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Abstract 

Speech communication in daily listening environments is complicated by the 

phenomenon of reverberation, wherein any sound reaching the ear is a mixture of 

the direct component from the source and multiple reflections off surrounding 

objects and the environment. The brain plays a central role in comprehending 

speech accompanied by such distortion, which, frequently, is further complicated 

by the presence of additional noise sources in the vicinity. Here, using 

magnetoencephalography (MEG) recordings from human subjects, we investigate 

the neural representation of speech in noisy, reverberant listening conditions as 

measured by phase-locked MEG responses to the slow temporal modulations of 

speech. Using systems-theoretic linear methods of stimulus encoding, we observe 

that the cortex maintains both distorted and distortion-free (cleaned) 

representations of speech. Also, we show that, while neural encoding of speech 

remains robust to additive noise in absence of reverberation, it is detrimentally 

affected by noise when present along with reverberation. Further, using linear 

methods of stimulus reconstruction, we show that theta-band neural responses are 

a likely candidate for the distortion free representation of speech, whereas delta 

band responses are more likely to carry non-speech specific information regarding 

the listening environment. 
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Introduction 

Speech communication in real-world scenarios, such as in a room or other 

enclosed space, differs from communication in an isolated environment as the 

sound entering the ear is a linear superposition of direct (clean, distortion-free) 

component and multiple reflections from the surroundings. This general acoustic 

phenomenon, known as reverberation, is ubiquitous in daily listening 

environments. The reflections travel a longer path, with correspondingly 

attenuated amplitudes, before summing linearly with the direct component, thus 

distorting the clean sound from the original source. Depending on the number of 

reflections and their attenuation factors (a function itself of the surrounding 

reflecting surfaces and the paths travelled), the distortion of clean sound can vary 

from mild (e.g., in large open spaces) to severe (e.g., in a cave, cathedral or a 

dense forest). The reverberant signal received by the ear can be modeled as y(t) = 

s(t)*h(t), where s(t) is the clean sound from the source and h(t) is the impulse 

response of a linear filter representing the delay and attenuation information of 

reflections (Figure 1Error! Reference source not found.). On the other hand, 

knowing only the reverberant signal y(t), to infer the original sound s(t) without 

knowledge of h(t) is mathematically ill-posed problem, though human listeners are 

nonetheless able to perform this routinely, with some effort (Sarampalis et al. 

2009; Sato et al. 2007; Yang and Bradley 2009). Comprehension of speech in such 
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a reverberant environment is further complicated by the presence of other sound 

sources whether stationary (e.g., the sound of an air-conditioner) or non-stationary 

(e.g., other talkers). The neural mechanisms by which reverberation is 

accommodated, and the representations employed by the auditory system in that 

process, in such adverse listening conditions remains unclear. 

 

Figure 1. Phenomenon of reverberation. A reverberant signal reaching the 

ear is the sum of the original clean speech and its copies, appropriately 

time-shifted and scaled. This can be described mathematically as 

convolution between the clean speech s(t) and the reverberation impulse 

response h(t) (illustrated here with a schematic impulse response; after 

Traer and McDermott (Traer and McDermott 2016)) 
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The information in speech is conveyed through its temporal modulations, 

which can be decomposed into a slow envelope that modulates the fast temporal 

fine structure (TFS) (Rosen 1992; Shamma and Lorenzi 2013). The slower 

envelope (<10 Hz) corresponds to prosodic, phonemic, syllabic and word rates, 

whereas the TFS, the fast-varying component of speech, represents pitch, formant 

structure, timbre, etc. While envelope cues alone may be sufficient for partial 

speech comprehension in distortion free listening conditions, TFS is also 

important for speech comprehension, and especially so in the presence of 

distortions and competing backgrounds (Ding et al. 2013; Drullman 1995; 

Drullman et al. 1994a; 1994b; Kong et al. 2015; Moon and Hong 2014; Moore 

2008; Rimmele et al. 2015; Smith et al. 2002; Swaminathan et al. 2016). 

