADIPOQ, DUT, ASTN2, PEPD)

Body Mass Index (DNM3, MLIP, MYH15,RASSF8, ASTN2, MCC)

gamma-Glutamyltransferase

Triglycerides (MLIP, RASSF8, ESRRG, TTN)

Hip

Lipids (RASSF8, TTN)

Myocardial Infarction

Creatinine
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q-value
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0.09263

0.02928

p-value

4.935e-7
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number
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Figure 3. Genome-wide SWIF(r) scan for adaptation in ‡Khomani San SNP array data. A)
The empirical genome-wide univariate distributions of three of the component statistics, XP-EHH, �DAF,
and iHS are shown in gray, as is the empirical joint distribution of �DAF and iHS (where darker bins have
more observations than lighter bins). The number of sites in each genome-wide univariate distribution differs
due to some component statistics being undefined more often than others. In pink are the corresponding
distributions for the 108 variants that SWIF(r) identifies as having posterior sweep probabilities of greater
than 50% (variants above the dashed pink line in panel B). The full set of empirical univariate and joint
distributions of component statistics for this scan can be found in Supplementary Figure 25. B) The value
plotted for each position along the genome is the calibrated posterior probability of adaptation computed by
SWIF(r) (per-site prior for a selective sweep is ⇡ = 10�4 to detect signals of relatively old sweeps given the
high long-term Ne of the ‡Khomani San); only SNPs with a calibrated posterior sweep probability greater
than 1% are plotted and the horizontal line indicates a probability cutoff of 50%. A strong signal of
adaptation over the Major Histocompatibility Complex on chromosome 6 is shown in black. Gene names are
listed for genes previously associated with metabolism- and obesity-related traits (colors match categories in
panel C; open circles denote genes of interest that are not in any category in C). C) We used gene set
enrichment analysis tool Enrichr55 to identify categories that had an overrepresentation of genes containing
SWIF(r) signals (Supplementary Table 7). We found multiple enriched dbGaP categories related to
metabolism and obesity, including Adiponectin (a protein hormone that influences multiple metabolic
processes, including glucose regulation and fatty acid oxidation), Body Mass Index, and Triglycerides. Genes
in these categories containing SWIF(r) signals are listed next to category names. p-values, q-values, and the
total number of genes are shown for each category, and categories are ranked by a combined score computed
by Enrichr55, which combines p-value and z-score information and is shown to return optimal ranking60.
Adiponectin, Body Mass Index, and gamma-Glutamyltransferase all have q-values below 5%.
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Gene SNP(s) DAF P(sweep) Studies relating gene to metabolism-obesity phenotype refs

DNM3 rs12121064 54% 70% associated with waist hip ratio in Europeans (rs1011731, GWA
p = 7.5⇥ 10�9)

61

associated with waist circumference in Hispanic women (GWA
replication p = 1.5⇥ 10�3)

62

associated with weight loss after gastric bypass surgery 63

ESRRG rs11808388 62% 99.2% regulates adipocyte differentiation by modulating the expression of
adipogenesis-related genes

64

candidate obesity-susceptibility gene based on epigenetic profile
and association with BMI

65

may be involved in increasing the potential for energy expenditure
in brown adipocytes

66

mediates hepatic gluconeogenesis 67

contributes toward maintenance of hepatic glucose homeostasis 68

necessary for metabolic maturation of pancreatic �-cells 69

significantly up-regulated under treatment with cholesterol drug
fenofibrate

70

TTN rs16866534 44% 76% isoform composition in cardiac tissue is regulated by insulin signal-
ing, possibly contributing to altered diastolic function in diabetic
cardiomyopathy

71

MYH15 rs3957559 49% 76% variant rs3900940, along with four other variants, contributes to
elevated risk for coronary heart disease

72

ADIPOQ rs6444174 56% 90% rs6444174 associated with adiponectin levels in African American
women

57

associated with plasma adiponectin levels in Europeans (rs17366568,
GWA p = 4.3�24)

73,74

associated with plasma adiponectin levels in African Americans
(rs4686807, GWA p = 1.6⇥ 10�11)

75

associated with plasma adiponectin levels in East Asians (rs822391,
GWA p = 1.6⇥ 10�10)

75

associated with coronary heart disease, body mass index (BMI),
childhood obesity, metabolic syndrome, and Type II Diabetes

57,76–80

serum adiponectin levels are associated with metabolic health and
cardiovascular risk

81,82

PDGFRA rs4530695 64% 75% used in molecular biology as a marker for white adipocytes 83

controls pancreatic �-cell proliferation 84

plays a role in the link between obesity and inhibited placental
development

85

ASTN2 rs16934033 50% 76% contributes to genetic variation of plasma triglyceride concentrations 86

marginally associated with childhood obesity in Hispanic individuals
(GWA p = 2.4⇥ 10�6)

87

SIDT2 rs11605217 27% 57% important regulator of insulin secretion 88

mice without the gene are glucose intolerant and have decreased
serum insulin

89,90

associated with triglyceride levels (rs1242229, GWA p = 3.1�20) 91

RASSF8 rs16929850
rs16929965
rs2729646
rs956627

61%
64%
68%
64%

95.3%
99.9%
98.4%
99.9%

expression is significantly altered by fasting in mice 92

DUT rs11637235 33% 76% missense variant causes a syndrome characterized in part by early
onset diabetes mellitus

93

PEPD rs12975240 62% 76% associated with adiponectin levels in multiple populations (rs731839,
rs4805885, rs8182584, rs889139, rs889140, GWA p-values between
1.1⇥ 10�9 and 2.2⇥ 10�13)

75,94

associated with Type II Diabetes (rs3786897, GWA p = 1.3⇥10�9) 95

associated with fasting insulin levels (rs731839, GWA p = 5.1 ⇥
10�12)

96

associated with serum lipid levels 97

expression is modulated by n-3 fatty acids 98

PHACTR3 rs1182507 54% 76% regulation in adipose tissue is BMI-dependent 58

candidate obesity gene based on epigenetic profile 65

Table 1. Multiple published functional and association studies link genes identified by SWIF(r) to

metabolism- and obesity-related phenotypes. The second column contains all variants within the genes listed that have
posterior sweep probability �50% as calculated by SWIF(r). Column 3 shows the derived allele frequency (DAF) in the
‡Khomani San at the SNP in column 2, and column 4 shows the calibrated posterior sweep probability calculated by SWIF(r) at
that site. For genome-wide association (GWA) studies, GWA p-values are given for the strongest SNP associations. Bold rsid
indicates a result about the specific SNP identified by SWIF(r) in column 2. All genes highlighted in Figure 3B are included in
this table except MCC and MLIP, for which additional associations to metabolism- and obesity-related phenotypes could not be
found beyond the dbGaP categories in Figure 3C. 15
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0.5%

rs113716447: T/C

5’

ADIPOQ
3’

SWIF(r) signal

(rs6444174)

949 bp

missense

mutation

(rs113716447)

exons

introns

5’ and 3’ UTRs

Figure 4. Exome analyses reveal potential beneficial mutations in genes identified by
SWIF(r). Missense mutation rs11316447 is a potential causal mutation in ADIPOQ; A) Worldwide
distribution of rs11316447 generated by the Geography of Genetic Variants Browser99

(http://popgen.uchicago.edu/ggv/) shows that the T allele carried by 27% of ‡Khomani San individuals
(pie chart outlined in black) is extremely rare throughout phase 3 of the 1000 Genomes35, at a maximum of
0.5% in the Luhya population of Kenya. Diagram of ADIPOQ highlights the positions of the variant
identified by SWIF(r) (rs6444174) and the nearby missense variant (rs11316447). These two variants are
within 1kb of each other, suggesting that the SWIF(r) signal at rs6444174 is tagging this missense variant.

Discussion 300

In this paper, we have presented both a new method for selective sweep detection, SWIF(r), and new insight 301

into adaptive evolution in the ‡Khomani San. Not only does SWIF(r) outperform existing SNP-based 302

component statistics and composite methods when detecting both complete and incomplete sweeps in 303

simulation (Figure 1), it also localizes experimentally validated adaptive mutations using genomic data alone 304

(Figure 2). SWIF(r) accounts for the confounding effect of neutral population histories when detecting 305

sweeps by generating training simulations based on a demographic model, and we find it is robust to 306

misspecification of the demographic model underlying the testing data (Supplementary Figure 13). We 307

outline an algorithm for modeling SNP ascertainment in training simulations, thereby enabling the 308

application of SWIF(r) to selection scans using genotype array data from diverse understudied populations 309

like the ‡Khomani San (Online Methods). While some of the component statistics we use here may be fairly 310

robust to ascertainment bias, this algorithm also enables future use of component statistics that are more 311

vulnerable to ascertainment bias, such as SFS statistics, within SWIF(r)’s framework. When analyzing 312

genotype and exome data from 45 ‡Khomani San individuals, we find that SWIF(r) signals tagging functional 313

variants are enriched in genes associated with metabolism and obesity (Figure 3, Table 1, Figure 4). 314
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Composite classification frameworks such as SWIF(r) quantitatively ground a common qualitative 315

approach used in scans for adaptive sweeps based on summary statistics: evidence for selection at a locus is 316

considered stronger when extreme values are observed for more than one statistic (Figure 3A). Furthermore, 317

machine-learning approaches like SWIF(r) that incorporate joint distributions of selection statistics can 318

detect sweep events that individual univariate statistics cannot (Supplementary Figure 28). SWIF(r) 319

additionally reports calibrated probabilities assessing evidence for selective sweeps site-by-site, resulting in a 320

transparent probabilistic framework for localizing adaptive mutations. These features allow for the 321

localization of specific adaptive variants rather than adaptive regions, and minimize bias arising from 322

undefined component statistics. While approaches such as Approximate Bayesian Computation can exploit 323

higher-dimensional correlations in order to distinguish between selective sweep modes at candidate loci100, 324

this comes at the cost of genome-scale tractability, and can be vulnerable to the curse of dimensionality19. 325

The AODE framework allows us to transparently calculate probabilities without the need for imputation of 326

undefined statistics, and our priors are made explicit, allowing for clearer interpretation. Future applications 327

of SWIF(r) can easily incorporate new site-based summary statistics as they are developed (Supplementary 328

Figure 29), and can assign variable site-specific prior sweep probabilities according to genomic annotations: 329

for example, one could assign a smaller prior for synonymous variants relative to non-synonymous variants, 330

or a higher prior in regulatory regions relative to intergenic regions31. 331

In order for the class probabilities reported by SWIF(r) to be practically interpretable, we calibrated 332

SWIF(r), such that k% of variants with a posterior sweep probability of k% are indeed sweep variants. We 333

have implemented a calibration scheme based on isotonic regression for SWIF(r) that maps the posterior 334

sweep probabilities to their empirical sweep proportions in simulated data (Supplementary Figure 1, 335

Supplementary Figure 2, Supplementary Figure 3), but importantly, this calibration relies on the 336

composition of the training set used. While for some classifiers, the proportions of classes are known, or can 337

be reliably estimated (e.g. see Durand et al.101 and Scheet and Stephens102), the proportion of sites 338

throughout the human genome that are adaptive is unknown. For calibrating SWIF(r), we chose training 339

training sets made up overwhelmingly of neutral variants; while our calibration of SWIF(r) always preserves 340

the rank order of posterior probabilities (Supplementary Figure 3), the specific choice of training set makeup 341

can have a dramatic effect on the calibration. Therefore, a direct interpretation of the posterior probabilities 342

reported by SWIF(r), or any other classifier that calculates probabilities, must incorporate knowledge of the 343

scenarios used for training and calibration. 344

One caveat for interpretation of the SWIF(r) results presented here is that we train SWIF(r) on hard 345

selective sweeps. In simulation, we find that SWIF(r) is also sensitive to sweeps from standing variation with 346

a low initial frequency (Supplementary Figure 30); indeed, the sweep in West Africans in the gene DARC, for 347
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which SWIF(r) calculates a high sweep probability (Figure 2A) has recently been shown to have originated 348

from standing variation in the ancestral population103. Given the multiple metabolism- and obesity-related 349

sweep targets identified by SWIF(r) in the ‡Khomani San (Figure 3), we also suspect that some putative 350

adaptive mutations identified by SWIF(r) may be components of polygenic adaptation. 351

Genes with SWIF(r) signals in our high-throughput genomic scan for selective sweeps in the ‡Khomani 352

