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Abstract 

The human gut microbiome performs important functions human health and disease. Intestinal 
microbes are capable of deconjugation and biotransformation of human primary bile acids to 
secondary bile acids. Alterations of the bile acid pool as a result of microbial dysbiosis have been 
linked to multifactorial diseases, such as inflammatory bowel disease (IBD).  

Constraint-based modeling is a powerful approach for the mechanistic, systems-level analysis of 
metabolic interactions in microbial communities. Recently, we constructed a resource of 773 
curated genome-scale reconstructions of human gut microbes, AGORA. Here, we performed a 
comparative genomic analysis of bile acid deconjugation and biotransformation pathways in 693 
human gut microbial genomes to expand these AGORA reconstructions accordingly (available at 
http://vmh.life). 

To elucidate the metabolic potential of individual microbiomes, publicly available metagenomic 
data from a cohort of healthy Western individuals, as well as two cohorts of IBD patients and 
healthy controls, were mapped onto the reference set of AGORA genomes. We constructed for 
each individual a large-scale personalized microbial community model that take strain-level 
abundances into account. Using flux balance analysis, we found that distinct potential to 
deconjugate and tranform primary bile acids between the gut microbiomes of healthy individuals. 
Moreover, the microbiomes of pediatric IBD patients were significantly depleted in their bile acid 
production potential compared with controls. The contributions of each strain to overall bile acid 
production potential across individuals were found to be distinct between IBD patients and 
controls. IBD microbiomes were depleted in contributions of Bacteroidetes strains but enriched in 
contributions of Proteobacteria. Finally, bottlenecks limiting secondary bile acid production 
potential were identified in each microbiome model. For ursodeoxycholate, the abundance of 
strains producing the precursor rather than of strains directly producing this secondary bile acid 
was synthesis-limiting in certain microbiomes.  

In summary, we integrated for the first-time metagenomics data with large-scale personalized 
metabolic modeling of microbial communities. We provided mechanistic insight into the link 
between dysbiosis and metabolic potential in IBD microbiomes. This large-scale modeling 
approach provides a novel way of analyzing metagenomics data to accelerate our understanding 
of the metabolic interactions between human host and gut microbiomes in health and diseases 
states. 

Introduction 

Primary and secondary bile acids play an important role in human health. As microbial dysbiosis 
can alter the bile acid pool, it affects human health. The human liver synthesizes two primary bile 
acids, cholate (CA) and chenodeoxycholate (CDCA), which are conjugated with glycine or taurine 
and excreted into bile [1]. Their function is to make dietary lipids more soluble.  The microbiota 
in the human gut biotransforms primary bile acids into a variety of secondary bile acids, with the 
lithocholate (LCA) and deoxycholate (DCA) being most abundant [2]. This microbial 
transformation results in the bile acid pool becoming more hydrophobic, which is associated with 
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higher toxicity for both human and microbial cells [3]. The corresponding microbial genes for bile 
acid transformation have been identified [2]. 

A link between microbial bile acid metabolism and inflammatory bowel disease (IBD), i.e., 
ulcerative colitis and Crohn’s Disease, has been repeatedly demonstrated [4]. In IBD patients, fecal 
conjugated bile acid levels are higher while secondary bile acid levels are lower, and the 
deconjugation and transformation abilities of IBD-associated microbiomes are impaired [4].  
Previously, a MetaHIT dataset, including 21 ulcerative colitis (UC) patients, four Crohn’s disease 
(CD) patients, and 14 healthy controls [5], was analyzed in silico revealing a reduced abundance 
of the bile salt hydrolase (bsh) gene in Firmicutes in the four CD patients and an increased 
abundance of the bsh gene in the Actinobacteria phylum in UC patients [6]. In another study [7], 
a significant reduction of the Firmicutes bsh gene was found in UC but not CD patients. Moreover, 
a reduction of the hydroxysteroid dehydrogenase (hsdH) gene in UC patients as well as an increase 
of the same gene in CD patients compared with controls has been reported [7]. Other diseases that 
have been associated with alterations of the intestinal bile acids pool include liver cirrhosis, liver 
cancer, irritable bowel syndrome, short bowel syndrome, and obesity [8-10]. In contrast, the 
secondary bile acid ursodeoxycholate (UDCA), and its taurine and glycine conjugates, are cyto- 
and neuroprotective. They have been proposed as potential treatment for neurodegenerative 
diseases, such as Alzheimer’s and Parkinson’s Disease [11], as well as for IBD [12]. Moreover, 
bile acids have antimicrobial effects both directly due to their hydrophobicity and indirectly via 
their stimulation of farnesoid X receptor (FXR), which results in production of antimicrobial 
peptides [8]. For example, LCA and DCA produced by Clostridium scindens have been shown to 
inhibit the pathogen Clostridium difficile in a dose-dependent manner [13].  

Bile acid levels are specific to an individual due to individual gut microbiome compositions. 
Consequently, alterations in bile acid human-microbiome co-metabolism in disease states are also 
individual-specific and interventions should be targeted. By taking the individual-specific 
composition of the bile acid pool into consideration, interventions resulting in more favorable bile 
acid levels could be proposed [2]. Computational systems biology is emerging as a valuable 
method for predicting individual-specific dietary and drug interventions, which could improve 
treatment efficacy and reduce the disease burden [14].  

One well-established computational approach for modeling human and microbial metabolic states 
is Constraint-based Reconstruction and Analysis (COBRA). The COBRA approach relies on 
genome-scale reconstructions of the target organism that represent the metabolism of the target 
organism in a structured manner and have been manually curated starting from the genome 
sequence against the available genomic data and literature following established protocols [15, 
16]. Genome-scale reconstructions can readily be converted into mathematical models [15]. By 
enforcing constraints, e.g., nutrient uptake, on the model, condition-specific biological properties 
of the target organism then can be computed [15]. A common method to compute functional states 
is flux balance analysis (FBA) [17], in which a biological objective, e.g., biomass production, is 
optimized. The optimal solution provides a flux value for each model reaction that is consistent 
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with the applied constraints and supports the optimal objective value. Typically, there are alternate 
optimal flux distributions that result in optimal states [15]. The extent to which each reaction can 
vary in its flux value, while still being consistent with the applied constraints and providing support 
for the optimal objective value,  can be determined through flux variability analysis (FVA) [18]. 
The COBRA approach has been successfully applied to model human metabolism in disease states 
[19]. Moreover, COBRA has valuable applications for interrogating the metabolic capabilities of 
human intestinal microbes [20]. For instance, using the COBRA approach, the metabolic cross-
feeding in small-scale communities of human gut microbes was predicted [21-23]. An advantage 
of the COBRA approach is that the underlying genome-scale metabolic networks enable 
mechanistic predictions of metabolic fluxes [15] such that the contribution of each individual 
microbe in the community can be exactly quantified. Unlike calculating reaction abundances from 
metagenomic data, this method also takes into account such biological features as substrate 
availability or species-species boundaries. In the largest-scale gut microbiome modeling study so 
far, a model community of 11 gut microbes was integrated into a computational framework with 
the human reconstruction Recon2 [24]  and the gut microbial contributions to health-relevant 
human metabolites were computed [25]. 