Reverberation and noise affect the speech signal distinctly. While additive noise 

degrades the speech signal by reducing the intensity contrast, i.e., the depth of 

modulations, it does not affect the temporal sharpness of the speech signal. In 

contrast, reverberation, due to its convolutive nature, causes temporal smearing of 

both the envelope (example shown in Figure 2A, top) and TFS (see review by 

Assmann and Summerfield (2004)). TFS smearing results in spectral blurring 

(Figure 2A, bottom), which can affect the quality of the formant structure, timbre, 

and even pitch, whereas envelope smearing (Figure 2A, top) affects timing cues in 

the speech signal such as phoneme and syllable onset and offset. Such distortions 
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can cause difficulties in identifying and discriminating consonants (Nabelek et al. 

1989), vowels (Nabelek and Letowski 1988) and formant cues in reverberant 

listening conditions (Nabelek and Dagenais 1986). 

Physiological studies, both in animal models (Mesgarani et al. 2014b; 

Moore et al. 2013; Rabinowitz et al. 2013) and humans (Ding and Simon 2013) 

have demonstrated the robustness of cortical representation of speech in the 

presence of stationary noise, in spite of degraded representation at the periphery of 

the auditory system (Delgutte 1980). Studies of the auditory brainstem (Fujihira et 

al. 2017; Sayles et al. 2014; Sayles and Winter 2008) and midbrain (Bidelman 

2017; Devore and Delgutte 2010; Kuwada et al. 2014; Slama and Delgutte 2015) 

have shown that peripheral and subcortical neural coding of the temporal envelope 

can be substantially degraded in a reverberant environment. However, the effects 

of distortion due to reverberation, as well as the interaction of reverberation and 

additive noise (if any), on the cortical coding of speech, are less understood. 

Here, using Magnetoencephalography (MEG) recordings of human subjects 

listening to continuous speech, and linear system methods of neural response 

prediction (encoding) and stimulus reconstruction (decoding) (Di Liberto et al. 

2015; Ding and Simon 2012b; Pasley et al. 2012), we investigated the effect of 

noise and reverberation on cortical representation of continuous speech. Mesgarani 

et al. (2014b) examined the neural responses from single-unit recordings in ferrets, 
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listening to reverberant speech (in absence of additive noise), and found that the 

corresponding clean speech spectrogram was better reconstructed than reverberant 

speech spectrogram. Further, Fuglsang et al. (2017), using electroencephalography 

(EEG) recordings of human subjects listening to speech in reverberation, showed 

that the clean speech envelope was better reconstructed than the reverberant 

speech envelope in case of severe reverberant listening conditions. The current 

study is formulated from a different point of view, (1) to systematically examine 

the joint effect of noise and reverberation on neural encoding of speech by varying 

the severity of both reverberation and noise, and (2) to examine the cortical 

representation of speech in noisy reverberant environment from both encoding and 

decoding perspectives, allowing insights into reverberation processing strategies 

across auditory cortex. We will show evidence that, while auditory cortex does 

show strong evidence of cleaning the speech signal of reverberation, the 

reverberant speech signal is also strongly represented, and many areas represent 

both reverberant and cleaned versions of the speech signal. 
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Figure 2. Effects of reverberation. A. Reverberation smears the temporal 

envelope (top right) of Clean speech (top left) as multiple reflections 

superimpose on the direct component from source. Reverberation also 

distorts the spectral structure of speech as shown by the auditory 

spectrogram (bottom) of speech without (left) and with (right) 

reverberation. B. The peak of the modulation spectrum occurs around 4 – 5 

Hz in clean speech and shifts downward (left) with increasing severity of 

reverberation. C. Correlation coefficients comparing the bandpassed 
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envelopes of reverberant speech, at different levels of severity, with the 

corresponding clean speech. The distortion effect of reverberation is higher 

in the 4 – 8 Hz band (corresponding to neural theta activity) than 1- 4 Hz 

band (corresponding to neural delta activity). 