San have been independently identified in multiple GWA studies and functional experiments as associated 353

with metabolism- and obesity-related phenotypes (Table 1). One way to interpret this signal is through the 354

lens of the “thrifty gene” hypothesis, which posits that ready fat storage was positively selected for in 355

hunter-gatherer populations due to the survival advantage it conferred in unreliable food cycles104. The 356

hypothesis further states that modern disease phenotypes such as type 2 diabetes and obesity are the 357

consequence of a radical shift in diet from ancestral environments and forager subsistence strategies to a 358

contemporary environment with abundant food in the form of simple sugars, starches, and high fat, though 359

this is a subject of much debate105,106. Although most indigenous Khoe and San groups of the Kalahari are 360

classically considered small and thin, populations such as the Khoekhoe cow/goat pastoralists are 361

characterized by steatopygia (i.e. extensive fat accumulation along the buttocks and thighs in women), as 362

notoriously described by early European explorers and anthropologists107–109. While the thrifty gene 363

hypothesis would predict an increase in metabolic pathology for these individuals, studies have shown that 364

accumulated subcutaneous gluteofemoral fat, found in patients exhibiting steatopygia110,111, is protective 365

against diabetes and other metabolic disorders112,113. The mutations and genes identified by our SWIF(r) 366

scan, such as ADIPOQ, are natural targets for functional assays to determine the origins and consequences of 367

subcutaneous versus visceral fat; future studies could merge such assays with phenotypic data on diabetes 368

and metabolic syndromes in KhoeSan groups to gain new insight into the “obesity-mortality paradox”114. 369

In this selection scan, we also see an abundance of SWIF(r) signals in the MHC region involved in 370

immunity. It is possible that this signal reflects balancing selection, which is the mode of selection 371

canonically thought to be occurring within this region54. Indeed, it has been shown that the signatures of 372

balancing selection and incomplete or recurrent sweeps may be similar to signatures of positive 373

selection115,116. We note, however, that other studies using different methodologies have detected signatures 374

of directional selection in the MHC in human populations117,118, and others have noted that fluctuating 375

directional selection is a possible mechanism for pathogen-mediated selection in this region119. 376

The probabilistic framework of SWIF(r) suggests two natural extensions for future applications. First, 377

while the use of SNP-based component statistics enabled us to localize adaptive mutations, SWIF(r) could 378

easily incorporate region-based component statistics, including composite likelihood approaches like 379

XP-CLR120, and SFS-based measures3,121 in order to help detect older selection events, for which 380
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haplotype-based statistics are less powerful. Second, future studies can exploit the flexibility and 381

interpretability of SWIF(r) to conduct multi-class classification. Supplementary Figure 31 illustrates a 382

preliminary extension of SWIF(r) that classifies sweeps based on the start time of positive selection. Recent 383

methods have attempted multi-class sweep classification using hierarchical binary classification or other 384

machine learning approaches14,18,22, but without the benefits of a transparent probabilistic framework in 385

which priors are made explicit. Using the probabilistic framework of SWIF(r), future studies could determine 386

the mode of adaptive evolution at genomic sites, including background selection or sweeps from standing 387

variation or recurrent mutation21,22, or infer the timing or selective strength of an adaptive event100. Thus, 388

SWIF(r) offers a technical advance in genome-wide sweep detection that can yield new insight into the 389

modes and roles of selection in shaping population-genomic diversity. 390

Online Methods 391

Simulation of haplotypes for 1000 Genomes analysis 392

Simulations based on the demographic model of African, Asian, and European populations outlined in 393

Schaffner et al.27 were carried out with the following alterations necessary for allowing the simulation of 394

recent selective sweeps (within the last 30ky): no modern population growth (within the last 30 generations), 395

and migration ending 500 generations following the Asian/European split instead of continuing to the 396

present. We carried out 100 simulations of 1Mb regions from this neutral demographic model using cosi, 397

which resulted in ⇠400,000 neutral training points. We generated a new recombination map for each 398

simulation with the recosim package within cosi, using a hierarchical recombination model that assumes a 399

regional rate drawn from the observed distribution of rates in the deCODE genetic map122, and then 400

randomly generates recombination hotspots with randomly drawn local rates27. For each simulation, we 401

generated 120 1Mb-long haplotypes from each of the three populations. 402

Selective sweeps continued until the time of sampling, and were simulated for a range of sweep 403

parameters: start time ranging over [5, 10, 15, 20, 25, 30kya], final allele frequency ranging over [0.2, 0.4, 0.6, 404

0.8, 1.0], and population of origin ranging over [African, Asian, European]. Note that these sweeps cover a 405

range of incomplete as well as complete sweeps in a population of interest. The selection coefficients for each 406

parameter set are fully determined by the effective population size, sweep start time, and final allele 407

frequency, and are displayed in Supplementary Table 5. We calculated these selection coefficients using 408

Equation 4 for complete sweeps (by which we mean sweeps where the beneficial mutation has reached 409

fixation in the population of interest), and Equation 5 for incomplete sweeps, where t1 is the sweep start 410
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time and t2 is the sweep end time, both measured in generations from the present, Ne is the effective 411

population size, ts =
t1�t2
2Ne

, and � is the present-day frequency of the beneficial allele, 0 < �  1123. The 412

range of selection coefficients corresponds to a range of ↵ = 2Ns of ⇠100-4500. For each set of sweep 413

parameters, we carried out 100 simulations with the adaptive allele located halfway along the 1MB region, 414

for a total of 9,000 sweep training points. 415

s =
log(2Ne)

tsNe
(4)

416

s =
1

2Nets
log(2Ne � 1) + log(

1� �

�
) (5)

Simulation of haplotypes for ‡Khomani San analysis 417

To train our classifier to identify selective sweeps in the ‡Khomani San, we used the demographic model 418

inferred by Gronau et al.28 based on six diploid whole-genome sequences, one from each of six populations: 419

European, Yoruban, Han Chinese, Korean, Bantu, and San. We used the inferred population sizes, coalescent 420

times, and migration rates reported by Gronau et al.28, which are calibrated based on a 6.5 million year 421

human-chimpanzee divergence, the presence of migration between the Yoruban and San populations, and 25 422

years/generation to construct a demographic model for the Han Chinese, European, Yoruban, and San, 423

shown in Supplementary Figure 21. 424

Because Uren et al.45 showed that the ‡Khomani San have experienced recent gene flow from both 425

Western Africa and Europe, we replaced migration in the Gronau model with two pulses of recent migration: 426

one pulse from the Yoruban population with migration rate 0.179 at 7 generations ago, and one pulse from 427

the European population with migration rate 0.227 at 14 generations ago. We found that these rates resulted 428

in present-day admixture levels that matched those found in Uren et al.45 (Supplementary Note). 429

Using cosi27, we simulated 1Mb genomic regions, comprising both neutral and sweep scenarios as 430

described earlier, with sample sizes matching the number of individuals in the filtered 1000 Genomes dataset, 431

and the number of San individuals in our study. 432

Because the ‡Khomani have been isolated for so long, we included additional sweep scenarios, with sweeps 433

beginning and ending between 30 and 60kya. We called these “old sweeps” and trained the classifiers on 434

three classes: neutral, “old sweeps”, and “recent sweeps” (those occurring within the last 30ky). Since we 435

found that the classifiers did not have enough power to reliably distinguish between old and recent sweeps 436

(Supplementary Figure 31), in applications to data, we only considered the total probability of a sweep, given 437

by the sum of the posterior probabilities for each sweep class. 438
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Simulation of haplotypes including recent population growth 439

To test SWIF(r)’s robustness to misspecification of recent population growth, we implemented a set of 440

simulations using a demographic model from Gravel et al.29 that estimates recent exponential population 441

expansions with rates of 0.38% for Europe and 0.48% for East Asia over the last 23,000 years. Since the 442

simulation software cosi27 cannot simulate sweeps and population-level changes simultaneously, we allowed 443

the expansion to last from 23,0000 years ago to 5,000 years ago, to allow for sweeps beginning 5,000 years 444

ago. We also included the migration rates inferred by Gravel et al.29 between Europe, East Asia, and Africa, 445

and between Africa and the ancestral population of Europe and East Asia. As in other analyses, We 446

simulated selective sweeps spanning a range of present-day allele frequencies from 20% to 100%. 447

Simulation of background selection 448

For evaluating SWIF(r)’s robustness to background selection, we generated 3 sets of simulations of 1Mb each 449

using forward simulator slim30: neutral regions, regions with a hard sweep, and genic regions. For genic 450

regions, we followed Messer and Petrov21 to simulate gene structure: each simulation had one gene with 8 451

exons of 150bp each, separated by introns of 1.5kb, and flanked by a 550bp 50UTR and a 250bp 30UTR. 452

Within exons and UTRs, 75% of sites were assumed to be functional. Mutations were assumed to be 453

codominants, and fitness effects across different sites were assumed to be additive. Functional sites were 454

divided into 40% “strongly deleterious” sites with selection coefficient �0.1, and 60% “weakly deleterious” 455

sites with selection coefficients between �0.01 and �0.0001. The mutation rate was set at 2.5⇥ 10�8 per site 456

per generation, and the recombination rate at 10�8. Note that for testing the robustness of SWIF(r), we only 457

considered sites from these simulations that landed in exons or UTRs. 458

For all three sets of simulations, we simulated two populations with Ne = 5000, which split from each 459

other 40,000 years ago. For sweep simulations, we drew selection coefficients for the beneficial allele from an 460

exponential distribution with mean 0.03, and sweeps begin 10,000 years ago. Since forward simulations are 461

much more computationally intensive than coalescent simulations, we rescaled our parameters by a factor of 462

10 (10 times larger for mutation rate, recombination rate, and selection coefficients, 10 times smaller for 463

population sizes and 10 times shorter for all times) to make the simulations feasible30. 464

Implementation of the Classifiers 465

For ease of comparison, we built SWIF(r) using the same statistics that comprise the Composite of Multiple 466

Signals (CMS)13,16: the fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) 467

(adapted for improved performance on incomplete sweeps; Supplementary Note), the integrated haplotype 468
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score (iHS), and change in derived allele frequency (�DAF). �iHH was excluded in applications to real data 469

because of non-normality (Supplementary Note, Supplementary Figure 5). 470

Implementation of SWIF(r) To avoid over-fitting the joint distributions modeled in the AODE 471

framework (Equation 3), we fit Gaussian mixture models with full covariance matrices (i.e. containing 472

nonzero off-diagonal entries) to the joint probability distributions of each pair of statistics Si and Sj within 473

each scenario C (neutral or sweep), P (Si = si, Sj = si|C), with the number of components ranging between 474

three and five based on Bayesian Information Criterion (BIC) curves. Joint probabilities were learned using 475

sites for which both component statistics were defined. We used the python package scikit-learn124 to 476

compute the BIC curves and fit the mixture models. These mixture models capture the salient features of 477

each pairwise joint distribution, as illustrated in the example in Supplementary Figure 32. Given the 478

smoothed joint distribution learned for a pair of statistics (Si, Sj), we calculate the conditional probability 479

distributions Sj |si as one-dimensional gaussian mixtures: 480

Sj |si ⇠
X

k

w(k)N(µ(k)
j +

�(k)
j

�(k)
i

⇢(si � µ(k)
i ), [1� (⇢(k))2][�(k)

j ]2)

where N(µ,�2) denotes the normal distribution with mean µ and variance �2, k indexes the components in 481

the joint Gaussian mixture, w(k) is the weight assigned to each component, µi and µj are the components of 482

the joint mean, and �i, �j , and ⇢ are taken from the joint covariance matrix ⌃. 483

We find that SWIF(r) loses little power to identify sites with adaptive mutations when one of the 484

component statistics is undefined, but each component statistic differentially influences the power of SWIF(r) 485

(Supplementary Figure 33). 486

Calibration of SWIF(r) probabilities There are a few techniques for calibrating probabilities returned 487

by a binary classifier so that of all of the data points that are given a k% probability of belonging to class A 488

by the classifier, k% of those are indeed drawn from class A, and (100� k)% are drawn from class B25,125. 489

Isotonic regression (IR) is a popular method because it makes no assumptions about the mapping function 490

beyond requiring that it be monotonically increasing126. In the case of SWIF(r) probabilities, IR calibration 491

works by grouping sweep and neutral variants from a training dataset into posterior probability bins, and 492

mapping each bin to the empirical proportion of variants in the bin that are sweep variants. We used 10 bins 493

for calibration, because we found that using more bins increased the risk of overfitting. This can be 494

mitigated by performing more simulations, but in our case, even with 1000 neutral simulations of 1Mb each, 495

mid to high posterior probabilities were extremely rare at neutral variants. For sweep site localization in 496

data from the 1000 Genomes Project, we calibrated SWIF(r) based on a training dataset composed of 497
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99.99% simulated neutral variants and 0.01% simulated sweep variants, and for application to the ‡Khomani 498