Recently, a comprehensive collection of curated genome-scale reconstructions for 773 human gut 
microbial strains, AGORA, has been published [26]. With AGORA covering 13 phyla commonly 
found in human gut microbiomes [26], it becomes possible to construct constraint-based 
community models that are representative of the human gut microbiome’s composition. AGORA  
has been curated for a number of gut-specific subsystems, including fermentation, carbon source 
biosynthesis, respiration, and vitamin biosynthesis [26]. However, AGORA does not account for 
bile acid transformations. The present study fills this gap.  

Based on a comparative genomic approach on the strain level, the metabolic reconstructions in the 
AGORA compendium were updated to include a functional subsystem for bile acid deconjugation 
and transformation reactions and are freely available on the VMH website [27]. By expanding the 
previously developed computational framework [25] both in scale and functionality, we 
constructed community models on the whole microbiome scale from publicly available 
metagenomic data. Subsequently, we quantified the individual-specific bile acid production 
potential in microbiomes from healthy individuals and IBD patients. This mechanistic, 
microbiome-wide modeling approach can be readily combined with a genome-scale model of 
human metabolism [24] and customized with individual-specific diets enabling personalized 
modeling in health and disease states. 

Results 

In order to investigate the microbial bile acid production capabilities in individual microbiomes of 
healthy and IBD individuals, we employed state-of-the-art genomic and computational modeling 
methods. First, we performed a comparative genomic analysis of bile acid pathways on 693 gut 
microbial genomes and expanded the microbial metabolic reconstructions present in AGORA 
accordingly. We then joined the AGORA models with bile acid production pathways into pairwise 
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models and predicted the potential to cooperatively produce secondary bile acids. While each 
microbe could only produce a subset of the 13 secondary bile acids in silico, microbial pairs could 
produce up to 12 of the 13 bile acids, which highlights that bile acid biotransformation is a 
microbial community task. Subsequently, we constructed functional and individual-specific gut 
microbiome models from AGORA using metagenomics data from healthy and IBD individuals to 
predict the individual bile acid biosynthesis potential. We found inter-individual variation in the 
production capability of bile acids in healthy individuals as well as significant differences between 
healthy and IBD microbiomes. Moreover, we were able to compute the contribution of each strain 
to bile acid deconjugation and transformation while taking the metabolic network of the whole 
microbiome community and the applied constraints (e.g., dietary uptake) into account.  

Presence of bile acid biotransformation genes in 693 analyzed genomes. We performed a 
systematic comparative genomic analysis of the bile acid deconjugation and transformation 
pathway in 632 AGORA genomes, 38 genomes of newly reconstructed organisms, and 23 
additional genomes (693 analyzed genomes total) that were available for analysis in the PubSeed 
database (Figure 1a). The bile salt hydrolase gene (bsh), which encodes the deconjugation of 
conjugated primary bile acids, was found in 204 of 693 analyzed genomes, including two archaeal 
genomes, Methanobrevibacter smithii ATCC 35061 and Methanosphaera stadtmanae DSM 3091 
(Table S1). The distribution of the bsh gene in Actinobacteria, Bacteroidetes, Firmicutes, as well 
as the two archaea (Figure 2, Figure S1-2) was in line with previously reported results [28]. 
Additionally, the bsh gene was found in 22 Proteobacteria genomes (Table S1). Among all 
analyzed hydroxysteroid dehydrogenases, 7a-HSDH was the most widespread enzyme as it was 
found in 36 of 693 analyzed genomes (Table S1). Additionally, 3a-, 3b-, and 7b- hydroxysteroid 
dehydrogenases (HSDHs) were found in 14, seven, and three genomes, respectively (Table S1). 
The bai genes for the multistep 7a/b-dehydroxylation pathway were found in seven analyzed 
genomes belonging to Clostridioides sp., Lachnoclostridium sp., and Eggerthella sp. (Figure S3). 
Remarkably, all these genomes also have genes for 7a-HSDH or genes for both 3a- and 3b-
HSDHs (Table S1). Thus, these organisms could play a crucial role in biotransformation of bile 
acids in human intestine. At the end, 238 of 693 analyzed organisms were found to be capable of 
bile acid deconjugations and biotransformation, including 217 reconstructed AGORA organisms 
(Figure 1a). The corresponding 217 metabolic reconstructions were expanded with the appropriate 
metabolites and reactions following established procedures [16] (see Methods). The complete 
reconstructed bile acid biotransformation subsystem contains 38 bile acid metabolites and 82 
reactions (Figure 2, Table S2a-b). For CA, CDCA, and the 13 secondary bile acids, transport 
reactions enabling the uptake and secretion of these metabolites were also added to the 
corresponding reconstructions.	

Bile acid transformation capabilities are complementary. 

The majority of primary bile acids, released by the human gallbladder into the intestine, where the 
gut microbiome encounters them, are conjugated to glycine or taurine [1]. However, many strains 
capable of synthesizing secondary bile acids do not possess the bile salt hydrolase (Table S1). To 
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which extent can the 217 bile acid subsystem-carrying strains use the conjugated bile acids as 
substrates? In order to answer this question, the 217 AGORA reconstructions were converted into 
condition-specific models by applying an Average European (AE) diet supplemented with 
taurocholate (Tauro-CA), glycocholate (Glyco-CA), taurochenodeoxycholate (Tauro-CDCA), and 
glycochenodeoxycholate (Glyco-CDCA) (Table S3) as modeling constraints. The theoretical 
production potential for each CA, CDCA, and the 13 secondary bile acids (Table 1) was predicted 
(see Methods). As expected, all 185 reconstructed strains having the bile salt hydrolase could 
liberate CA and CDCA from the respective conjugated primary bile acids (Table S3). In contrast, 
no single strain was capable of synthesizing 12-dehydrocholate (12-dehydro-CA), ursocholate 
(UCA), and UDCA from the conjugated primary bile acids. Of the five strains carrying the bai 
gene cluster, only Clostridium hiranonis TO-931 could synthesize LCA and DCA from the 
conjugated primary bile acids (Table S4). The observed low number of strains capable of both 
primary bile acid deconjugation and transformation to secondary bile acids suggests the possibility 
of mutualism between species with complementary bile acid conversion capabilities.  

In order to investigate the cooperative potential in bile acid metabolism, the 217 bile acid-
producing AGORA models were joined with every combination thereof, which resulted in 23,653 
pairwise models. The production capabilities for the 13 secondary bile acids of the single strains 
and the pairwise models was compared on the bile acid-supplemented AE diet. We identified over 
15,000 cases, in which a microbe complemented the other’s pathways to synthesize a secondary 
bile acid, whereas the individual strains were incapable to do so (Figure 3a, Table S5). For 
example, in the pairs of Clostridium leptum DSM 753 and any of the 185 bile salt hydrolase 
carriers, 12-dehydro-CA synthesis from Glyco-CA or Tauro-CA was enabled (Table S5). 
Moreover, 717 pairs (3%) enabled the synthesis of DCA/LCA and 69 pairs (0.3%) enabled the 
synthesis of UCA/UDCA from the conjugated primary bile acids (Table S5), which demonstrates 
that different pairs of microbes result in the combination of different capabilities in the pathway. 
There was no pairwise combination enabling synthesis of all secondary bile acids as the maximal 
number of secondary bile acids to be synthesized by any pair was 12 of the 13 (Figure 3a), which 
suggests that the presence of complementary microbes could be a bottleneck for bile acid 
biosynthesis. Taken together, these results demonstrate that bile acid biotransformation is a 
microbial community task and that the synthesis requires specific strain-strain combinations. 