 

Materials and Methods: 

Subjects and Experimental Design Thirteen normal-hearing, young adults 

participated in the experiment. All subjects were paid for their participation. The 

experimental procedures were approved by the University of Maryland 

Institutional Review Board and written informed consent was obtained from each 

subject before the experiment. Subjects listened to 60 s duration speech segments 

under a full factorial design of three noise and four reverberation levels, totaling 

twelve stimulus conditions. The three noise levels are No-noise, +6 dB and +3 dB 

signal-to-noise ratio (SNR). The four reverberation levels are referred to, with 

increasing severity, as anechoic (clean), mild, medium and severe reverberation 

with Reverberation Time to 20 dB (RT20: time elapsed before the reflections decay 

by 20 dB with respect to the direct component in terms of energy) values of 0 ms, 

150 ms, 300 ms and 450 ms, respectively.  The choice to use here the RT20 to 

characterize reverberation instead of the more standard RT60 (time elapsed before 

the reflections decay by 60 dB with respect to the direct component) arises from 
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the usage of continuous reverberant speech: when speech reflections from an 

earlier time act as a masker for speech at the present time, a target-to-masker ratio 

(TMR) of 20 dB is perceptually more relevant than a TMR of 60 dB (which is 

instead more relevant for detection of reverberation in silence). In practice, any 

RT20 value is approximately one third of the corresponding RT60 value. 

Reverberant speech was generated by convolving a (base) clean speech segment 

with a Room Impulse Response (RIR) with the desired severity of reverberation. 

RIRs were generated using the image-source method (Allen and Berkley 1979) as 

implemented by Lehmann and Johansson (2010) by simulating listening 

conditions in a room of dimensions 7 x 5 x 3 m (length, width, height), with 

source and listener positioned at (4.5, 2.5, 1.7) m and (3, 2.5, 1.7) m, respectively. 

Different levels of reverberation were obtained by varying absorption coefficients 

of walls, floor and roof of the simulated room. Noisy reverberant speech was 

generated by adding spectrally matched noise to the reverberant speech, at the 

desired SNR; spectrally matched noise was generated by randomizing the phase of 

the reverberant speech signal and scaling it appropriately to achieve the required 

SNR. Mathematically, the stimulus 𝑆(𝑡) is constructed as, 

 𝑆 𝑡 = 𝑅 𝑡 + 𝑁 𝑡   (1) 

where 𝑅 𝑡 	and 𝑁 𝑡 	are respectively, the reverberant speech component of the 

stimulus and spectrally matched noise. 𝑅(𝑡) is constructed as,  
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 𝑅 𝑡 = 𝐶 𝑡 ∗ 𝑅𝐼𝑅(𝑡) (2) 

where 𝐶 𝑡  and	𝑅𝐼𝑅(𝑡) are, respectively, the (base) clean speech and the RIR. All 

twelve (base) speech segments, used to generate twelve stimulus conditions, were 

taken from a public domain narration of Grimms’ Fairy Tales by Jacob & Wilhelm 

Grimm (https://librivox.org/fairy-tales-by-the-brothers-grimm/), spoken by the 

same narrator. Periods of silence longer than 300 ms were replaced by a shorter 

gap whose duration was chosen randomly between 200 ms and 300 ms. To reduce 

loudness effects as a confound, when reverberation was added, the amplitude was 

rescaled so that all exemplars were of approximately equal perceptual loudness. 