San SNP array data, we calibrated SWIF(r) based on a dataset composed of 99.95% simulated neutral 499

variants and 0.05% simulated sweep variants (Supplementary Figure 1, Supplementary Figure 2, 500

Supplementary Figure 3). The slightly larger fraction of sweep simulations in the ‡Khomani San training set 501

relative to the 1000 Genomes training set allowed for more sensitivity to older sweeps, and accounted for the 502

sparser SNP density of this dataset. In both data, we restricted the simulated sweep variants to those with 503

present-day allele frequencies over 50%, since we have the most power in this realm (Supplementary Figure 504

6), and wanted to avoid overcorrection of strong signals. 505

A downside to IR is that by its nature, it maps a range of input values to the same output value, which 506

removes some information about which probabilities are larger than others. We implemented a “smoothed” 507

isotonic regression for calibration that interpolates the piecewise constant mapping function learned by IR 508

(Supplementary Figure 3). In practice, we find that both methods of calibration produce equally 509

well-calibrated classifiers; that is, after either method, the data points in our simulated dataset that have a 510

calibrated posterior sweep probability of k% are made up of approximately k% sweep simulations and 511

(100� k)% neutral simulations (Supplementary Figure 1, Supplementary Figure 2). Unlike IR alone, however, 512

smoothed isotonic regression has the advantage of preserving strict monotonicity of posterior probabilities. 513

Implementation of CMS We implemented CMS following the algorithm described in Grossman et al.13 514

and personal communication with the authors. Based on the simulations and component statistics described 515

above, CMS is computed as the product of individual posterior distributions: 516

CMS =
nY

i=1

P (sweep|Si = si) =
nY

i=1

⇡P (Si = si|sweep)
⇡P (Si = si|sweep) + (1� ⇡)P (Si = si|neutral)

(6)

where ⇡, the prior probability of a sweep, is 10-6. 517

When one or more component statistics are undefined at a locus, CMS is not well-defined. If statistics are 518

simply left out of the product, this artificially inflates the reported score. Some compensation is thus 519

required to avoid such a bias, which is not discussed by Grossman et al. We implemented a conservative 520

compensation scheme: if statistic Si is undefined at a locus, we set its value to the mean of the distribution 521

for that statistic learned from neutral simulations. 522

For the purpose of evaluating CMS using YRI, CEU, and CHB+JPT samples from the 1000 Genomes, we 523

use CMS Viewer (https://pubs.broadinstitute.org/mpg/cmsviewer/; use date: 04/26/2016), an 524

interactive tool designed by Grossman et al.16 for visualizing genome-wide CMS scores. 525
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Implementation of window-based methods 526

We implemented evolBoosting using the R package released by Lin et al.14 527

(http://www.picb.ac.cn/evolgen/softwares/) using default settings. We trained and tested evolBoosting 528

on the simulations of YRI, CEU, and CHB+JPT described above, including all sweep durations and 529

present-day allele frequencies, splitting the simulations in two equally sized groups for training and testing. 530

We used the middle 40kb of each 1Mb simulation, and generated window-based SWIF(r) probabilities by 531

taking the maximum posterior sweep probability for all SNPs within the 40kb window. 532

For evoNet19 we used the same simulations as above, but using the central 100kb windows of each 1Mb 533

simulation (following Sheehan et al.19). The software released by Sheehan et al.19 is generalized, so that any 534

component statistics may be used for implementing the deep learning framework. Therefore, we implemented 535

evoNet using the component statistics we use here for SWIF(r): FST, XP-EHH, iHS and �DAF. evoNet 536

exploits the signatures at three distances from the beneficial allele (0-10kb, 10-30kb, and 30-50kb away), so 537

we used the mean values for each component statistic in each of these windows, for a total of 12 component 538

statistics. For this comparison, we generated window-based SWIF(r) probabilities by taking the maximum 539

posterior sweep probability for all SNPs within the 100kb window. 540

ROC analysis 541

To generate the ROC curves for CMS, SweepFinder, and the component statistics (Figure 1A-C), we varied 542

the threshold for classifying a mutation as adaptive in order to cover the range from ⇠0% false positive rate 543

to ⇠100% true positive rate. For SWIF(r), and the ODEs, we varied the prior ⇡, and sites with scores 544

greater than 0.5 were classified as adaptive (Supplementary Figure 4). To generate Figure 1D, we partitioned 545

all simulations by present-day frequency of the adaptive mutation and sweep start time. For each pair of 546

these parameters, we approximated the area under the ROC curves (AUROC) by summing the areas of the 547

trapezoids defined by each pair of neighboring points in the ROC plane, then identified the summary 548

statistics with the highest and second-highest AUROC. ROC curves for window-based SWIF(r), evoNet, and 549

evolBoosting, were generated in much the same way, except that we varied the threshold for classifying a 550

window as containing an adaptive variant. 551

Ascertainment modeling 552

For our selection scan in the ‡Khomani San population, we use genotype data from two SNP arrays45; the 553

ascertainment bias of these arrays means that the simulated haplotypes we generate from the four 554

populations (‡Khomani San, YRI, CEU, CHB+JPT) for training SWIF(r) differ dramatically from the 555
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observed data for these populations at the sites genotyped on the arrays. To account for this, we 556

implemented an ascertainment-modeling algorithm that prunes sites from simulated haplotypes in order to 557

provide SWIF(r) with simulations for training that match the site frequency spectrum (SFS) of the observed 558

data as closely as possible. The key to this algorithm is to define regions of joint SFS space that are similar 559

in terms of representation on the SNP arrays (e.g. SNPs with low derived allele frequency in all populations 560

are fairly common, while SNPs that are highly differentiated across multiple populations are relatively rare). 561

Defining these “equivalence classes” (hereafter referred to as “SFS regions”) in joint SFS space allows us to 562

learn the density of SNPs from each SFS region along the SNP arrays, and then to thin simulations in order 563

to re-create those densities. This first requires smoothing of the joint SFS to account for sparsity. The full 564

algorithm is as follows: 565

1. Learn the empirical 3D SFS for YRI, CEU, and CHB+JPT individuals in the 1000 Genomes Project, 566

restricted to SNPs present in the overlap between the Illumina OmniExpress and OmniExpressPlus 567

platforms (Supplementary Note) This results in a three-dimensional array of SNP counts for each 568

triplet of derived allele frequencies (DAFYRI, DAFCEU, DAFCHB+JPT). For this dataset, given 87 YRI 569

individuals, 81 CEU individuals, and 186 CHB and JPT individuals, the dimensions of this 570

three-dimensional array are 175⇥ 165⇥ 373 (2n+ 1 in each dimension for n individuals). 571

2. To account for sparseness in the empirical 3D SFS, subdivide each axis into 40 evenly-spaced bins to 572

create a new 40⇥ 40⇥ 40 array where each entry is the average SNP count within that 3-dimensional 573

bin; this array approximates the original empirical 3D SFS. Use the one-dimensional histogram of 574

average SNP counts across all 403 bins to define five intervals that span the range of counts, then 575

assign each bin to its interval (Supplementary Figure 34). Groups of bins belonging to the same 576

interval will be hereafter referred to as “SFS regions.” We note that we choose a 40⇥ 40⇥ 40 array for 577

smoothing because it resulted in SFS regions with well-defined boundaries in 3-dimensional space 578

(Supplementary Figure 34); these dimensions may need to be altered for other datasets to achieve 579

well-defined boundaries as in Supplementary Figure 34. 580

a) In most SFS regions, the SNP counts in the 3-dimensional SFS are relatively invariant; however, 581

in the SFS region with the highest SNP counts (the region in red in Supplementary Figure 34, 582

corresponding predominantly to SNPs with low derived allele frequency in all populations), there 583

is a wide range of SNP counts (this is analogous to the higher variability in counts of 584

low-frequency variants in the 1-dimensional site frequency spectrum relative to that of medium- 585

and high-frequency variants). To account for this increased variability, apply a similar procedure 586

as above: subdivide each bin in the highest SFS region by 2 in each dimension (resulting in 8 587
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sub-bins), re-learn the average SNP count within that sub-bin, use a histogram of average SNP 588

counts across sub-bins to again define five intervals, and assign each sub-bin to its interval, thereby 589

defining an additional set of SFS regions that gives better resolution in higher-density areas. 590

3. For each 1Mb block along the SNP array, count the number of SNPs that fall in each SFS region, based 591

on the observed derived allele frequencies at each SNP for YRI, CEU, and CHB+JPT. This provides a 592

measure of SNP density (counts per Mb) for each SFS region. Applying this over a sliding window of 593

1Mb across the entire SNP array results in a distribution of densities for each SFS region. 594

4. Within each 1Mb block of simulated sequence data, assign each simulated SNP to its SFS region. For 595

each SFS region, draw a value from the distribution of SNP densities learned in step 3, then randomly 596

down-sample the number of simulated SNPs that fall in that region to match this value. In the rare 597

case in which downsampling is not possible for a given SFS region (i.e. there are fewer simulated SNPs 598

in that region than the value drawn from the distribution of densities), retain all simulated SNPs that 599

belong to the SFS region. 600

5. For training the classifiers, restrict the simulated ‡Khomani San genotype data (as well as the 601

simulated data from the 1000 Genomes populations) to the downsampled set of SNPs. 602

Software and Data availability 603

SWIF(r) repository: https://github.com/ramachandran-lab/SWIFr; selscan repository: 604

https://github.com/szpiech/selscan 605

1000 Genomes phase 1 data: 606

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis results/integrated call sets/. 607

‡Khomani San genotype data were first described by Uren et al.45, and ‡Khomani San exome data were first 608

described by Martin et al.48. Queries regarding access to ‡Khomani San data analyzed here should be sent to 609

the South African San Council for research and ethics review by contacting both Leana Snyders 610

(leanacloete@ymail.com) and admin@sasi.org.za. 611
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108. Blanchard, R. Sur le tablier et la stéatopygie des femmes boschimans. Bulletin de la société

zoologique de France 8, 35 (1886).

109. Qureshi, S. Displaying Sara Baartman, the ‘Hottentot Venus’. Hist Sci 42, 233–257 (2004).

110. Krut, L. & Singer, R. Steatopygia: the fatty acid composition of subcutaneous adipose tissue in the

Hottentot. Am J Phys Anthropol 21, 181–187 (1963).

35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


111. Ersek, R. A., Newton Bell, H. & Vazquez Salisbury, A. Serial and superficial suction for steatopygia

(Hottentot bustle). Aesthetic Plast Surg 18, 279–282 (1994).

112. Snijder, M. B. et al. Trunk fat and leg fat have independent and opposite associations with fasting

and postload glucose levels. Diabetes Care 27, 372–377 (2004).

113. Manolopoulos, K., Karpe, F. & Frayn, K. Gluteofemoral body fat as a determinant of metabolic

health. Int J Obes (Lond) 34, 949–959 (2010).

114. Ahima, R. S. & Lazar, M. A. The health risk of obesity—better metrics imperative. Science 341,

856–858 (2013).

115. Andrés, A. M. et al. Targets of balancing selection in the human genome. Mol Biol Evol 26,

2755–2764 (2009).

116. Lenz, T. L., Spirin, V., Jordan, D. M. & Sunyaev, S. R. Excess of deleterious mutations around HLA

genes reveals evolutionary cost of balancing selection. Mol Biol Evol 33, 2555–2564 (2016).

117. Albrechtsen, A., Moltke, I. & Nielsen, R. Natural selection and the distribution of identity-by-descent

in the human genome. Genetics 186, 295–308 (2010).

118. Zhou, Q., Zhao, L. & Guan, Y. Strong selection at MHC in Mexicans since admixture. PLoS Genet

12, e1005847 (2016).

119. Spurgin, L. G. & Richardson, D. S. How pathogens drive genetic diversity: MHC, mechanisms and

misunderstandings. Proc R Soc Lond B Biol Sci rspb20092084 (2010).

120. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome

Res 20, 393–402 (2010).

121. Fay, J. C. & Wu, C.-I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413

(2000).

122. Kong, A. et al. A high-resolution recombination map of the human genome. Nat Genet 31 (2002).

123. Kim, Y. & Stephan, W. Detecting a local signature of genetic hitchhiking along a recombining

chromosome. Genetics 160, 765–777 (2002).

124. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 12, 2825–2830

(2011).

36

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


125. Zadrozny, B. & Elkan, C. Obtaining calibrated probability estimates from decision trees and naive

Bayesian classifiers. In ICML, vol. 1, 609–616 (2001).

126. Niculescu-Mizil, A. & Caruana, R. Predicting good probabilities with supervised learning. In

Proceedings of the 22nd international conference on Machine learning, 625–632 (ACM, 2005).