The bile acid deconjugation and transformation potential varies in healthy adults. 

Microbes in the human intestine do not exist in isolation but have complex metabolic interactions 
with each other, which, taken together, influence the health of the host. To predict the combined 
metabolic potential of an individual’s gut microbiome community (Figure 1b), we generated 
personalized microbiome community models. First, we mapped the strains identified in each 
sample to the AGORA compendium and combined all corresponding metabolic reconstructions 
into one community model. Then, we added a community biomass reaction to the model, which 
consists of the biomass reaction of each species in the sample and for which the stoichiometric 
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coefficient of each strain was set to its relative abundance in the sample. We predicted the 
theoretical bile acid production potential of each personalized microbiome community model. 

We used 149 metagenomic data from healthy American donors aged 18-40 years provided by the 
Human Microbiome Project Consortium [29] (see Methods) to assess the extent of the bile acid 
production potential variation in the gut microbiomes of healthy adults. For the corresponding 
individual 149 microbiome community models (referred to as AGORA_HMP hereafter), the 
production potential for the two deconjugated primary and 13 secondary bile acids (Table 1) was 
predicted on the AE diet supplemented with conjugated primary bile acids (Figure 3b). Although 
all 149 AGORA_HMP models could produce all analyzed bile acids (Table S6), the quantitative 
production potential varied significantly between the models (Figure 3b). Only a few 
AGORA_HMP models produced high levels of LCA and DCA, with differences in quantitative 
production by a factor of 100 (Figure 3b, Table S6). Microbiomes with low CA/CDCA liberation 
potential from the conjugated bile acids also had a low secondary bile acid potential, which 
confirms that the bile salt hydrolase is the gateway reaction in the pathway [30].  

In order to determine the overall bile acid production potential, we used flux variability analysis 
[18, 31] (see Methods). The difference between the maximally and minimally possible flux values 
(i.e., the flux span) for each bile acid exchange reaction of each strain to the overall microbial bile 
acid production potential was found to vary considerable across the 149 AGORA_HMP models 
(Figure S4). The strains contributing to bile acid deconjugation (resulting in CA and CDCA) could 
be divided into two groups (Figure S4). The strains in group 1 mostly belonged to the Bacteroidetes 
and Firmicutes phyla and contributed to bile acid deconjugation in most AGORA_HMP models. 
The strains in group 2 contributed to overall production in less than 100 models and mainly 
consisted of Actinobacteria, Fusobacteria, Methanobacteria, and Gammaproteobacteria 
representatives (Figure S4). Similarly, for 7-ketodeoxycholate (7-keto-DCA)/7-
dehydrochenodeoxycholate (7-dehydro-CDCA) production by 7-a hydroxysteroid 
dehydrogenase, Bacteroidetes and Firmicutes representatives contributed to overall production in 
most AGORA_HMP models, while Gammaproteobacteria strains contributed in only few (Figure 
S4). Taken together, we predicted inter-person variability in the bile acid biosynthesis potential in 
healthy individuals, depending on the presence and relative abundance of individual strains in the 
microbiome samples. Our results suggest that the individual risk of secondary bile acid-induced 
toxicity would also vary.  

IBD-associated microbiomes are depleted in bile acid deconjugation and transformation 
capability. 

In order to explain the reported changed bile acid metabolism in individuals with CD and UC[4], 
we used strain-level relative abundance data from metagenomics samples from 39 Spanish 
individuals (21 UC patients, four CD patients, and 14 healthy controls) provided by MetaHIT [5] 
to construct individual-specific microbiome models, referred to as AGORA_MetaHit hereafter. 
We then computed the bile acid production potential of each personalized AGORA_MetaHIT 
model under bile acid supplemented AE diet (Figure 3c-d, Table S7-8) as well as the flux spans 
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for each strain-specific exchange reaction (Figure S5). A statistical analysis (Wilcoxon rank sum 
test) was performed on total community production potential (mmol*gDw

-1*hr-1), total reaction 
abundance, reaction abundance on the genus level, and flux spans on the strain level in order to 
identify the features causing the separation between IBD patients and healthy controls on a more 
detailed taxonomical level (Table S9-10). In total 40 features differed significantly (p-value <0.05) 
between the UC patients and healthy controls in AGORA_MetaHIT (Table S9). The quantitative 
CA and CDCA production (reflecting bile salt hydrolase activity) was significantly lower in UC 
patients compared with the healthy controls (p-value 0.027, Table S9). In agreement with the 
findings of Labbe et al [7], the lower production potential could be explained by a significantly 
lower total abundance of the BSH reaction in the UC individuals (p-value 0.030, Table S9). On 
the genus level, the BSH reaction abundance was reduced in the Anaerostipes (p-value 0.038) and 
Coprobacillus (p-value 0.037) genera in the Firmicutes phylum (Table S9). Moreover, the flux 
spans for 24 exchange reactions differed significantly between healthy individual and UC patients. 
For example, UC patients had fewer contributions of Coprobacillus sp. 29_1 to deconjugation (p-
value 0.040) but more contributions of Bacteroides fragilis YCH46 (p-value 0.010) (Table S9). 

Due to the small number of CD individuals in the MetaHIT dataset, we used a second metagenomic 
dataset to build personalized microbiome models (AGORA_pIBD), consisting of 15 children with 
newly diagnosed CD and of 25 healthy controls [32]. We then repeated the simulation for bile acid 
production as well as the flux variability analysis on the microbial exchange reactions. Using a 
principal coordinate analysis on the flux spans, we observed a clear separation into pediatric CD 
and control models (Figure 4a, b). The CD patients were consistently depleted in contributions of 
strains to bile acid deconjugation and transformation. This was especially the case for the secretion 
of CA and CDCA by representatives of the Bacteroidia class (Figure 4a), in line with the report 
that the dysbiotic pediatric CD patients have lower abundance of the Bacteroides genus [32]. In 
contrast, representatives of the Escherichia genus in the Gammaproteobacteria class contributed 
to bile acid deconjugation and 7-keto-DCA/7-dehydro-CDCA production mostly in the CD 
microbiomes (Figure 4a), which is consistent with the fact that CD microbiomes are enriched in 
Escherichia sp. [32].  