No further scaling was performed when noise was added. Each of the twelve 

stimulus conditions was presented three times (trials) in succession, with the base 

speech segment used to generate a particular stimulus condition as well as 

presentation order of conditions randomized across subjects. To ensure the 

listeners’ attention, a target-word was set before each trial and the subjects were 

asked to count the number of occurrences of the target-word in the stimulus being 

played. Additionally, at the end of each trial, subjects answered a different 2-

alternative-forced-choice comprehension question. Subjects were required to close 

their eyes while listening.  
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Data recording and pre-processing MEG recordings were conducted using a 160-

channel whole-head system (Kanazawa Institute of Technology, Kanazawa, 

Japan). Its detection coils are arranged in a uniform array on a helmet-shaped 

surface of the bottom of the dewar, with ~25 mm between the centers of two 

adjacent 15.5-mm-diameter coils. Sensors are configured as first-order axial 

gradiometers with a baseline of 50 mm; their field sensitivities are 5 fT/√Hz or 

better in the white noise region. Subjects lay horizontally in a dimly lit 

magnetically shielded room (Yokogawa Electric Corporation). Responses were 

recorded with a sampling rate of 1 kHz with an online 200-Hz low-pass filter and 

60 Hz notch filter. Three reference magnetic sensors and three vibrational sensors 

were used to measure the environmental magnetic field and vibrations. The 

reference sensor recordings were utilized to reduce environmental noise from the 

MEG recordings using the Time-Shift PCA method (de Cheveigne and Simon 

2007). Eye-blinks and heart beat artifacts were removed using Independent 

Component Analysis (ICA). For analysis in the sensor domain, MEG sensor 

recordings were decomposed into virtual sensors/components using denoising 

source separation (DSS) (de Cheveigne and Parra 2014; de Cheveigne and Simon 

2008; Särelä and Valpola 2005), a blind source separation method that enhances 

neural activity consistent across trials. Specifically, DSS decomposes the 
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multichannel MEG recording into temporally uncorrelated components, where 

each component is determined by maximizing its trial-to-trial reliability, measured 

by the correlation between the responses to the same stimulus in different trials. 

To reduce the computational complexity, sensor domain analysis was performed 

using DSS components. Additionally, for analysis in the source domain, each 

subject’s head shape was digitized (Polhemus 3SPACE FASTRAK) and the 

subject’s head was localized with respect to the MEG sensors using five marker 

coils attached to the head. The ‘fsaverage’ brain provided by FreeSurfer (Fischl 

2012) was fit to each subject’s head shape using rotation, translation and uniform 

scaling. MEG data, after de-noising with time-shift PCA and ICA, were localized 

to active regions in the cortex using distributed minimum norm estimate (MNE) 

(Hamalainen and Ilmoniemi 1994) as implemented in MNE software (Gramfort et 

al. 2013; Gramfort et al. 2014). The source model comprised of 10242 regularly 

spaced virtual source dipoles in each hemisphere with orientations perpendicular 

to the cortical surface. The sensor noise covariance was estimated from the empty 

room recording data. Due to the auditory nature of the study, further analysis was 

restricted to the responses estimated at the sources located in the transverse, 

superior, middle temporal gyri and banks of the superior temporal sulcus (Desikan 

et al. 2006). Both speech envelope and neural response (either a DSS component 

in sensor space, or the estimated activity at one source domain location) were band 
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pass filtered between 1 – 8 Hz (delta and theta bands), which correspond to the 

slow temporal modulations in speech (Ding and Simon 2012a; 2012b), for further 

analysis. 

 

Encoding of stimulus to neural responses  

Encoding models provide a quantitative description of how information in a 

stimulus is represented in neural responses. Analyzing data from the perspective of 

encoding (predicting neural responses using the stimulus or some representation of 

the stimulus) allows investigators to identify, as well as quantify, how 

features/aspects of the stimulus are represented in the corresponding neural 

responses (Naselaris et al. 2011). Here, to identify the neural representation of 

speech distorted by noise and reverberation, three encoding models were 

compared namely: the Cleaned, Reverb and Mixed models (described below). 