37

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information for: Localization of adaptive variants in human

genomes using averaged one-dependence estimation

Lauren Alpert Sugden1,2,*, Elizabeth G. Atkinson3, Annie P. Fischer4, Stephen Rong1,2, Brenna M. Henn3,

Sohini Ramachandran1,2,*

1 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA

2 Center for Computational Molecular Biology, Brown University, Providence, RI, USA

3 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA

4 Division of Applied Mathematics, Brown University, Providence, RI, USA

* correspondence should be addressed to LAS (lauren alpert@brown.edu) or SR

(sramachandran@brown.edu)

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 1

Calibration of SWIF(r) for analysis of data from the 1000 Genomes. For sweep site localization in

data from the 1000 Genomes Project, we calibrated SWIF(r) based on a training dataset made up of 99.99%

simulated neutral variants and 0.01% simulated sweep variants. We restricted the simulated sweep variants

to those with present-day allele frequencies over 50%, since we have the most power in this realm, and

wanted to avoid overcorrection of strong signals. A) Reliability curve1 for uncalibrated SWIF(r) posterior

probabilities using 10 evenly-spaced bins between 0 and 1; the x-axis plots the mean posterior probability

within each bin, and the y-axis plots the fraction of sites within the bin that are sweep variants (“empirical

sweep probability”). Uncalibrated, the probabilities that SWIF(r) calculates are slightly inflated. B) Isotonic

regression (IR) mapping of probabilities in each bin to their corresponding empirical sweep probabilities,

based on panel A. C) Our smoothed IR map, learned by interpolating between the midpoints of the

piecewise constant segments inferred by isotonic regression in panel B (see also Supplementary Figure 3). D)

Reliability curve for sweep probabilities calibrated with isotonic regression from panel B. E) Reliability curve

for sweep probabilities calibrated with smoothed isotonic regression from panel C.
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Supplementary Figure 2

Calibration of SWIF(r) for analysis of SNP array data from the ‡Khomani San. For sweep site

localization in array data from the ‡Khomani San, we calibrated SWIF(r) based on a training dataset made

up of 99.95% simulated neutral variants and 0.05% simulated sweep variants with present-day allele

frequencies over 50%. The slightly larger fraction of sweep simulations relative to the 1000 Genomes

calibration is to allow for more sensitivity to older sweeps, and to account for the sparser SNP density of this

dataset compared to the 1000 Genomes (phase 1). A) Reliability curve1 for uncalibrated SWIF(r) posterior

probabilities using 10 evenly-spaced bins between 0 and 1; the x-axis plots the mean posterior probability

within each bin, and the y-axis plots the fraction of sites within the bin that are sweep variants (“empirical

sweep probability”). B) Isotonic regression (IR) mapping of probabilities in each bin to their corresponding

empirical sweep probabilities, from panel A. C) Our smoothed isotonic regression map, learned by

interpolating between the midpoints of the piecewise constant segments inferred by isotonic regression in

panel B (see also Supplementary Figure 3). D) Reliability curve for sweep probabilities calibrated with

isotonic regression from panel B. E) Reliability curve for sweep probabilities calibrated with smoothed

isotonic regression from panel C.
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Supplementary Figure 3

Schematic of smoothed isotonic regression for probability calibration. There are a few techniques

for calibrating probabilities returned by a classifier so that of all of the data points that are given a k%

probability of belonging to class A by the classifier, k% of those are indeed drawn from class A. Isotonic

regression is a popular method because it makes no assumptions about the mapping function beyond

requiring that it be monotonically increasing2. A downside, however, is that by nature, isotonic regression

maps a range of input values to the same output value, which removes some information about which

probabilities were larger than others. We implemented a “smoothed” isotonic regression for calibration that

takes the piecewise constant mapping produced by isotonic calibration (solid blue line segments), and creates

a mapping that preserves the strict monotonicity of the input data (purple dotted line). To obtain this new

mapping, we interpolate between the midpoints (purple stars) of each piecewise constant segment. In

practice, we find that both methods of calibration produce equally well-calibrated classifiers; that is, after

either calibration method, the data points in our simulated dataset that have a calibrated posterior sweep

probability of k% are made up of approximately k% sweep simulations and (100� k)% neutral simulations

(see Supplementary Figure 1D-E, Supplementary Figure 2D-E). However, smoothed isotonic regression has

the advantage of preserving strict monotonicity of posterior probabilities.
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Supplementary Figure 4

ROC curves for SWIF(r), varying the prior and varying thresholds. We plot ROC curves for

SWIF(r) by fixing the threshold for classifying a site as adaptive at 50% posterior probability and varying

the prior in Equation 3 (black curve with points denoted as triangles). However, an equally valid method

would be to fix the prior and vary the posterior probability cutoff for determining which sites are classified as

neutral and which are classified as adaptive (brown curve with circular points, prior fixed at 10�5). We show

below that both methods result in equivalent ROC curves.

SWIF(r); fix threshold, vary prior

SWIF(r); fix prior, vary threshold

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.200.150.100.050.00

0.9

0.8

0.7

0.6

0.5

1.0

0.25

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 5

�iHH produces many false positives in 1000 Genomes data. Points represent �iHH and iHS values

for sites classified as adaptive mutations (sweep probability � 50%) in the 1000 Genomes data (here, �iHH

included as a component statistic in SWIF(r)). The red line denotes iHS = 0, to emphasize the large number

of these sites for which iHS is positive. Since positive values of iHS provide evidence against positive selection

for the derived allele, these sites are likely false positives driven by �iHH.
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Supplementary Figure 6

SWIF(r) outperforms sweep-detection method SweepFinder. SweepFinder3 is a

composite-likelihood method for detecting selective sweeps that is designed to be robust to recombination

rate and demography. SweepFinder uses a theoretical model of changes in the allele frequency spectrum after

a sweep that is dependent on the distance at each site to the site of the selective sweep, and is designed to

detect completed sweeps (present-day beneficial allele frequency of 100% in the population of interest). A-E)

As expected given SweepFinder’s underlying model, the ROC curves for detecting incomplete sweeps

(present-day beneficial allele frequencies from 20% to 80%) show very poor performance of SweepFinder

relative to other methods. SweepFinder performs better for completed/nearly-completed sweeps relative to

incomplete sweeps, but still lags behind other methods including SWIF(r). We note that iHS is missing from

the plot of completed sweeps (panel E), because iHS cannot be calculated at such sites4. F) Power-FDR

curves aggregated over all sweep parameters, assuming a training set composed of 99.95% neutral variants

and 0.05% adaptive variants.
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Supplementary Figure 7

Component selection statistic rankings per sweep model parameters used in this study. Each

box contains the top two performing component statistics (listed in rank order) for each pair of sweep start

time and present-day frequency of the adaptive allele in the population of interest. Performance is evaluated

as the area under the ROC curve. Colors correspond to those in Figure 1.
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Supplementary Figure 8

SWIF(r) outperforms CMS in localization of adaptive mutations in simulation. Boxplots show

empirical p-values calculated with respect to all neutral simulations for CMS (left) and sweep probabilities

returned by SWIF(r) (right). Center boxplots contain only adaptive sites, and all other boxplots evenly bin

genomic coordinates 1kb up- and downstream of the adaptive SNP. Results are shown for A) all sweep

parameters, B) complete sweeps (beneficial allele has reached a frequency of 100% in the population of

interest), and C) incomplete sweeps where the beneficial allele has reached a maximum frequency of 60%. In

each case, the distribution of CMS scores at the beneficial allele differs from the distributions at neighboring

sites, but with significant overlap, making it difficult to confidently and quantitatively localize the adaptive

site. In contrast, the distributions of SWIF(r) probabilities at neighboring loci are extremely low with little

variance, with only outliers overlapping the range of probabilities seen at adaptive sites.
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Supplementary Figure 9

SWIF(r) outperforms evolBoosting5. Following Lin et al. 5, we implemented their software

evolBoosting (http://www.picb.ac.cn/evolgen/softwares/) and applied it to simulated data in 40kb

windows. For comparison, we calculated “window-based” SWIF(r) scores by taking the maximum site-based

SWIF(r) probability in each 40kb window. We tested and trained evolBoosting on the middle 40kb of the

1Mb neutral simulations and sweep simulations described in Online Methods, for three populations modeled

after CEU (Europe), CHB and JPT (East Asia), and YRI (West Africa). For a given threshold ↵, the false

positive rate is defined as the fraction of neutral windows with a score above ↵, and the true positive rate is

the fraction of windows containing a sweep with a score above ↵. The ROC curves below are obtained by

varying ↵. A) Aggregated over all sweep parameters (beginning time of sweep between 5 and 30kya,

present-day allele frequency between 20 and 100%), window-based SWIF(r) outperforms evolBoosting in all

three populations. Results in remaining panels are averaged over populations. B) ROC curves for incomplete

sweeps (present-day beneficial allele frequencies of 20-40%). C) ROC curves for complete and near-complete

sweeps (present-day beneficial allele frequencies of 80-100% in the population of interest). D) ROC curves

for sweeps beginning 5-10kya. E) ROC curves for sweeps beginning 25-30kya. The performance of the two

methods is closest for this parameter set representing older sweeps, likely reflecting the decreased power of

haplotype-based statistics, which SWIF(r) relies on, relative to SFS-based statistics, which evolBoosting relies

on. F) Power-FDR curves aggregated over all sweep parameters, assuming 1% of windows contain a sweep.
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Supplementary Figure 10

Performance comparison of SWIF(r) against evoNet6. evoNet6 is a deep learning framework for

simultaneous demographic and selection inference; however, the software can be implemented for selection

inference only. Following Sheehan et al. 6, we implemented evoNet in 100kb windows, using the central

100kb of the 1Mb simulations described in Online Methods. For comparison, we calculated “window-based”

SWIF(r) scores by taking the maximum site-based SWIF(r) probability in the same 100kb windows. Both

evoNet and SWIF(r) are frameworks that can take in any summary statistics, so we trained evoNet using the

same component statistics used for SWIF(r). Since evoNet is a window-based method that makes use of the

values of statistics close to the beneficial allele (within 10kb), at mid-range (between 10 and 30kb away), and

far away (between 30 and 50kb away), we computed average component statistic values in these three

genomic windows for FST, XP-EHH, iHS, and �DAF. For a given threshold ↵, the false positive rate is

defined as the fraction of neutral windows with a score above ↵, and the true positive rate is the fraction of

windows containing a sweep with a score above ↵. The ROC curves below are obtained by varying ↵. We

note that these analyses likely downplay the strengths of both methods, as each method has been altered

from its original design to enable a direct comparison.A) Aggregated over all sweep parameters (beginning

time of sweep between 5 and 30kya, present-day allele frequency between 20 and 100%), window-based

SWIF(r) performs on a par with evoNet in all three populations. Results in remaining panels are averaged

over populations. B) ROC curves for incomplete sweeps (present-day beneficial allele frequencies of 20-40%).

C) ROC curves for complete sweeps (present-day beneficial allele frequencies of 80-100% in the population of

interest). D) ROC curves for sweeps beginning 5-10kya. E) ROC curves for sweeps beginning 25-30kya. F)

Power-FDR curves aggregated over all sweep parameters, assuming 1% of windows contain sweeps.
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Supplementary Figure 11

Power versus false discovery rate (FDR) for various training set compositions. Using the same

sets of simulations for testing and training that we use to generate the ROC curves in Figure 1, we calculated

the tradeoff between true positive rate (power; the fraction of simulated sweep sites correctly classified as a

sweep) and the false discovery rate (the fraction of sites classified as a sweep that are actually neutral). We

note that the shape of these curves depends heavily on the makeup of the training set, since the false

discovery rate depends on the total number of true positives relative to false positives. Below we provide four

sets of curves for training sets that are 1%, 0.1%, 0.01%, and 0.001% sweep sites respectively, with the

remainder of the training set made up of neutral simulated sites. SWIF(r) performs well relative to CMS and

the component statistics across training set compositions, in particular achieving a false discovery rate near

zero for a moderate true positive rate of ⇠30%. We note, however, that depending on the training set

makeup, the false discovery rates for all methods can be quite high; we believe that this illustrates the

difficulty of detecting selection reliably at a genome scale. We note that these curves were generated before

calibration of posterior probabilities, but that calibrating SWIF(r) would not alter these curves, since the

Power-FDR curves themselves are transformation invariant7.
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Supplementary Figure 12

Illustration of differences between Gronau8 and Schaffner9 demographic models. Black lines

indicate lineages inferred by both models, and blue dotted lines are lineages only inferred by Gronau et al.8.