Performing the statistical analysis (Wilcoxon rank sum test) on total community production 
potential (mmol*gDw

-1*hr-1), total reaction abundance, reaction abundance on the genus level, and 
flux spans on the strain level revealed that 462 features differed significantly between the pediatric 
CD and control models (p-value <0.05, Table S10). The CD models had a significantly lower 
potential to liberate CA and CDCA by deconjugation compared with the control models (p-value 
0.013, Table S10), and were also depleted in potential to synthesize secondary bile acids, e.g., 12-
dehydro-CA (p-value <0.001, Table S10). These differences could be explained by a lower 
abundance of most reactions in the bile acid pathway in the pediatric CD individuals on the total 
community level, e.g., BSH (p-value <0.001, Figure 4c, Table S10). On the genus level, BSH 
abundance in CD microbiomes was lower in several representative genera of the Bacteroidetes 
(e.g., Alistipes, Bacteroides) and the Firmicutes phyla (e.g., Coprococcus, Eubacterium, 
Roseburia, Ruminococcus, and Ruminiclostridium) (p-values for all <0.001, Table S10). In 
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contrast, the CD models had a significantly higher abundance of the BSH reactions in the genera 
Blautia (p-value 0.025), Enterococcus (p-value 0.003), and Escherichia (p-value 0.002) (Table 
S10). Several of these genera were also found to separate the pediatric CD patients from controls 
in the original study [32]. The abundances of the bile acid transformation reactions on the genus 
level also differed significantly between CD models and controls. The CD models had significantly 
lower abundance of hydroxysteroid dehydrogenase reactions in several genera, e.g., Collinsella, 
Holdemania, and Ruminiclostridium (p-value for all <0.001, Table S10), but higher abundance in 
the Escherichia genus (p-value 0.002) (Table S10). There were also significant differences 
between CD models and control models in the strain-specific contributions to bile acid production, 
confirmed by the flux spans of 118 exchange reactions (Table S10). Strain contributions most 
depleted in the CD models included those of Bacteroides vulgatus ATCC 8482, Ruminococcus 
(Blautia) torques L2-14, Ruminococcus sp. SR1-5, Eubacterium ventriosum ATCC 27560, and 
Eubacterium rectale ATCC 33656 (p-value for all <0.001, Table S10). In contrast, the CD models 
were highly enriched by contributions of the pathogenic Escherichia coli strains O157-H7 Sakai 
and UTI89 UPEC to deconjugation and 7-keto-DCA/7-dehydro-CDCA production (p-value 
<0.001, Table S10). 

Taken together, both UC and pediatric IBD microbiomes were depleted in bile salt hydrolase 
activity of Bacteroides sp., Coprobacillus sp, and Parabacteroides sp. (Table S9-10). Compared 
to UC microbiomes, pediatric IBD microbiomes showed larger differences to healthy controls, as 
they were additionally depleted in contributions of a variety of other commensal microbes to bile 
salt hydrolase and to bile acid transformation but enriched in contributions of pathogenic 
Escherichia sp. (Table S10). Thus, the pediatric IBD microbiomes clearly differed in bile acid 
deconjugation and transformation potential while the differences between UC microbiomes and 
healthy were less pronounced and limited to bile acid deconjugation potential. 

Complementary microbe-microbe interactions are required for secondary bile acid 
biosynthesis in individual communities. 

Can the bile acid biotransformation potential of a community be predicted from strain and gene 
abundance alone? To test whether the bile acid production potential can be directly inferred from 
the abundance of the synthesizing reaction, we calculated the Pearson correlation between the 
individual production potential for the two deconjugated primary and 13 secondary bile acids 
(Table 1) and the total community abundance for all reactions in the bile acid pathway in 
AGORA_HMP, AGORA_MetaHIT, and AGORA_pIBD (228 community models in total). For 
13 of the analyzed bile acids, the correlation between production potential and the abundance of 
reaction directly synthesizing the respective bile acid was 0.93 or higher, as expected (Table S11). 
In contrast, the Pearson correlation between production potential for UCA and UDCA and the 
abundance of the 7-b hydroxysteroid dehydrogenase reaction (VMH ID: UCA7bHSDHe/ 
UDCA7bHSDHe) calculated for all 228 models was 0.78 indicating that high reaction abundance 
does not always correspond to high production. Plotting the total reaction abundance of the 7-b 
hydroxysteroid dehydrogenase yielding UDCA (UDCA7bHSDHe) against the UDCA 
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biosynthesis potential in all 228 models revealed that in 22 models, the total production potential 
was lower than one would expect from the total 7-b hydroxysteroid dehydrogenase reaction 
abundance (Figure 5c). For instance, the two models with the highest reaction abundance (both of 
them of pediatric CD microbiomes) only achieved a low UDCA production flux (Figure 5c). This 
result shows that factors other than the abundance of strains with 7-b hydroxysteroid 
dehydrogenase activity limited the production flux. Thus, the bile acid production potential cannot 
be predicted from species and gene abundances alone in all cases and metabolic fluxes in the 
community should be considered. Constraint-based modeling is ideal for such analyses of 
metabolic dependencies since it is mechanistic, quantitative, and takes species-species metabolic 
exchanges and boundaries into account [33]. 

What are the factors in the metabolic network that are limiting the entire community’s production 
potential for secondary bile acids? This question can be answered by investigating the shadow 
prices of the flux balance analysis solution. The shadow price is a measurement for the value of a 
metabolite towards the optimized objective function, with a negative shadow price indicating that 
the flux through the objective function would increase when the availability of this metabolite 
would increase [34]. In order to identify limiting factors for secondary bile acid production, we 
investigated the shadow prices in the flux balance analysis solutions (see Methods) computed for 
all three sets of models when optimizing production of the 13 secondary bile acids (Figure 5a, 
Figure S6-7, Table S12). Large negative shadow prices (value £-400) were found for biomass 
metabolites of 108 strains carrying bile acid enzymes (Table S12). Thus, the abundance of these 
strains was limiting secondary bile acid production in at least one microbiome model. Note that 
only biomass metabolites in strains already present in the individual (and thus in the model) can 
have shadow prices. When comparing pediatric CD patients and controls in the AGORA_pIBD 
models (Figure 5a), the number of metabolites with negative shadow prices was significantly lower 
in the CD models than in control models (19.9 +/- 18.0 vs. 49.2 +/- 24.2, p-value 0.0002 , Wilcoxon 
rank-sum test) (Figure 5b). Hence, due to the known dysbiosis in the pediatric CD patients [32], 
they were depleted in strains with bile acid biosynthesis capabilities. This results highlights that 
an increase in secondary bile acid biosynthesis in these individual communities could only be 
achieved by introducing additional microbial strains. 