Encoding analysis was performed by fitting a linear regression model between the 

stimulus representation under a particular model (whether Cleaned, Reverb or 

Mixed) and the corresponding low frequency (1- 8 Hz) neural responses. This 

approach has been used previously to describe the temporal relation between a 

speech stimulus and the corresponding neural response as measured by MEG 

(Ding and Simon 2012b), EEG (Di Liberto et al. 2015), and ECoG (Mesgarani and 
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Chang 2012). The resulting models are commonly referred to as Temporal 

Response Functions (TRFs) and are mathematically represented as  

 𝑟 𝑡 = 𝑠 𝑡 − 𝜏 𝑇𝑅𝐹 𝜏 + 𝜀 𝑡
4

 (3) 

where	𝑡 = 0,1, … , 𝑇 are discretized time instances, 𝑟 𝑡 	is the neural response (of 

any individual sensor or DSS component, or the time-course of activity at a source 

location), 𝑠 𝑡 	is the choice of stimulus representation in the encoding model 

under consideration (referred to as ‘predictor’ here), 𝑇𝑅𝐹 𝑡 	is the TRF itself, and 

𝜖 𝑡  is residual response waveform not explained by the TRF model (Ding and 

Simon 2012b). The TRF is estimated using boosting with 10-fold cross-validation 

(David et al. 2007). Success of the linear model, referred to as ‘prediction 

accuracy’, is evaluated by how well it predicts neural responses, as measured by 

the proportion of the variance explained: the square of the Pearson correlation 

coefficient between neural response 𝑟 𝑡 	and the TRF model prediction (right 

hand side of Eq. (3) excluding the error term). The three encoding models 

compared were: (1) the Cleaned model, where the stimulus is represented by the 

broadband envelope of the corresponding clean (base) speech, i.e. the envelope of 

𝐶(𝑡) of Eq. (2); (2) the Reverb model, where the stimulus is represented by the 

broadband envelope of the reverberant speech component of the stimulus, i.e. the 

envelope of 𝑅 𝑡  of Eq. (1); and (3) the Mixed model – a model that allows both 

Cleaned and Reverb representations to contribute, i.e., simultaneously using 
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envelopes from both the Cleaned and Reverb models as predictors. The Cleaned 

model tests the hypothesis that despite the distorted acoustic input to the ear, the 

cortex recovers and maintains neural representations for the underlying distortion 

free clean speech. The Reverb model tests the hypothesis that acoustic distortions 

due to reverberation present at the ear are also represented neurally in the cortex. 

Finally, the Mixed model allows the co-existence of neural representations for 

both clean and reverberant versions of speech. Such a dual representation is 

possible due to the hierarchical organization of the auditory cortex, which 

maintains increasingly complex and distortion robust representations of stimulus 

(Atencio et al. 2009; Okada et al. 2010; Sharpee et al. 2011). In all the encoding 

models, the broadband envelope was extracted by averaging the auditory 

spectrogram of the corresponding speech signal along the spectral dimension (Chi 

et al. 2005).  

In case of the Mixed model, the linear model presented in (1) is modified as  

 𝑟 𝑡 = 𝑠: 𝑡 − 𝜏 𝑇𝑅𝐹: 𝜏 + 𝑠; 𝑡 − 𝜏 𝑇𝑅𝐹;(𝜏) + 𝜀 𝑡
4

 (4) 

where 𝑠: 𝑡  is the envelope of clean speech and 𝑠; 𝑡  is the envelope of 

reverberant component of stimulus and 𝑇𝑅𝐹: 𝑡 , 𝑇𝑅𝐹; 𝑡  are the corresponding 

TRFs. Due to the presence of two predictors, the Mixed model has twice the 

number of degrees of freedom than the corresponding Cleaned and Reverb 

models. To ensure that the increased accuracy (if any) of the Mixed model 
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compared to the other two is merely not due to increased degrees of freedom, a 

non-informative speech envelope was added as an additional predictor in both 

Cleaned and Reverb models, thus balancing the number of free parameters across 

models. For example, in the Cleaned model, the non-informative speech envelope 

is obtained by replacing the first half of Reverb model envelope with its second 

half and vice versa. 