The models differ in many evolutionary parameters, including population sizes, divergence times, and

migration rates. In addition, the Schaffner model9 includes exponential population growth due to agriculture

and post-divergence bottlenecks, while the Gronau model8 assumes constant population size.
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Supplementary Figure 13

SWIF(r) is robust to demographic misspecification. We conducted two tests of robustness to

demographic misspecification. On the left, we trained SWIF(r) on simulations from the Schaffner et al.9

demographic model, and tested it on simulations from the Gravel et al.10, which incorporates recent

exponential population expansion. On the right, we trained SWIF(r) on simulations from the Gronau

model8, (including ascertainment modeling), and tested it on simulations from the Schaffner model (see

Supplementary Figure 12). In each case, the black curve represents the performance of SWIF(r) when

trained and tested on simulations from the same model, and the blue curve represents the performance when

misspecified. These results show that misspecification of the demographic model does not have a large effect

on the overall performance of SWIF(r). Note that false positive rate ranges from 0% to 10% here.
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Supplementary Figure 14

SWIF(r) is robust to background selection in simulation. To test the ability of SWIF(r) to

differentiate between selective sweeps and background selection, we generated simulated data for neutral,

sweep, and background selection regions using forward simulator slim11. We followed Messer et al.12 for

simulating background selection: briefly, we simulated genes with 8 exons of 150bp each, separated by

introns of 1.5kb each, and surrounded by 550bp and 250bp 50 and 30 UTRs, respectively. We assumed that

75% of sites in exons and UTRs were functional (subject to purifying selection), that mutations were

codominant, and that fitness effects at different sites were additive. 40% of functional sites were modeled as

strongly deleterious (s = �0.1), and the rest were weakly deleterious with selection strengths ranging

between -0.01 and -0.0001 (see Messer et al.12). For sweep simulations, selection coefficients were drawn from

an exponential distribution with mean 0.03, and sweeps began 10,000 years ago. For all simulations, we

modeled two populations with Ne = 5000, with a population split 40,000 years ago, and we used a mutation

rate of 2.5⇥ 10�8 and recombination rate of 10�8 (also following Messer et al.12). We trained SWIF(r) using

neutral and sweep simulations, and then tested the performance of the resulting classifier in distinguishing

neutral variants from sweep variants (blue), and distinguishing exon/UTR variants from sweep variants

(green). True positive rate is the fraction of simulated sweep variants that are correctly classified, and false

positive rate is the fraction of neutral (blue) or exon/UTR (green) variants that are incorrectly classified as

adaptive. These results indicate that SWIF(r) is completely robust to background selection, which is a

function of the component statistics it uses; Enard et al.13 have shown that iHS and XP-EHH are robust to

background selection, and since deleterious alleles are unlikely to rise to high frequency (indeed, are less

likely to do so than neutral variants), we would expect that FST and �DAF would also be robust.
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Supplementary Figure 15

CMS scores on known targets of selective sweeps. Plots made with CMSviewer

(https://pubs.broadinstitute.org/mpg/cmsviewer/ use date 04/26/2016) show CMS scores14 around

SLC24A5 in CEU and DARC in YRI. In each case, SNPs within the gene (region shown between dotted

lines) are not assigned CMS scores, possibly due to undefined component statistics. Indeed, in our scan for

selection using SWIF(r), iHS and �iHH are undefined at the causal mutation in DARC and throughout

SLC24A5. We were unable to obtain plots for OCA2 and EDAR from CMSviewer on subsequent use dates.
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Supplementary Figure 16

Joint distributions are necessary for localization of previously validated adaptive SNPs. We

note that if we do not learn joint distributions and only univariate distributions, then the AODE reduces

down to a Naive Bayes classifier, which is very similar to CMS15 except that the Naive Bayes classifier

returns a probability. Here we compare SWIF(r) to a Naive Bayes classifier in order to illustrate what is

gained by learning joint distributions. Posterior probabilities based on SWIF(r) and a Naive Bayes classifier

are shown for three genes with validated adaptive SNPs, A) DARC, B) SLC24A5, and C) HERC2. In each

case, SWIF(r) assigns the highest sweep probability in the region to the adaptive SNP (in green filled

diamond, left column), while the Naive Bayes classifier does not. This is most dramatic for DARC, where the

Naive Bayes we implemented classifier assigns the causal SNP a very low probability (in green diamond, right

column, denoted by arrow), and a different SNP (in red open diamond) is assigned the highest probability.

For SLC24A5 and HERC2, the Naive Bayes classifier assigns high probabilities to the causal SNPs, but

cannot distinguish these from other similarly high-scoring SNPs. See Figure 2 caption for citations

concerning functional validation of these adaptive SNPs.
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Supplementary Figure 17

Full selection scan using SWIF(r) in the YRI population (1000 Genomes phase 116). The value

plotted for each position along the genome is the calibrated posterior sweep probability calculated by

SWIF(r), with per-site prior ⇡ = 10�5 (Supplementary Figure 1). Only SNPs with sweep probability greater

than 1% are plotted. Genes containing a single SNP with sweep probability over 50%, or containing multiple

SNPs with sweep probability over 10% are annotated. We note that a paralog of HS3ST2 (HS3ST3A1) has

been linked to malaria resistance17.

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0.8

0.6

0.4

0.2

0.0

1.0

SW
IF

(r)

DARC

ZNF804A

DOCK3,
MAPKAP3,
CACNA2D2

CPSF1, VPS28,
TONSL, SLC39A4

VAV2,
LINC00094,
BRD3,
SARDH

OR51B5

HS3ST2,
USP31

SHPK, CTNS,
EMC6, TRPV1,
ITGAE, GSG2,
TAX1BP3

RBFOX2

27

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 18

Full selection scan using SWIF(r) in the CEU population (1000 Genomes phase 116). The

value plotted for each position along the genome is the calibrated posterior sweep probability calculated by

SWIF(r), with per-site prior ⇡ = 10�5 (Supplementary Figure 1). Only SNPs with sweep probability greater

than 1% are plotted. Genes containing a single SNP with sweep probability over 50%, or containing a cluster

of SNPs with sweep probability over 10% are annotated. In addition to SLC24A5 and OCA2, SWIF(r) also

identifies other canonical targets of positive selection in Europeans, including LCT18, BNC219, and KITLG20.
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Supplementary Figure 19

Full selection scan using SWIF(r) in the CHB and JPT populations (1000 Genomes phase

116). The value plotted for each position along the genome is the calibrated posterior sweep probability

calculated by SWIF(r), with per-site prior ⇡ = 10�5 (Supplementary Figure 1). Only SNPs with sweep

probability greater than 1% are plotted. Genes containing a single SNP with sweep probability over 50%, or

containing a cluster of SNPs with sweep probability over 10% are annotated. We suspect that the abundance

of selection signals in this population is partly a consequence of longer LD blocks in East Asian populations

relative to European and West African populations, and partly a consequence of the fact that the simulation

software cosi9 precludes modeling demographic events during the duration of a sweep, and so very recent

population expansions are not modeled in our simulations; Supplementary Figure 20 shows that the

distributions of component statistics across populations differs more in observed 1000 Genomes data than in

our demographic simulations. We also note that this abundance of signal in East Asian populations has been

previously observed21.
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Supplementary Figure 20

Component statistic distributions for 1000 Genomes data and simulations suggest reasons for

discrepancy in number of SWIF(r) targets across populations. The left column shows histograms

of component statistic values in simulated data using the demographic model from Schaffner et al.9, and the

right column has the corresponding histograms for the 1000 Genomes data. XP-EHH shows greater bias by

population in real data than in simulated data, even after normalizing with population-specific mean and

variance based on simulations, with more negative values in the African population than in the other two.

iHS shows a similar pattern, despite having been designed to minimize this bias4. The distributions of

�DAF in real data also deviate substantially from simulations; the East Asian population in particular has

values that are skewed higher than in the other two populations, possibly as a result of increased genetic

drift22. These differences may be a consequence of the fact that our simulations did not include very recent

population expansions, because of limitations of the simulation software cosi regarding the overlap of

selective sweeps and demographic events9. Most of these differences likely have the effect of leading to an

increase in the number of predicted sweep sites in East Asia, and a decrease in West Africa, as we observe in

our scan using the 1000 Genomes data, and as has been observed previously21. Note that x- and y-axis limits

vary for each panel.
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Supplementary Figure 21

Demographic model used in analyses of the ‡Khomani San. Effective population sizes, coalescent

times, and migration rate and times used for simulating haplotype data in analyses including the ‡Khomani

San, adapted from Gronau et al.8. We adapted migration rates from Uren et al.23: a one-generation pulse

from Europe with rate 0.197/chromosome/generation 7 generations ago, and a one-generation pulse from

Yoruba with rate 0.227/chromosome/generation 14 generations ago (both shown with arrows in this

diagram).
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Supplementary Figure 22

Site Frequency Spectrum of observed array data and simulated data with ascertainment for

‡Khomani San. After ascertainment on simulated haplotypes, we see fairly good agreement in these site

frequency spectra, except for the abundance of very low-frequency derived alleles in simulations. We believe

this to be because of standard quality filtering steps taken with array data that are not modeled in the

ascertainment process. This difference should not affect the output of SWIF(r) for two reasons: first, we only

consider derived mutations in the human lineage as potential sweep targets; and second, SNPs with very low

derived allele frequencies are unlikely to register strong signatures of adaptive evolution. Supplementary

Figure 23 shows that low-frequency SNPs do not affect the summary statistics used in our implementation of

SWIF(r), including haplotype-based statistics like iHS.
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Supplementary Figure 23

Component statistic distributions for ‡Khomani San simulations and observed data. Despite

an excess of very low-frequency derived alleles in the simulated data (Supplementary Figure 22), the

distributions of component statistics in simulations and in observed data are quite similar. We are therefore

confident that this discrepancy does not inhibit the ability of SWIF(r) to detect selection in this population.
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Supplementary Figure 24

Full selection scan results from analyses of 45 ‡Khomani San samples. The value plotted for each

position along the genome is the calibrated posterior sweep probability computed by SWIF(r), with per-site

prior ⇡ = 10�4 (Supplementary Figure 2) in order to detect signals of relatively old sweeps given the high

long-term Ne of the ‡Khomani San. Only SNPs with posterior sweep probability greater than 1% are plotted.

All genes containing at least one SNP with posterior sweep probability over 50% are labeled below the plot,

and all variants within those genes are colored to match the gene label. A subset of these results are shown

in Figure 3B; genes highlighted in that figure are denoted by open circles.
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Supplementary Figure 25

Genome-wide univariate and joint distributions of component statistics used to identify

adaptive mutations in the ‡Khomani San, highlighting variants classified by SWIF(r) as

adaptive. Distributions along the diagonal show the univariate empirical distributions for each component

statistic used when applying SWIF(r) to genomic data from the ‡Khomani San, in gray for the whole

genome, and in pink for sites classified as adaptive with a posterior sweep probability over 50%. Both

histograms in each plot are normalized, with the genome-wide distributions made up of 628,032 sites for

�DAF and FST, 624,834 for XP-EHH, and 538,928 for iHS. XP-EHH and iHS are calculated at fewer sites

because the component statistics are undefined in cases where �DAF and FST are well-defined. Off-diagonal

plots show the joint distributions of each pair of component statistics, again with the empirical genome-wide

distribution in gray with a log scale shown in the colorbar, and the classified sweep sites in pink (SWIF(r)

posterior probability � 0.5). Any given joint distribution is plotted for only those sites at which both

component statistics are defined.
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Supplementary Figure 26

Univariate and joint distributions of component statistics used to identify adaptive mutations

in the ‡Khomani San, highlighting SWIF(r) signals in MHC. Distributions along the diagonal show

the univariate empirical distributions for each component statistic used when applying SWIF(r) to genomic

data from the ‡Khomani San, in gray for the whole genome, and in green for sites within MHC classified as

adaptive with a posterior sweep probability over 50%. Off-diagonal plots show the joint distributions of each

pair of component statistics, again with the empirical genome-wide distribution in gray with a log scale

shown in the colorer, and the classified MHC sites in green. Any given joint distribution is plotted for only

those sites at which both component statistics are defined.
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Supplementary Figure 27

Haplotype network for ADIPOQ gene region in the ‡Khomani San dataset. The median-joining

haplotype network24 is built using the Network software package v4.6.1.1 (fluxus-engineering.com) from

combined exome and SNP array data for the ‡Khomani San population. Haplotypes span 17 SNPs over