The shadow prices for UDCA biosynthesis (Table S12) were inspected in all 228 models to 
identify limiting factors (Figure 5d-f). Note that shadow prices for UCA are analogous. Of the 
reconstructed strains, only Collinsella aerofaciens ATCC 25986, Ruminococcus gnavus ATCC 
29149, and Ruminococcus torques L2-14 carried the 7-b hydroxysteroid dehydrogenase and were 
thus capable of UDCA biosynthesis (Table S1). In eight microbiomes, all of which were of 
pediatric CD patients, all three strains were absent in the corresponding metagenomic samples and 
thus in the models. Consequently, these models were unable to produce any UDCA (Table S8) and 
all shadow prices for UDCA production were zero (Table S12). In 198 models, shadow prices 
were negative for the biomass metabolites of one or more of the three UDCA-producing strains, 
as expected (Table S12). In contrast, in 22 microbiome models, shadow prices were zero for the 
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three strains even though UDCA was produced (Table S12).  Instead, shadow prices were negative 
for the biomass metabolites of one or more of 24 other strains including Bacteroides sp., 
Escherichia sp., Clostridiales, and Erysipelotrichales representatives (Table S12). These 22 
microbiome models were the same models that had a lower UDCA production potential than 
expected (Figure 5c). All 24 strains were found in the analysis of complementary pairs to enable 
UDCA biosynthesis (Table S5) when pairwise joined with C. aerofaciens, and R. gnavus, and are 
characterized by the presence of the 7-a hydroxysteroid dehydrogenase yielding 7-dehydro-CDCA 
(VMH ID: CDCA7aHSDHe) (Figure 5f, see also Figures 2b) and 2e)). Only ten of the 24 strains 
could enable UDCA biosynthesis when joined with R. torques (Table S5). This is due to the fact 
that R. torques does not possess the bile salt hydrolase and thus requires one of the ten strains that 
carry both the 7-a hydroxysteroid dehydrogenase and the bile salt hydrolase reaction to 
complement its UDCA biosynthesis pathway (Figure 5f).  

Shadow prices were plotted against UDCA7bHSDHe abundance and UDCA production 
exemplarily for two strains present in many of the 228 microbiomes in order to confirm that the 
UDCA production in 22 models was limited by the availability of strains possessing the 7-a 
hydroxysteroid dehydrogenase: (i) R. gnavus ATCC 29149 (Figure 5d), and (ii) Clostridium 
scindens ATCC 35704, a strain carrying 7-a hydroxysteroid dehydrogenase (Figure 5e). In 
microbiome models for which 7-b hydroxysteroid dehydrogenase abundance directly correlated 
with UDCA production and in which R. gnavus was present, shadow prices for R. gnavus biomass 
were negative (Figure 5d). In the 22 models showing lower UDCA production than expected and 
in which C. scindens was present, shadow prices for C. scindens biomass were negative (Figure 
5e). This example illustrates that the biosynthetic capabilities of a strain need to be viewed in the 
context of the entire gut microbiome community’s metabolic network while also taking metabolic 
constraints (e.g., substrate availability) into account. In fact, the correlation between total 
abundance of the 7-a hydroxysteroid dehydrogenase reaction and UDCA production potential was 
only 0.05 (Table S11), which makes it non-obvious without inspection of the flux solutions that 
this reaction was synthesis-limiting in the 22 microbiomes.  

In summary, by analyzing the shadow prices in the FBA solutions when optimizing secondary bile 
acid production, strains that could increase their biosynthesis potential were uniquely identified 
for each personalized community model. The analysis revealed that in certain models, the 
abundance of microbes possessing the 7-a hydroxysteroid dehydrogenase reaction, which 
provides the necessary precursor for UDCA production was synthesis-limiting, resulting in lower 
UDCA production than one would expect from the abundance of the 7-b hydroxysteroid 
dehydrogenase. This result highlights once more that bile acid deconjugation and transformation 
is a cooperative task and needs to be viewed in the context of the community-wide metabolic 
network. This analysis allows for the generation of mechanistic hypotheses, e.g., bottlenecks that 
are limiting the transformation of primary to secondary bile acids, and confirms the known fact 
that IBD patients have altered bile acid profiles [4]. 
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Discussion  

In this work, we performed a comparative genomic analysis of the bile acid deconjugation and 
transformation pathway (Figure 1a, Figure 2) in 693 human gut microbe genomes. The reactions 
encoded by the identified genes were reconstructed and added to a resource for genome-scale 
metabolic reconstructions, AGORA [26]. The resource is publicly available at the VMH website 
[27]. From AGORA, pairwise models and personalized gut microbiome models (Figure 1b) were 
built and extensively interrogated for single, pairwise, and community-wide bile acid production 
potential, as well as flux contributions and flux-limiting factors in individual communities. 

We demonstrated that microbes can complement each other’s bile acid pathway (Figure 3a). For 
example, no single strain, but 69 pairs of bacteria could cooperatively convert tauro-or glyco- 
CDCA into UDCA. Since UDCA is much more hydrophilic and less toxic to bacteria than CDCA 
[3], cooperatively performing this task would be of advantage to both microbes in these pairs.  
Microbe-microbe co-presence were also found to be limiting for UDCA biosynthesis in the 
microbiome community models (Figure 5c-f) with possible implications for human health since 
UDCA is a cytoprotective bile acid with therapeutic potential [3, 11]. For example, UDCA was 
found to improve bile acid homeostasis and suppress ileitis in a model of Crohn’s Disease [12].  

While it can be intuitively understood that bile acid biosynthesis is a cooperative task in the gut 
microbiome from the known fact that no strain possesses the complete pathway [2], with 
constraint-based modeling, these microbe-microbe metabolic dependencies can be exactly 
predicted. Each personalized gut microbiome community model constructed from AGORA can be 
interrogated for the contribution of each microbe to the overall production of a bile acids (Figure 
4a, Figure S4-5). The models may also be interrogated for microbe-microbe cross-feeding which 
is necessary for the synthesis of the end products of the pathway. Due to the underlying genome-
scale metabolic reconstructions in the community models, mechanistic explanations for predicted 
synthesis bottlenecks and microbe-microbe metabolic dependencies can be derived from the 
simulation results.  

Using personalized microbiome models constructed from AGORA (Figure 1b), we could predict 
the variety in bile acid production across healthy individuals (Figure 3b) and identify differences 
in bile acid production potential between IBD patients and healthy controls (Figure 3c-d). 
Moreover, the exact contribution of each strain to the predicted overall production was found to 
be variable across individuals (Figure 4a, Figure S4-5). Constraint-based modeling can thus 
elucidate the importance of individual microbes towards fulfilling a community task and 
mechanistically link produced metabolites to species beyond correlations. For example, the 
correlations between bacterial abundance and gene pathway enrichment has been analyzed in the 
pediatric Crohn’s Disease dataset for a variety of pathways [32], and for secondary bile acid 
biosynthesis, a positive correlation with Bacteroides sp. has been found. Consistently, we 
predicted that a variety of Bacteroides strains performed bile acid deconjugation and 7-keto-
DCA/7-dehydro-CDCA biosynthesis, and their contribution was significantly depleted in the 
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Crohn’s Disease microbiomes (Table S10). A recent study investigated the microbiomes and fecal 
metabolomes of pediatric IBD patients and their relatives and could distinguish two metabotypes 
both in patients and relatives [35]. The IBD-associated metabotype was characterized by an altered 
bile acid profile, with increased levels of cholate and sulfated and taurine-conjugated primary bile 
acids. This finding suggests a reduced bile acid deconjugation and conversion potential of the gut 
microbiota [35], which is consistent with our results. Interestingly, the IBD-associated metabotype 
also had higher levels of 7-keto-CDCA, which may reflect altered secondary bile acid metabolism 
[35] and could be further investigated in future studies. 