 

Decoding speech from neural responses While the TRF/encoding analysis 

described in the previous section predicts neural response from stimulus, decoding 

analysis reconstructs stimulus envelope using neural responses. Thus, decoding 

analysis complements the TRF analysis (Mesgarani et al. 2009). Mathematically 

the envelope reconstruction/decoding operation is formulated as  

 𝐸 𝑡 = 𝑀> 𝑡 + 𝜏 𝐷> 𝜏
4@

4A4B

C

>AD

 (5) 

where 𝐸(𝑡) is the reconstructed envelope, 𝑀>(𝑡) is the MEG recording (neural 

response) from sensor/component k, and  𝐷> 𝑡  is the linear decoder for 

sensor/component k. The times 𝜏E	and 𝜏F	denote the beginning and end times of 

the integration window, 0 and 500 ms respectively here. The decoder is estimated 

using boosting, analogously to the TRF estimation in the previous section, to 

minimize the mean squared difference between reconstructed and actual 
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envelopes. As decoding analysis linearly integrates information over all data 

(whether from all the sensors in sensor domain analysis or, equivalently, from all 

source points in source domain analysis) recorded in the time window under 

consideration, we restrict our decoding analysis to sensor space. 

 

Statistics  

Due to the presence of multiple stimulus conditions (a total of 12 in the full 

factorial design with three noise and four reverberation levels), the following 

statistical approach was used to compare between different encoding or decoding 

models. Considering the example of comparison between Mixed and Reverb 

models, the difference between the two model prediction accuracies was 

calculated for each subject and condition and a repeated measures Analysis of 

Variance (ANOVA) is performed on the model differences with noise and 

reverberation as factors (Greenhouse-Geisser corrected when required). 

Significant effects were followed up with appropriate pairwise t-tests. Significant 

interaction effect was followed up with a t-test at each stimulus condition to 

compare the mean difference of models with zero, correcting for multiple 

comparisons using False Discovery Rate (FDR) (Benjamini and Hochberg 1995). 

In absence of a significant interaction effect, data was pooled according to the 

main effects, if present, before comparing the model differences against zero. Here 
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also, FDR was used for multiple comparisons correction.  For example, in the case 

of significant main effect for the reverberation factor but not noise, data was 

pooled across noise levels and a t-test was performed at each level of 

reverberation. When comparing two models, either in encoding or decoding 

analysis, through their differences, anechoic (reverberation free) stimuli were 

excluded as all models coincide in the anechoic listening condition and so 

differences would be identically equal to zero for all subjects, with zero variance. 

In the case source domain analysis, nonparametric permutation tests (Maris 

and Oostenveld 2007; Nichols and Holmes 2002), based on the threshold-free 

cluster-enhancement algorithm (TFCE) (Smith and Nichols 2009), were used to 

control for multiple comparisons when testing for the significance of a result at a 

large number of source locations. The precise implementation details are available 

in the Eelbrain source code (Brodbeck 2017), but a brief summary follows. First, 

a test statistic (a t-value in case of t-test or an F-statistic in case of ANOVA) was 

computed for each source location based on the quantity of interest (here, the 

difference in prediction accuracies between two models) across subjects. The 

resulting test statistic map was then processed with TFCE, an image processing 

algorithm that enhances larger contiguous areas with large values compared to 

isolated spikes, based on the assumption that meaningful differences have a larger 

spatial extent than noise. To determine the null distribution for the resulting TFCE 
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values, the procedure was repeated in 10,000 permutations of the data, with 

condition labels flipped for a randomly selected set of subjects in each 

permutation. The test statistic computation and TFCE were repeated in each 

permutation, and the largest value from the cluster-enhanced map is stored as an 

entry in the null distribution. Thus, a nonparametric distribution for the largest 

expected TFCE value under the null hypothesis was computed. Any value in the 

original TFCE map that exceeds the 95th percentile of the distribution is thus 

significant at the 5% level. Thus, TFCE provides strong control over family-wise 

type-I error (Nichols and Holmes 2002). 

 

Results 

To examine the neural representation of speech distorted by additive noise and 

reverberation, three possible encoding models were compared (Cleaned, Reverb 

and Mixed models; see Methods for detailed description) using neural responses 

from the first DSS (most dominant auditory) component (Ding and Simon 2012b). 