⇠4kb from chr3:186571486-186575536, an interval containing ADIPOQ, pruned to avoid recombination

hotspots. Nodes represent specific haplotypes and are annotated with the number of times each haplotype

appears in the population. Node sizes are scaled relative to the number of individuals represented. Nodes

without labels appear once in the population. Edge lengths are proportional to the number of mutations that

distinguish the two nodes on either end, and starred edges are those that are defined by the missense

mutation at rs113716447. Nodes are colored by whether the haplotype carries the ancestral or derived allele

of that gene. Although the available data for this gene region is limited, this network is consistent with

selection on the derived allele.
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Supplementary Figure 28

Knowledge of joint distributions allows for identification of SIDT2 as a target of selection in

the ‡Khomani San. The SNP identified by SWIF(r) as the site of an adaptive mutation in SIDT2,

rs11605217 (posterior sweep probability 61%), had the following values for each summary statistic: FST =

2.456, XP-EHH = 3.171, iHS = -2.263, �DAF = 1.935. If we do not learn joint distributions and instead

only learn univariate distributions (resulting in a Naive Bayes classifier), the posterior probability at this

SNP is only 30%. While these statistics individually show moderate evidence for a sweep, their accumulated

evidence in a Naive Bayes framework is not enough to overcome a low prior probability, and FST and �DAF

in particular land well within normal limits for their respective neutral distributions (top). However, when

we look at the pairwise joint distributions (bottom), in each case, the mutation in SIDT2 lands within or

nearby the sweep distribution, and relatively far from the neutral distribution.
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Supplementary Figure 29

SWIF(r)’s framework can easily incorporate new statistics for increased power. A major

feature of SWIF(r) is that it is completely generalizable to any set of component statistics, which means that

SWIF(r) can take immediate advantage of more powerful statistics as they are designed. One such statistic,

iSAFE 25 (preprint available at https://www.biorxiv.org/content/early/2017/10/01/139055), has proven

to be much more powerful than current component statistics at localizing the specific site of a beneficial

mutation. By incorporating iSAFE as a component statistic, the overall performance of SWIF(r) improves

and exceeds that of iSAFE, because SWIF(r) leverages the joint information of iSAFE with other component

statistics.
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Supplementary Figure 30

SWIF(r) also detects signatures of soft sweeps from standing variation, despite being trained

on hard sweep simulations. Neutral and soft sweeps simulations were generated using msms26 with

parameters designed to match the Schaffner demographic model9 (command line code: java -jar

msms/msms.jar -N 10000 -ms 360 1 -I 3 120 120 120 -t 600 -r 600 -n 1 2.4 -n 2 0.77 -n 3 0.77

-m 1 2 1.28 -m 2 1 1.28 -m 1 3 0.32 -m 3 1 0.32 -en 0.049975 2 0.00247491582263 -en 0.049975 3

0.000720979721217 -ej 0.05 3 2 -en 0.05 2 0.77 -en 0.087475 1 0.00622496653265 -en 0.087475 2

0.00056286521273 -ej 0.0875 2 1 -en 0.0875 1 2.4 -en 0.425 1 1.25), with the initial frequency of the

beneficial allele set to 0.02 for soft sweep simulations. A) ROC curves are generated as in Figure 1, with

false positive rate being the fraction of neutral variants incorrectly classified as adaptive, and true positive

rate being the fraction of adaptive mutations originating as a standing variant (soft sweep site) that are

correctly classified as such. As might be expected, population differentiation component statistics perform

well at distinguishing between neutrality and soft sweeps, while performance of iHS, XP-EHH, and �iHH

suffers dramatically at this task relative to the task of distinguishing between neutrality and hard sweeps

(inset panel). Nonetheless, SWIF(r) maintains power to detect the genomic signatures of adaptive standing

variants. B) Although the initial frequency of the beneficial mutations is 2% in these simulations, the vast

majority of these simulations result in soft sweeps in the population of interest at the time of sampling, with

more than one (and in some cases many) of the original beneficial mutation origins still present at the time

of sampling. In approximately 1% of our simulations, we observe a “hardening” of the sweep (i.e. only one

mutation origin is present at the time of sampling). Note that we do not include any simulations in which

the beneficial mutation is lost.
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Supplementary Figure 31

SWIF(r) extends trivially to multi-class classification. In addition to neutral simulations, SWIF(r)

was trained on simulations of “recent” sweeps in the ‡Khomani San (5-30kya), and “older” sweeps

(30-60kya). Training SWIF(r) on these three classes (“neutral”, “recent”, and “older”) merely requires

computing three likelihoods instead of two (see Equation 2), with all three included in the denominator of

Equation 3. Posterior probabilities can then be computed for each of the three classes. We classified loci by

assigning them to the class with the highest posterior probability. Values in the confusion matrix are the

conditional probability of classifying a site in the predicted class, given that the site belongs to the true class.

Priors are 0.9 for neutral, and 0.05 for each of the two adaptive classes. In this case, the component statistics

do not carry enough power to reliably distinguish between these two sweep timings, likely because of

confounding effects of sweep strength and present-day allele frequency. It is plausible that by incorporating

other component statistics, SWIF(r) may be able to achieve this timing inference.
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Supplementary Figure 32

Using Gaussian mixture models to approximate joint likelihoods of selection statistics. The

joint distributions of iHS and �DAF under neutral and sweep scenarios constructed with A) a 30⇥30 binned

histogram approach, and B) Gaussian mixture models. The mixture models adequately smooth the

distributions while maintaining their general shape and modality, thereby avoiding over-fitting.
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Supplementary Figure 33

Effect of undefined statistics on classification power. In simulation, we gathered all sites with no

missing statistics, and then calculated SWIF(r) sweep probabilities for the complete set of statistics, and

with each statistic missing. The ROC curves show the effect of each of these missing statistics on the power

of SWIF(r). XP-EHH, FST, and �DAF all have very little effect, but a missing value for iHS does result in

lower power to distinguish adaptive mutations from neutral mutations. This differential loss of power is not

surprising, since iHS is extremely useful for identifying incomplete sweeps, while XP-EHH, �DAF, and FST

can more easily compensate for each other, as they are all most powerful for sweeps that are complete in the

population of interest (Supplementary Figure 7).
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Supplementary Figure 34

Illustration of step 2 of ascertainment modeling algorithm. For modeling ascertainment in the SNP

array used to sequence the ‡Khomani San individuals in our selection scan, we defined five intervals that

span the range of average count-per-bin of 40⇥ 40⇥ 40 SFS space, from less than 0.25 in blue, to greater

than 0.7 in red. The set of bins defined by a given color are the “SFS regions” referred to in the Online

Methods. The five plots are shown because lower-count regions tend to conceal the higher-count regions in

the two-dimensional projection.

C
E
U

0

40

CHB
+JP

T

0

40

Y
R
I

0
4
0

C
E
U

0

40

CHB
+JP

T

0

40

Y
R
I

0
4
0

C
E
U

0

40

CHB
+JP

T

0

40

Y
R
I

0
4
0

C
E
U

0

40

CHB
+JP

T

0

40
Y
R
I

0
4
0

C
E
U

0

40

CHB
+JP

T

0

40

Y
R
I

0
4
0

[0.7,∞)

Average counts per bin:

[0,0.25)[0.55,0.7)

[0.25,0.4)

[0.4,0.55)

48

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 1

Undefined statistics in 1000 Genomes. Fraction of variant sites, out of 11 million, for which each of

four component statistics are undefined within each of three populations.

Population FST XP-EHH iHS �DAF
CEU 0.5% 0.2% 77.5% 0%

CHB+JPT 0.5% 0.3% 78.9% 0%
YRI 0.5% 0.3% 67.4% 0%

Supplementary Table 2

Selective sweep targets identified by SWIF(r) in the 1000 Genomes phase 1 dataset.

Spreadsheet contains all SNPs that have a posterior sweep probability greater than 10% for each of the three

populations. SNPs are identified by rsid (column A), chromosome (B), and position in genome build hg19

(C). The uncalibrated posterior sweep probability calculated by SWIF(r) is shown in column D, the

calibrated probability using isotonic regression is shown in E, and the calibrated value using smoothed

isotonic regression is in F (Supplementary Figure 1, Supplementary Figure 3). SNPs are annotated by gene

(G), mutation type (H), and genes within 100kb (I).

Supplementary Table 3

Support for positive selection in genes identified by SWIF(r) in the 1000 Genomes phase 1

dataset. For each of the three populations (CEU, CHB+JPT, YRI), we list every gene containing a SNP

with posterior sweep probability over 10% (column A), the number of such SNPs (B), and the maximum

sweep probability over all such SNPs (C). The citations in the remaining columns are studies in which the

gene was implicated in a positive selection scan in the population of interest. Information about these

citations can be found in the last sheet of this spreadsheet.
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Supplementary Table 4

False Discovery and Positive Predictive Value rates for SWIF(r) predictions in the 1000

Genomes dataset. Estimating empirical false discovery rates in observed genomic data requires defining a

set of neutrally evolving genomic sites, which is extremely difficult to do. We use two proxies for defining

these sites: first, we use “non-conserved non-coding” sites, defined as those lying at least 2kb away from

annotated genes, and having a phastcons conservation score of zero, following Hernandez et al.27. We

consider this to be an extremely permissive definition, as sites with low conservation scores may well be

tagging nearby variants with higher scores that may or may not be present in the genotype dataset, and

intergenic regions contain many regulatory and functional elements. The second proxy we use is a set of 15

putatively neutral regions comprising ⇠216kb identified by Gazave et al.28 using a range of criteria

indicating neutrality.

For the first proxy, we calculated the false positive rate among these sites at different sweep probability

thresholds, then extended this false positive rate genome-wide to obtain a prediction for the total number of

false positives that would be expected in a genome scan in each population of interest (YRI, CEU,

CHB+JPT). Dividing the number of predicted false positives by the total number of sites that SWIF(r)

identifies above a given threshold in each population gives us an estimate of the false discovery rate (FDR),

and inversely of the positive predictive value (PPV) of SWIF(r). We find in general that we predict lower

FDR at higher posterior probability cutoffs, indicating that high-probability SNPs are more likely to be true

signals than lower-probability SNPs. The last column contains the fraction of total predictions made by

SWIF(r) that we estimate to be true, based on these values. For YRI, we only show results up to a sweep

probability threshold of 0.5 because we only observe one false positive at this threshold, and we thus lack the

resolution to estimate FDR or PPV for higher thresholds. Again, we note that some SNPs labeled as false

positives by this scheme may nonetheless tag nearby selective sweeps, and we consider these false discovery

rates to be very conservative.

Using the much stricter definition of neutrally evolving sequence developed by Gazave et al.28, we see no

false positives in any of the three populations, even at a sweep probability threshold of 10%.
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Population Sweep Probability Threshold FDR PPV Estimated True/Total
YRI 0.5 0.514 0.486 7/15
CEU 0.5 0.421 0.579 138/238

0.6 0.469 0.531 96/181
0.7 0.459 0.541 91/168
0.8 0.504 0.496 76/153
0.9 0.367 0.633 80/126
0.95 0.350 0.650 71/110
0.98 0.339 0.661 60/91

CHB+JPT 0.5 1.00 0.00 0/342
0.6 0.801 0.199 46/231
0.7 0.806 0.194 39/201
0.8 0.878 0.122 19/158
0.9 0.461 0.539 63/117
0.95 0.308 0.692 69/100
0.98 0.214 0.786 72/58

Supplementary Table 5

Selection coefficients for simulations. Selection coefficients for each sweep scenario are fully determined

by the start time of the sweep (all sweeps end at the time of sampling), the number of years per generation,

the final allele frequency of the beneficial allele, and the effective population size for the population within

which the sweep occurs. As in Schaffner et al.9, Ne is 24000 for West Africa (YRI), 7700 each for Europe

(CEU) and East Asia (CHB and JPT), and as in Gronau et al.8, Ne is 21000 for the ‡Khomani San. The

demographic model we use for the 1000 Genomes populations (YRI, CEU, CHB, JPT) assumes 20

years/generation9, while the one we use for the ‡Khomani San study assumes 25 years/generation8.
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Start Time Final Allele
Frequency

Selective
Strength
(Europe,
East Asia)

Selective
Strength
(West Africa)

Selective
Strength
(‡Khomani
San)

5kya-present 0.2 0.033 0.0376 0.0463
0.4 0.0369 0.0415 0.0512
0.6 0.0402 0.0447 0.0553
0.8 0.0441 0.0487 0.0602
1 0.0771 0.0862 0.1065

10kya-present 0.2 0.0165 0.0188 0.0231
0.4 0.0185 0.0207 0.0256
0.6 0.0201 0.0224 0.0276
0.8 0.0221 0.0243 0.0301
1 0.0386 0.0431 0.0532

15kya-present 0.2 0.011 0.0125 0.0154
0.4 0.0123 0.0138 0.0171
0.6 0.0134 0.0149 0.0184
0.8 0.0147 0.0162 0.0201
1 0.0257 0.0287 0.0355