While the bile acid pathway is comparatively linear and most steps are only present in a limited 
number of species, other pathways, such as the citric acid cycle or glutamate metabolism, play a 
central role in metabolism and are present in a much larger variety of species. The effect of 
depletion or enrichment of taxa possessing central pathways, such as the citric acid cycle, cannot 
be easily predicted from gene abundance alone. Top-down multivariate statistical analyses of 
metabolomic data have identified correlations between microbial species and metabolites [36], 
however, the underlying mechanisms often remain unexplained. For instance, Lewis et al. found 
that several pathways, e.g., glycerophospholipid metabolism, amino benzoate degradation, sulfur 
relay system, and glutathione metabolism, predicted the separation between healthy and dysbiotic 
microbiomes [32]. It cannot be easily inferred from correlations alone how these differentially 
enriched pathways would affect the levels of health-relevant metabolites, such as glutathione or 
phospholipids. Urinary and/or fecal metabolites found to be altered in IBD states include 
propionate, butyrate, lactate, citric acid cycle intermediates, amino acids, folate, hippurate, 
formate, taurine, choline, sphingolipids, and polyamines [37-40]. In future efforts, the 
computational workflow used in this study could be applied to predict the gut microbial 
metabolome beyond bile acid metabolism in order to gain insights into the mechanisms behind 
altered metabolomes in disease states.  

The gut microbiome community models constructed from AGORA can be readily joined with the 
human reconstruction Recon3 [41] enabling the computation of human-microbe co-metabolism. 
For example, we have previously shown that a simplified gut microbe community can produce 
precursors for human bioactive metabolites including neurotransmitters or glutathione [25]. This 
approach could be expanded to include the representative microbiome-wide community models 
constructed in this study. Including the human component of the bile acid subsystem would add 
another layer of complexity and could reveal unexpected, non-intuitive human-microbe cross-
feeding. The possibility that microbes can also produce precursors in the human primary bile acid 
synthesis pathway may be explored in future efforts. Moreover, reabsorption and detoxification of 
secondary bile acid in the human liver [42] could be predicted. Recon3 has recently been expanded 
with a secondary bile detoxification module [41].  For example, investigating the shadow prices 
for glucuronidated or sulfated LCA or DCA could elucidate bottlenecks in the detoxification of 
these highly toxic bile acids. Finally, while the present study was simplified by using the same diet 
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and conjugated bile acid uptake constraints in every model, the effect of individual-specific 
precursor availability and diet could be examined in future studies. 

In summary, we constructed for the first time in silico personalized gut microbiome models that 
can elucidate the metabolic potential of an individual’s microbiome. The models can be readily 
joined with a human reconstruction, e.g., Recon3, and personalized through integration of 
transcriptomic data [43] or nutritional information via the Virtual Metabolic Human [27] resource. 
We expect that the AGORA resource supplemented with microbial bile acid metabolism will have 
valuable applications in unraveling the role of human-gut microbiome metabolic interactions in 
human health.	 	
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Material and Methods 

Comparative genomic approach. All 773 strains of the AGORA resource [26], 46 new strains 
with a metabolic reconstruction, and 23 currently not reconstructed strains, were checked for the 
presence of their genomes at the PubSEED resource [44, 45], resulting in 690 bacterial and three 
archaeal genomes to be considered in this study (Figure 1a). Note that only 38 of the newly 
reconstructed microbes had their genome available in PubSEED and were consequently used for 
the comparative genomic approach. All 693 human gut microbe genomes were analyzed for the 
presence of orthologs of bile acid deconjugation and biotransformation genes (Table S1). 
Orthologs are defined as genes that satisfy the following conditions: (1) Orthologs should be 
closely homologous proteins (e-value cutoff = e-50). (2) Orthologs should be found in the same 
genomic context, i.e., structure of gene locus should be conserved in related genomes. (3) 
Orthologs should form a monophyletic branch of a phylogenetic tree.  

For the search of homologs and analysis of genomic context, the PubSEED platform was used 
along with phylogenetic trees for protein domains in MicrobesOnline [46]. Multiple protein 
alignments were performed using the MUSCLE v. 3.8.31 tool [47, 48]. Phylogenetic trees were 
constructed using the maximum-likelihood method with the default parameters implemented in 
PhyML-3.0 [49]. The trees obtained were visualized and midpoint-rooted using the interactive 
viewer Dendroscope, version 3.2.10, build 19 [50]. 

The following previously analyzed genes were used as a starting point, (1) genes for bile salt 
hydrolases (BSH) from multiple genomes [28], (2) 7a-hydroxysteroid dehydrogenase (HSDH) 
gene from Bacteroides fragilis [51], (3) 3a- and 3b-HSDHs genes from Eggerthella lenta DSM 
2243 and Ruminococcus gnavus ATCC 29149 [2], (4) 7a-HSDH and baiABCDEFGHI genes for 
a multistep 7a/b-dehydroxylation pathway, (5) bai genes from Eggerthella lenta DSM [2], and (6) 
7b-HSDH gene from Clostridium absonum [52]. BSH proteins are closely related to penicillin V 
amidase (PVA) ones [28]. To avoid incorrect annotations, a phylogenetic tree for BSH proteins 
and their homologs in the analyzed genomes was constructed (Figure S1-2) and orthologs of the 
known BSH genes were identified. All HSDH proteins listed above demonstrated similarity to 
each other and with BaiA proteins. Thus, orthologs for HSDH/BaiA proteins were resolved with 
the construction of a phylogenetic tree (Figure S3). 

All of the annotated genes are represented as a subsystem at the PubSEED website [53] and can 
be found in Table S1. 

Formulation and addition of reactions. Reaction mechanisms were retrieved from the KEGG 
database [54] as well as published literature (e.g., [55]). For all genomes having genes for BSH, 
HSDHs, or the complete 7a/b-dehydroxylation pathway (Figure 2), metabolic mass- and charge-
balanced reactions were formulated. Exchange reactions were added for all extracellular 
metabolites. The majority of reactions were associated with genes and proteins annotated in the 
analyzed genomes. Reactions not-associated with genes and proteins were only added if the gene 
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was unknown but the reaction was required to eliminate dead-ends in a metabolic pathway. Thus, 
the followed gap-filling reactions were added without associations with genes or proteins: (1) The 
three last steps for the 7a/b-dehydroxylation pathway are still unknown but was predicted to be 
three NADH-dependent reductases [55]. Hence, these reactions were added without associations 
to genes and proteins. (2) A transport reaction for LCA, the final product of 7a/b-dehydroxylation 
pathway was added despite the transporter being currently unknown. Moreover, pathways that 
yield allolithocholate (allo-LCA) and allodeoxycholate (allo-DCA) were included for strains 
possessing the bai gene cluster as these compounds are known to be side products of the 7a/b-
dehydroxylation pathway [56] and found in human adults under certain circumstances [1]. (3) 
Clostridium leptum demonstrates 12a-HSDH activity but the precise gene is not known [57]. 

Pathways for cholesterol reduction to coprostanol were also reconstructed. These enzymatic 
activities, both cytoplasmic an extracellular, were demonstrated for Lactobacillus acidophilus, 
Lactobacillus bulgaricus, and Lactobacillus casei. Precise mechanisms of these reactions as well 
enzyme-encoding genes are not known but the biotransformation was shown to be associated with 
oxidation of NADH to NAD+ [58]. Consequently, reactions for extracellular and cytoplasmic 
NADH-dependent reduction of cholesterol to coprostanol were added to six Lactobacillus sp. 
models, together with exchange reactions for cholesterol and coprostanol as well as a predicted 
reaction for cholesterol uptake. 

All metabolites and reactions were formulated following an established reconstruction protocol 
[16]. Metabolites and reaction abbreviations in the bile acid subsystem were created in accordance 
with the Virtual Metabolic Human (VMH) [27] nomenclature to ensure that they are compatible 
with the Recon2 [24] and Recon 3 [41] nomenclature. The MATLAB-based reconstruction tool 
rBioNet [59], which ensures quality control and quality assurance, such as mass-  and charge-
balance, was used to add the metabolites and reactions to the appropriate reconstructions. All 
reactions and metabolites in the bile acid subsystem in AGORA are described in Table S2a-b. 

Expansion of AGORA. A total of 46 gut microbial strains were newly reconstructed. The 
reconstructions were generated by semi-automatically expanding and curating KBase [60] draft 
reconstructions following the established AGORA pipeline [26] (Table S13). Of the 773 AGORA 
strains and 46 newly reconstructed strains, 217 strains total carried at least one gene in the bile 
acid pathway (Table S1) and six produce coprostanol. The corresponding 217 reconstructions were 
expanded by the appropriate metabolites and reactions (Figure 1a). The expanded resource, 
accounting for 819 strains, is available on the VMH website [27]. 

Construction of pairwise models. The 217 AGORA reconstructions carrying bile acid reactions 
were joined pairwise in every possible combination as described previously [26] using the 
createMultipleSpeciesModel function in the COBRA Toolbox [31]. In total, 23,653 pairwise 
models were created. 

Construction of sample-specific gut microbiota models. Publicly available metagenomic data 
from 149 individual microbiotas was obtained from the Human Microbiome Project website [29]. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229138doi: bioRxiv preprint 

https://doi.org/10.1101/229138
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 17	

The strain-specific abundances in the samples were retrieved as described previously [26], and 
normalized for each individual to obtain the relative abundances of each strain. Paired-end 
Illumina raw reads of the Spanish MetaHit cohort, consisting of 21 ulcerative colitis patients, four 
Crohn’s disease patients, and 14 healthy controls [5], were retrieved from EBI under the accession 
ERA000116. Paired end Illumina raw reads of 28 dysbiotic Crohn’s disease (CD) patients in the 
PLEASE cohort [32] and of 26 healthy controls in the COMBO cohort [61] were retrieved from 
NCBI SRA under SRA: SRP057027.  For both datasets, the reads were pre-processed and then 
mapped onto the reference set of 773 AGORA genomes [62]. In order to reduce the number of 
false positives, a cutoff of 10% genome coverage was applied to the resulting coverages 
(representing a threshold of at least 10% genome coverage for each microbe in each human 
individual). The resulting coverages were normalized for each individual in order to obtain the 
relative abundances. In order to avoid too small model sizes, microbiome ssamoles, for which less 
than 20 strains could be mapped to the reference set of AGORA genomes, were excluded from the 
analysis. This was the case for 13 samples from the PLEASE cohort and one sample from the 
COMBO cohort. 

A microbiome model generation and analysis workflow was developed (Figure 1b). For all strains 
in the 228 metagenomic samples that could be mapped to AGORA, the corresponding 
reconstructions were joined together to a constraint-based microbial community model. The 
resulting sample-specific microbial community models have a compartment that simulates the 
intestinal lumen, which provides an inlet for the simulated dietary input and allows for microbe-
microbe cross-feeding, as previously described [63]. An outlet representing fecal secretion was 
added. A community-level biomass objective function was formulated from the strain-specific 
normalized microbial abundances. The lower and upper bounds on the community biomass 
objective function were set to 0.4 and 1 mmol*gDW-1*hr-1, respectively. Coupling constraints, 
which enforce the flux through all metabolic and transport reactions to be proportional to an 
organism’s biomass objective function, were implemented as previously described [63].  

Simulations. All simulations were performed in MATLAB version 2016b (Mathworks, Inc.) using 
the COBRA Toolbox [31]. Flux balance analysis [17] was performed using the optimization solver 
CPLEX through the Tomlab (Tomlab, Inc.) interface. For flux variability analysis [18], the 
fastFVA function was used with the IBM CPLEX (IBM, Inc) solver. 

Definition of the Average European diet. A diet representing the nutrient intake of an average 
European individual was devised and converted to uptake constraints resources in the Virtual 
Metabolic Human database (VMH) [27]. The diet was supplemented with metabolites previously 
determined necessary for the biomass production of at least one AGORA reconstruction [26]. The 
AE diet was implemented in the AGORA reconstructions as well as the sample-specific 
community models by constraining the lower bounds on exchange reactions to the defined uptake 
rate. Note that not every metabolite in the AE diet could be transported by every model. 
Additionally, in order to enable modeling of bile acid transformation, the uptake of the conjugated 
primary bile acids Glyco-CA (VMH: gchola), Tauro-CA (VMH: tchola), Glyco-CDCA (VMH: 
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dgchol), and Tauro-CDCA (VMH: tdchola) was allowed by setting the lower bounds on the 
corresponding exchange reactions to -1000. The lower bounds on all other exchange reactions 
were set to zero. Constraints applied to simulate the dietary uptake are shown in Table S3. 

Interrogation of models for bile acid synthesis capabilities. The bile acid production potential 
in 217 AGORA reconstructions, 23,653 pairwise models, and 228 sample-specific community 
models was computed using FBA [17]. To predict the theoretical bile acid production potential, 
the exchange reactions (in the single and pairwise models) and the fecal secretion reactions (in the 
community models) for CD, CDCA, and 13 secondary bile acids were set as the objective function 
one by one and production flux was maximized. Shadow prices for all metabolites in the respective 
model were retrieved from the computed FBA solutions [17]. The contributions of individual 
strains to overall bile acid production were computed as follows: (i) Production flux through the 
respective the fecal secretion reactions in the community models was maximized. (ii) Flux 
variability analysis [18] was performed on the luminal exchanges in all strains that could transport 
the respective bile acid resulting in the minimal and  maximal exchange flux values. (iii) For each 
luminal exchange, the flux span was calculated. 