20kya-present 0.2 0.0083 0.0094 0.0116
0.4 0.0092 0.0104 0.0128
0.6 0.01 0.0112 0.0138
0.8 0.011 0.0122 0.0150
1 0.0193 0.0216 0.0266

25kya-present 0.2 0.0066 0.0075 0.0093
0.4 0.0074 0.0083 0.0102
0.6 0.008 0.0089 0.0111
0.8 0.0088 0.0097 0.0120
1 0.0154 0.0172 0.0213

30kya-present 0.2 0.0057 0.0065 0.0080
0.4 0.0064 0.0072 0.0088
0.6 0.0069 0.0077 0.0095
0.8 0.0076 0.0084 0.0103
1 0.0133 0.0149 0.0184

41kya-36kya 0.2 0.0462
0.4 0.0512
0.6 0.0553
0.8 0.0601
1.0 0.1064

46kya-36kya 0.2 0.0231
0.4 0.0256
0.6 0.0276
0.8 0.0301
1.0 0.0532

52kya-47kya 0.2 0.0463
0.4 0.0512
0.6 0.0553
0.8 0.0602
1.0 0.1065

57kya-47kya 0.2 0.0231
0.4 0.0256
0.6 0.0276
0.8 0.0301
1.0 0.0532
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Supplementary Table 6

False Discovery and Positive Predictive Value rates for SWIF(r) predictions in the ‡Khomani

dataset. Estimating empirical false discovery rates in observed genomic data requires defining a set of

neutrally evolving genomic sites, which is extremely difficult to do. We use two proxies for defining these

sites: first, we use “non-conserved non-coding” sites, defined as those lying at least 2kb away from annotated

genes, and having a phastcons conservation score of zero, following Hernandez et al.27. We consider this to

be an extremely permissive definition, as sites with low conservation scores may well be tagging nearby

variants with higher scores that may or may not be present in the genotype dataset, and intergenic regions

contain many regulatory and functional elements. The second proxy we use is a set of 15 putatively neutral

regions comprising ⇠216kb identified by Gazave et al.28 using a range of criteria indicating neutrality.

For the first proxy, we calculated the false positive rate among these sites at different sweep probability

thresholds, then extended this false positive rate genome-wide to obtain a prediction for the total number of

false positives that would be expected in a genome scan. Dividing the number of predicted false positives by

the total number of sites that SWIF(r) identifies above a given threshold in the ‡Khomani San gives us an

estimate of the false discovery rate (FDR), and inversely of the positive predictive value (PPV) of SWIF(r).

The last column contains the fraction of total predictions made by SWIF(r) that we estimate to be true,

based on these values. For YRI, we only show results up to a sweep probability threshold of 0.5 because we

only observe one false positive at this threshold, and we thus lack the resolution to estimate FDR or PPV for

higher thresholds. As in Supplementary Table 4, we note that some SNPs labeled as false positives by this

scheme may nonetheless tag nearby selective sweeps, and we consider these false discovery rates to be very

conservative.

Using the much stricter definition of neutrally evolving sequence developed by Gazave et al.28, we see no

false positives in any of the three populations, even at a sweep probability threshold of 10%.

Sweep Probability Threshold FDR PPV Estimated True/Total
0.5 0.563 0.437 47/108
0.6 0.615 0.385 35/90
0.7 0.560 0.440 35/79
0.8 0.439 0.561 35/63
0.9 0.474 0.526 18/35
0.95 0.572 0.428 12/29
0.98 0.251 0.749 16/22
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Supplementary Table 7

Adaptive loci identified by SWIF(r) in the ‡Khomani San array dataset. Spreadsheet contains all

SNPs that have posterior sweep probability greater than 10% in the ‡Khomani array dataset23. SNPs are

identified by rsid (column A), chromosome (B), and position in hg19 (D). The derived allele frequency of the

SNP in the ‡Khomani is in column C. The uncalibrated posterior sweep probability calculated by SWIF(r) is

in column E, the calibrated probability using isotonic regression is shown in F, and the calibrated value using

smoothed isotonic regression is in G (Supplementary Figure 2, Supplementary Figure 3). The un-calibrated

posterior sweep probability is broken down into posterior probabilities for “recent” (<30kya) and “ancient”

(36-47kya) in columns H and I, respectively. SNPs are also annotated by gene (J), mutation type (K), and

genes within 100kb (L).

Supplementary Table 8

Exome data from 45 ‡Khomani San individuals reveals variants that have functional

consequence and large allele frequency differences relative to other worldwide populations

within SWIF(r)-identified genes involved in metabolism and obesity. Spreadsheet contains SNPs

of interest in exome data (Martin et al.29) within genes highlighted in Figure 3B. Each SNP is annotated

with rsid and chromosome position in genome build hg19. The variant type was determined using the UCSC

Genome Browser30, and frequencies in worldwide populations were taken from phase 3 of the 1000 Genomes

project16 where available, otherwise, frequencies were taken from the Human Genome Diversity Project

and/or the ExAC browser31.

Supplementary Note

cosi demographic parameter file for 1000 Genomes dataset

length 1000000

mutation_rate 1.5e-8

recomb_file <filename>

gene_conversion_rate 4.5e-9

pop_define 1 european

pop_define 2 asian

pop_define 3 african
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#initial sizes and sample sizes

pop_size 1 7700

sample_size 1 120

pop_size 2 7700

sample_size 2 120

pop_size 3 24000

sample_size 3 120

#Migration start

pop_event migration_rate "afr to eur migration" 3 1 1505 .000032

pop_event migration_rate "eur to afr migration" 1 3 1504 .000032

pop_event migration_rate "afr to as migration" 3 2 1503 .000008

pop_event migration_rate "as to afr migration" 2 3 1502 .000008

#Migration end

pop_event migration_rate "afr to eur migration" 3 1 1996 0

pop_event migration_rate "eur to afr migration" 1 3 1995 0

pop_event migration_rate "afr to as migration" 3 2 1994 0

pop_event migration_rate "as to afr migration" 2 3 1993 0

#Recent Bottlenecks:

pop_event bottleneck "african bottleneck" 3 1997 .008

pop_event bottleneck "asian bottleneck" 2 1998 .067

pop_event bottleneck "european bottleneck" 1 1999 .02

#Population splits:

pop_event split "asian and european split" 1 2 2000

pop_event split "out of Africa" 3 1 3500

#Out-of-africa bottleneck

pop_event bottleneck "OoA bottleneck" 1 3499 .085

#Ancestral expansion
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pop_event change_size "african pop size" 3 17000 12500

cosi demographic parameter file for ‡Khomani dataset

length 1000000

mutation_rate 1.5e-8

recomb_file <filename>

gene_conversion_rate 4.5e-9

pop_define 1 european #E

pop_define 2 han_chinese #H

pop_define 3 yoruban #Y

pop_define 4 khomani #K

#initial sizes and sample sizes

pop_size 1 9700

sample_size 1 164

pop_size 2 5800

sample_size 2 372

pop_size 3 17800

sample_size 3 174

pop_size 4 21000

sample_size 4 90

#population size changes

pop_event change_size "H" 3 1240 3500

pop_event change_size "HE" 2 1441 1200

pop_event change_size "HEY" 3 1881 11500

pop_event change_size "HEYK" 4 5241 8700

#migration to Khomani

pop_event migration_rate "YRI to Khomani migration" 3 4 14 0.227

pop_event migration_rate "YRI to Khomani migration end" 3 4 15 0

pop_event migration_rate "CEU to Khomani migration" 1 4 6 0.179
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pop_event migration_rate "CEU to Khomani migration end" 1 4 7 0

#population splits:

pop_event split "CE" 2 1 1440

pop_event split "CEY" 3 2 1880

pop_event split "CEYK" 4 3 5240

Selection Statistic Calculations For each segregating site within the neutral simulations, and for the

adaptive site in sweep simulations, we computed component selection statistics (FST, XP-EHH, iHS, �iHH,

�DAF) with respect to a population of interest (the population undergoing a sweep in sweep simulations,

and a population chosen uniformly at random in the case of neutral simulations), ignoring sites for which the

derived allele frequency in the population of interest was zero. FST for each of the pairwise population

comparisons involving the population of interest was computed as in Weir et al.32, and then averaged

together. iHS was computed with selscan33. �iHH was calculated as defined in Grossman et al.15:

�iHH|iHHancestral-iHHderived|, where iHH is the integrated haplotype homozygosity defined in Voight et al.4.

�DAF was also calculated as defined in Grossman et al.15: �DAF= DAF1 � 1
2 (DAF2 +DAF3) where DAF1

is the derived allele frequency in the population of interest, and DAF2 and DAF3 are the derived allele

frequencies in the other two populations. XP-EHH was computed with a minor alteration of selscan in

which EHH is computed as in Wagh et al.34 (see “Adaptation of selscan for better performance on

incomplete sweeps”), and XP-EHH values were also normalized with population-specific mean and standard

deviation, learned from neutral simulations, to correct for inherent biases based on linkage disequilibrium

structure.

Small adjustments were required for computing these component statistics using the ‡Khomani San

simulations and genotype array data23. In these analyses, there are three outgroups (western Africa, Europe,

and eastern Asia) instead of two: XP-EHH was defined as the maximum XP-EHH value across the three

comparisons; and �DAF was defined as

DAF‡Khomani San � 1
3 (DAFEuropean +DAFEast Asian +DAFWest African). �iHH was not included in these

analyses (see “Removal of �iHH from analyses of real data”).

Results for each component statistic were normalized within 1MB regions, with iHS and �iHH being

normalized first within frequency bins as in Voight et al.4. For the CMS, we learned one-dimensional

probability distributions for each (scenario, component statistic) pair in 60 evenly spaced bins, with

minimum and maximum values below, chosen to encompass the full range of values observed across all

neutral and sweep simulations:
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component statistic minimum maximum
mean FST �1 9

maximum XP-EHH �3 10
iHS �5 4

�iHH �3 10
�DAF �5 8

When computing statistics for either 1000 Genomes or ‡Khomani San genotype data, component

statistics were normalized genome-wide, following Grossman et al.14.

Adaptation of selscan33 for better performance on incomplete sweeps XP-EHH is defined as

log iHH1
iHH2

, where iHH1 and iHH2 are “integrated haplotype homozygosities” for the population of interest and

a reference population respectively. iHH is computed as the integral under the EHH curve, where EHH at a

distance x from the core SNP is canonically computed as follows:

EHH =

PG
i=1

�ni

2

�
�N
2

�

where N is the total number of chromosomes, G is the number of distinct haplotypes, and ni is the number

of chromosomes of distinct type i. In the case of incomplete sweeps from a de novo mutation, this definition

somewhat counterintuitively leads to negative values of XP-EHH. This is due to the fact that the numerator

has an upper bound of
�Na

2

�
+
�NA

2

�
, where Na and NA are the number of chromosomes that have each of the

two possible alleles at the core SNP. In the reference population, there is a larger upper bound of
�N
2

�
, leading

to a larger value of iHH for the reference population than for the population with the adaptive mutation.

Following Wagh et al.34, we instead define EHH as follows:

EHH =

PG
i=1

�ni

2

�
�Na

2

�
+
�NA

2

�

When XP-EHH is defined this way, it is far more powerful for detecting sweeps, and does not return negative

values for incomplete sweeps. We modified selscan’s source code to implement this change. These

modifications can be found at https://github.com/lasugden/selscan (original software at

https://github.com/szpiech/selscan).

Removal of �iHH from analyses of real data While other statistics are distributed approximately

normally after normalization, �iHH maintains a very long tail (1-2 orders of magnitude longer than the tails

of other statistics), which is exacerbated by normalization. This problem is compounded by the fact that

�iHH is an absolute value, leading to high scores even when the ancestral haplotype is longer than the
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derived haplotype. In Supplementary Figure 5, we show the distribution of �iHH and iHS values for sites

with SWIF(r) sweep probability � 50% in the 1000 Genomes dataset using SWIF(r) with �iHH included as

a component statistic. Note the scale of both statistics; while iHS ranges from -4 to 4, �iHH ranges from 0

to 100 (in simulations, the probability mass for �iHH lies mostly below 5, and entirely below 14). The plot

shows that �iHH can be extremely high, even for values of iHS that are positive and thus provide evidence

against selective sweeps. Furthermore, the more negative iHS values correspond to more moderate �iHH

values, and not the most extreme ones, thus leading to a large number of false positives. For these reasons,

we removed �iHH as a component statistic for analysis of simulations and genotype data from the 1000

Genomes and the ‡Khomani San.