Data analysis. The calculation of the Pearson correlation and the two-sided Wilcoxon rank-sum 
test were performed in MATLAB version 2016b (Mathworks, Inc.). All datasets were plotted in 
MATLAB version 2016b or in R version 3.3.2 [64]. The aheatmap, pheatmap, ggplot2, 
easyGgplot2, and RColorBrewer packages in R were used for data visualization. Heat maps were 
generated with the Euclidian distance measure for clustering rows and columns, and complete 
linkage as the hierarchical clustering method. Principal Components Analysis (PCoA) was 
performed with the vegan package in R using the Bray-Curtis dissimilarity index. 
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Figure legends 

 Figure 1: Schematic overview of the workflow in this study. a) Comparative genomic and 
metabolic reconstruction approach used to expand the AGORA [26] resource with a bile acid (BA) 
deconjugation and biotransformation subsystem. The comparative genomic approach was 
performed in the PubSEED [44, 45] platform. Quality control/ quality assurance (QC/QA) during 
reaction and metabolite formulation and addition to the AGORA reconstructions was ensured by 
using the reconstruction tool rBioNet [59]. b) Computational pipeline used to predict the sample-
specific bile acid deconjugation and biotransformation by human gut microbiomes. First, publicly 
available metagenomic data was retrieved from HMP [29], MetaHIT [5], and the 
COMBO/PLEASE [32, 61] cohort. Next, the strain-level abundances were mapped onto the 
reference set of AGORA genomes. Microbial community models were constructed using the 
illustrated workflow and they account for the strain-level composition of each individual 
microbiome. Finally, each community model was contextualized with an “Average European” diet 
supplemented with conjugated primary bile acids and its individual-specific primary bile acid 
deconjugation and biotransformation potential was computed using flux balance analysis [17] and 
flux variability analysis [18]. 

 

Figure 2: Illustration of bile acid pathways in human gut microbes reconstructed for 
AGORA. a) Deconjugation of Tauro-CA/Glyco-CA and subsequent conversion to 12-dehydro-
CA, UCA, and Iso-CA. b) Deconjugation of Tauro-CDCA/Glyco-CDCA and subsequent 
conversion to UDCA. c) Conversion of CA to DCA via the bai pathway. d) Conversion of CDCA 
to LCA via the bai pathway. e) Conversion of UDCA to LCA via the bai pathway. CoA: Coenzyme 
A. For metabolite abbreviations see Table 1. 

 

Figure 3: The predicted bile acid production potential of individual gut microbiomes. a) 
Complementary bile acid biosynthesis capabilities of the 211 AGORA strain models joined in all 
possible combinations. The numbers of secondary bile acids (out of 13), which can be produced 
by each pair, are shown. b-d) Bile acid production potential in the three sets of community models 
constructed in this study, normalized by the highest production (mmol.gDW

-1.hr-1) achieved in any 
model per bile acid. b) AGORA_HMP, c) AGORA_MetaHIT (10% genome coverage cutoff), d) 
AGORA_pIBD (10% genome coverage cutoff). AGORA_HMP: models constructed from HMP 
[29] data, AGORA_MetaHIT: models constructed from MetaHIT [5] data, AGORA_pIBD: 
models constructed from COMBO/PLEASE [32, 61] data, UC: Ulcerative colitis individuals 
(AGORA_MetaHIT), CD: Crohn’s Disease individuals (AGORA_MetaHIT and AGORA_pIBD). 
For metabolite abbreviations see Table 1.  
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Figure 4: Features of AGORA_pIBD. a) Flux spans for 40 individual models (10% genome 
coverage cutoff) on all strain to lumen exchanges that carried flux for bile acids in at least one 
model. For metabolite abbreviations see Table 1. b) Principal Components Analysis (PCoA) of the 
flux spans depicted in 4a). c) Total abundance of the bile salt hydrolase reaction in the 40 individual 
models in AGORA_pIBD. 

 

Figure 5: Depiction of shadow prices computed when optimizing production of total 
community secondary bile acid production. Positive shadow price indicates that increasing 
availability of the metabolite would increase bile acid biosynthesis. a) Shadow prices in 
AGORA_pIBD. The columns represent individual communities (blue=healthy controls, 
red=pediatric CD microbiomes) and the columns represent all metabolites that had a high negative 
shadow price (£-400) in at least one community model. The metabolites are annotated by 
taxonomy. The ‘bile acid optimized’ color bar shows the bile acid for which production was 
optimized. b) Number of metabolites with negative shadow prices in the pediatric CD microbiome 
models and healthy controls models. c) Total abundance of the UDCA7bHSDHe reaction plotted 
against UDCA production potential in all 228 microbiome models. d) Shadow prices for the 
biomass metabolite of Ruminococcus gnavus ATCC 29149, an UDCA7bHSDHe carrier, plotted 
against UDCA production and UDCA7bHSDHe abundance in the same models as in 5c). A 
negative shadow price shows that the abundance of R. gnavus is limiting UDCA production. e) 
Shadow prices for the biomass metabolite of Clostridium scindens ATCC 35704, a 
CDCA7aHSDHe carrier, plotted against UDCA production and UDCA7bHSDHe abundance in 
the same models as in 5c). A negative shadow price shows that the abundance of C. scindens is 
limiting UDCA production. f) Schematic description of the UDCA biosynthesis pathway (more 
detail in Figure 2b). Steps that are bottlenecks for UDCA production in certain community models, 
indicated by a high negative shadow price for biomass metabolites of strains carrying the 
respective reaction, are shown. UDCA7bHSDHe: VMH ID for 7-beta-hydroxysteroid 
dehydrogenase, UDCA7bHSDHe: VMH ID for 7-beta-hydroxysteroid dehydrogenase, VMH: 
Virtual Metabolic Human [27]. For metabolite abbreviations see Table 1.  
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Tables 

Table 1: Overview of primary and secondary bile acids. VMH: Virtual Metabolic Human [27]. 

Name Abbreviation VMH ID Type Producer 
Taurocholate Tauro-CA tchola Primary/ 

conjugated 
Human 

Glycocholate Glyco-CA gchola 
Taurochenodeoxycholate Tauro-CDCA tdchola 
Glycochenodeoxycholate Glyco-CDCA dgchol 
Cholate CA cholate Primary/ 

unconjugated 
 

- Human 
- Released by 185 
AGORA strains 

Chenodeoxycholate CDCA C02528 

12-dehydrocholate 12-dehydro-CA 12dhchol Secondary Clostridium 
leptum DSM 753 

7-ketodeoxycholate 7-keto-CA 7ocholate 31 AGORA 
strains 7-dehydrochenodeoxy-

cholate 
7-dehydro-
CDCA 

7dhcdchol 

3-dehydrocholate 3-dehydro-CA 3dhchol 13 AGORA 
strains 3-dehydrochenodeoxy-

cholate 
3-dehydro-
CDCA 

3dhcdchol 

Isocholate Iso-CA isochol Six AGORA 
strains Isochenodeoxycholate Iso-CDCA icdchol 

Lithocholate LCA HC02191 Five AGORA 
strains Deoxycholate DCA dchac 

Allolithocholate allo-LCA alchac 
Allodeoxycholate allo-DCA adchac 
Ursocholate UCA uchol Three AGORA 

strains Ursodeoxycholate UDCA HC02194 
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