Processing of 1000 Genomes Data We performed a genome-wide scan for selective sweeps in four

populations (YRI, CEU, CHB, JPT) using phase 1 of the 1000 Genomes Project (May 2011 release), with

CHB and JPT grouped together and representing East Asia. We filtered the samples to omit children from

parent-child pairs and trios (NA07048, NA10847, and NA10851 from CEU and NA19129 from YRI), and we

only analyzed single-nucleotide variants. We also removed loci that were monomorphic within the filtered set

of unrelated individuals across the four populations analyzed. We used ancestral allele information provided

by the 1000 Genomes Project.

Calculation of migration rates from YRI and CEU to ‡Khomani San Uren et al.23 use the

software package Tracts35 to infer the magnitude of genetic contributions to present-day ‡Khomani San

individuals from three source populations: KhoeSan (data presented in Uren et al.23 and Schuster et al.36),

LWK (1000 Genomes), and CEU (1000 Genomes). In our simulations, we use YRI as a proxy population for

LWK (i.e. migration rates learned in Uren et al. from LWK are implemented in our demographic model as

migration rates from YRI), as both are Bantu-speaking populations, which all originate from west central

Africa. Therefore both populations provide an appropriate source for the Bantu ancestry in the ‡Khomani

San. The migration rates reported by the Tracts software represent the proportion of the target population

that is replaced at a given generation by a source population, starting in this case 14 generations ago. Prior

to 14 generations ago, we assume that the ‡Khomani San population is made up of 100% KhoeSan ancestry,

and we converted the Tracts migration rates into migration rates from only two source populations (YRI and

CEU) into the third (‡Khomani San). We achieved this by going through an intermediate step in which we

calculated a matrix of ancestry proportions at each generation. The table below shows the tracts output

from Uren et al.23 (migration rates mS , mY , and mC at each generation from 14 generations ago to present.

We then calculate the ancestry proportions at each generation, initializing at generation 14 (mY and mS at
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generation 14 add to 1, indicating that the ancestry proportions at this time point are equal to the migration

rates), and working backwards. If we define mi
S ,m

i
Y ,m

i
C to be the migration rates at generation i in this

3-source population model, and aiS , a
i
Y , a

i
C to be the ancestry proportions at generation i, then we can

calculate these by the following recursive formulas, where (1�mi
S �mi

Y �mi
C) represents the fraction of the

population not being replaced at the given generation.

aiS = (1�mi
S �mi

Y �mi
C)a

i+1
S +mi

S

aiY = (1�mi
S �mi

Y �mi
C)a

i+1
Y +mi

Y

aiC = (1�mi
S �mi

Y �mi
C)a

i+1
C +mi

C

The entries in the following table for aS , aY , and aC are calculated using these formulas. Finally, we need

to convert these ancestry proportions into migration rates for a model with two population sources (YRI and

CEU). For simplicity, we assume a one-generation migration pulse from YRI at generation 14, and a

one-generation migration pulse from CEU at generation 7. We note that in order to achieve a present-day

CEU ancestry proportion of 0.179, the CEU migration rate must be 0.179 (the migration rate is again

defined as the fraction of the population being replaced by the source population). Finally, to achieve a

present-day YRI ancestry proportion of 0.186, the migration rate from YRI must be 0.227, since

(1� 0.179)⇥ 0.227 = 0.186 (this accounts for the proportion of YRI ancestry that gets replaced by CEU

ancestry in generation 7).

generation mS mY mC aS aY aC
1 0 0 0 0.635 0.186 0.179
2 0 0 0 0.635 0.186 0.179
3 0 0 0 0.635 0.186 0.179
4 0.240 0.031 0 0.635 0.186 0.179
5 0.052 0.005 0 0.542 0.212 0.246
6 0 0 0.151 0.520 0.219 0.261
7 0 0 0.130 0.612 0.258 0.130
8 0 0 0 0.703 0.297 0
9 0 0 0 0.703 0.297 0
10 0 0 0 0.703 0.297 0
11 0 0 0 0.703 0.297 0
12 0 0 0 0.703 0.297 0
13 0.527 0.222 0 0.703 0.297 0
14 0.703 0.297 0 0.703 0.297 0

Generation of exome and array data in San population ‡Khomani San individuals were sampled in

2006 in Upington, South Africa and neighboring villages. Institution Review Board (IRB) approval for
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assessment of genetic diversity and ancestry inference was obtained from Stanford University [Protocol

13829] and Stony Brook University [Protocol 727494-5]. Still-living individuals were re-consented in 2011

(IRB approved from Stanford University and Stellenbosch University, South Africa). ‡Khomani N|u-speaking

individuals, local community leaders, traditional leaders, non-profit organizations and a legal counselor were

all consulted about the project aims before DNA collection commenced. All individuals initially orally

consented to participate in the project in the presence of a witness fluent in the native language, and were

re-consented with written consent. DNA was collected via saliva (Oragene kits). Ancestry and genotyping

details of individuals included here can be found in Uren et al.23.

90 KhoeSan DNA samples were captured with 3 exome platforms: 74 samples on an Agilent SureSelect

Human All Exon V2 44Mb, 8 samples on an Agilent SureSelect Human All Exon 50Mb, and 8 samples on an

Agilent SureSelect Human All Exon V4+UTRs 71Mb (Martin et al.29). Illumina short-read sequencing data

were jointly processed according to the best practice pipeline of the 1000 Genomes Project16. Reads were

aligned to the hg19 reference genome using bwa-mem 0.7.1037. The resultant BAM files were then sorted and

marked for duplicate reads using the Picard v1.92 toolkit (http://broadinstitute.github.io/picard/).

The following programs were then run with GATKv3.2.238: RealignerTargetCreator, IndelRealigner,

BaseRecalibrator, PrintReads, HaplotypeCaller, GenotypeGVCFs, and VariantRecalibrator, and

ApplyRecalibration. During the HaplotypeCaller step, we filtered reads to include only the Agilent capture

regions ± 100 bp of padding.

For phasing, exome data were merged with Illumina SNP arrays for each of 87 individuals to improve

accuracy by providing a broader SNP scaffold. After merging and filtering to 5% genotyping missingness

using vcftools, 759,586 SNPs remained. Data were phased using a two-step phasing process as follows: first,

25 related individuals, consisting of 3 trios and 8 duos, were used to create a family reference panel; after

phasing unrelated individuals using default protocols in SHAPEIT239, pedigree information was used via

duo-trio phasing with duoHMM40 to inform the phasing of the unrelated individuals in a second step,

improving phasing accuracy overall by correcting phase switch errors.

‡Khomani San individuals were genotyped on two SNP array platforms: the Illumina OmniExpress and

OmniExpressPlus chips. Only SNPs shared between these two platforms23 were retained for investigation of

adaptive sites, in order to avoid allele frequency biases related to platform choice; there is broad overlap

between these arrays, with the OmniExpressPlus SNP array containing an additional 250k sites. 86

individuals were genotyped and were phased using only pedigree information. This pedigree-phased dataset

provides the highest possible SNP density for these individuals and, after quality control filtering, included

just under 650k SNPs.

For the analyses presented here, we selected 45 unrelated ‡Khomani San individuals with low rates of
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recent European and Bantu-derived admixture from the phased datasets. These individuals were identified

by running ADMIXTURE v1.241 on a joint dataset of Illumina SNP arrays consisting of diverse populations

of individuals23 and selecting those KhoeSan individuals with >90% Khoesan ancestry at K = 6. Six was

determined to be the K value that best fit the data, using both cross-validation procedures and cluster

appearance.

SWIF(r) signals associated with muscle-based phenotypes Both MYH15 and TTN have been

associated with obesity and metabolism phenotypes (Table 1). Additionally, both genes encode striated

muscle. MYH15 has been associated with coronary heart disease42, and TTN mutations have been associated

with cardiomyopathy43, with RNAseq data indicating that expression is highest in heart tissue44.

Associations for MYH15 and TTN with the obesity and metabolism phenotype may be a consequence of

these other functions and associations. Exome support for selection acting within these genes is given below;

allele frequencies for populations other than the ‡Khomani San refer to frequencies found in the 1000

Genomes phase 3 dataset16.

TTN (titin): We find 6 missense mutations within 50kb of the SWIF(r) signal; in itself, this may not be

unusual given the exon richness in this gene. However, many of the mutations have a population frequency of

approximately 50% in the Khomani San, while being absent or having much lower frequencies in other

worldwide populations. For example, the derived asparagine to isoleucine (rs11900987) mutation is conserved

amongst mammals30, <1% in other human populations, but present at 48% in our San sample. Other

mutations segregating at similar frequency within 50kb suggest that a high frequency haplotype is under

adaptive evolution the ‡Khomani San.

MYH15 (myosin heavy chain 15): Our exome analysis found two missense mutations in MYH15 with

large allele frequency deviations. the G allele of rs9868484, which lies ⇠4kb from the SWIF(r) signal, is at a

frequency of 71% in our sample, relative to a maximum frequency of 40% elsewhere in Africa. The T allele of

rs1078456, ⇠50kb from the SWIF(r) signal, is at a frequency of 22%, relative to a maximum of 4%

worldwide. In addition, a splice region variant ⇠38kb from the SWIF(r) signal, rs113330737, has derived

allele frequency 46% in the ‡Khomani sample relative to a maximum of 1% worldwide.

References

1. Murphy, A. H. & Winkler, R. L. Reliability of subjective probability forecasts of precipitation and

temperature. Appl Stat 41–47 (1977).

62

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. Niculescu-Mizil, A. & Caruana, R. Predicting good probabilities with supervised learning. In

Proceedings of the 22nd international conference on Machine learning, 625–632 (ACM, 2005).

3. Nielsen, R. et al. Genomic scans for selective sweeps using SNP data. Genome Res 15, 1566–1575

(2005).

4. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A Map of Recent Positive Selection in the

Human Genome. PLoS Biol 4, e72 (2006).

5. Lin, K., Li, H., Schlötterer, C. & Futschik, A. Distinguishing positive selection from neutral evolution:

boosting the performance of summary statistics. Genetics 187, 229–44 (2011).

6. Sheehan, S. & Song, Y. S. Deep learning for population genetic inference. PLoS Comput Biol 12,

e1004845 (2016).

7. Du, P. & Tang, L. Transformation-invariant and nonparametric monotone smooth estimation of ROC

curves. Stat Med 28, 349–359 (2009).

8. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human

demography from individual genome sequences. Nat Genet 43, 1031–1034 (2011).

9. Schaffner, S. et al. Calibrating a coalescent simulation of human genome sequence variation. Genome

Res 15, 1576–83 (2005).

10. Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc Natl

Acad Sci USA 108, 11983–11988 (2011).

11. Messer, P. W. SLiM: simulating evolution with selection and linkage. Genetics 194, 1037–1039 (2013).

12. Messer, P. W. & Petrov, D. A. Frequent adaptation and the McDonald–Kreitman test. Proc Natl

Acad Sci USA 110, 8615–8620 (2013).

13. Enard, D., Messer, P. W. & Petrov, D. A. Genome-wide signals of positive selection in human

evolution. Genome Res 24, 885–895 (2014).

14. Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713

(2013).

15. Grossman, S. et al. A composite of multiple signals distinguishes causal variants in regions of positive

selection. Science 327, 883–6 (2010).

63

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229070doi: bioRxiv preprint 

https://doi.org/10.1101/229070
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526,

68–74 (2015).

17. Atkinson, A., Garnier, S., Afridi, S., Fumoux, F. & Rihet, P. Genetic variations in genes involved in

heparan sulphate biosynthesis are associated with Plasmodium falciparum parasitaemia: a familial

study in Burkina Faso. Malaria journal 11, 108 (2012).

18. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am J

Hum Genet 74, 1111–1120 (2004).

19. Visser, M., Palstra, R.-J. & Kayser, M. Human skin color is influenced by an intergenic DNA

polymorphism regulating transcription of the nearby BNC2 pigmentation gene. Hum Mol Genet

ddu289 (2014).

20. Lao, O., De Gruijter, J., van Duijn, K., Navarro, A. & Kayser, M. Signatures of positive selection in

genes associated with human skin pigmentation as revealed from analyses of single nucleotide

polymorphisms. Ann Hum Genet 71, 354–369 (2007).

21. Pybus, M. et al. Hierarchical boosting: a machine-learning framework to detect and classify hard

selective sweeps in human populations. Bioinformatics btv493 (2015).

22. McEvoy, B. P., Powell, J. E., Goddard, M. E. & Visscher, P. M. Human population dispersal “Out of

Africa” estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Res 21,

821–829 (2011).

23. Uren, C. et al. Fine-scale human population structure in southern Africa reflects ecogeographic

boundaries. Genetics 204, 303–314 (2016).
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