The performance of each model as measured by prediction accuracy (squared 

correlation coefficient between actual and predicted response) was computed for 

each model under each stimulus condition. In particular, if the brain maintains a 

distortion-free representation of speech in addition to the original distorted 

acoustic representation of speech, the Mixed model should have higher prediction 
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accuracy than both the Reverb and Cleaned models, across all stimulus conditions. 

First, to compare the Mixed and Reverb models, repeated measures two-way 

ANOVA was performed on the difference of prediction accuracies between Mixed 

and Reverb models (Figure 3A) with noise and reverberation as within subject 

factors (anechoic level in reverberation factor was excluded as both models 

coincide when there is no reverberation). The main effect of reverberation was 

marginally significant (F(2, 24) = 3.307, p = 0.054) but no significant effect of 

noise was observed (F(2, 24) = 0.436, p = 0.652) along with no significant 

interaction (F(4, 48) = 0.112, p = 0.978). Post-hoc test at each reverberation level, 

after pooling data across noise levels, showed that model difference was 

significantly greater than zero at each reverberation level (mild: t(38) = 2.366, p = 

0.023; medium: t(38) = 3.425, p = 0.002; severe: t(38) = 6.708, p < 0.001, multiple 

comparisons corrected via FDR with q = 0.05). This suggests that the Mixed 

model predicts neural responses better than the Reverb model across all stimulus 

conditions with reverberation. Similar comparison between Mixed and Cleaned 

models (Figure 3B) showed that model difference was significant both in noise 

(F(2, 24) = 14.380, p < 0.001) and reverberation (F(2, 24) = 13.546, p < 0.001) 

with significant interaction (F(4, 48) = 4.774, p = 0.003). Post-hoc tests at each 

stimulus condition showed that the model difference was significantly greater than 

zero at all reverberant conditions (FDR with q = 0.01). This suggests that the 
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Mixed model predicts neural responses better than the Cleaned model. Taken 

together, these results suggest that when listening to speech in noisy reverberant 

conditions the auditory cortex maintains representations for both reverberant 

(distorted) and the corresponding clean (distortion free) versions of the stimulus.  

 

Figure 3. Comparing accuracy of encoding models. Difference between 

prediction accuracies of the Mixed and Reverb models (A) as well as 

Mixed and Cleaned models (B) are both significantly greater than zero 

(FDR at q = 0.05 and FDR at q =0.01 respectively). The Mixed model 

predicts neural responses significantly better than either the Reverb or 

Cleaned model for all stimulus conditions with reverberation. 

 

To identify the cortical regions contributing to the increased prediction accuracy 

of the Mixed model compared with the Reverb model, encoding analysis was 

performed in the neural source domain (predicting neural activity at each source 
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location). The difference between the prediction accuracies of the two models was 

computed at each source location for all stimulus conditions. Variation of model 

difference with respect to reverberation level was modeled, separately for each 

noise level, as the slope of a line fit between model difference and reverberation 

level, thus obtaining three data points (one value of slope per noise level) per 

source location. As ANOVA, correcting for multiple comparisons using TFCE, 

showed no significance with respect to noise (p >= 0.482), data was pooled by 

averaging the slope across three noise conditions, resulting in one value of slope 

per source location.  Any value of slope significantly different from zero indicates 

significant model difference. A t-test performed at each source location, correcting 

for multiple comparisons, showed that Heschl’s gyrus and middle-to-posterior 

superior temporal gyrus areas contribute to the increased performance of the 

Mixed model over the Reverb model (Figure 4). 

 

Figure 4. Anatomical regions contributing to increased performance of the 

Mixed model over the Reverb model (p < 0.05, corrected), rendered on the 
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inflated brain surface model. These regions are better explained as 

containing areas with representations of both reverberant (distorted) and the 

corresponding clean (distortion free) versions of the stimulus, than as 

containing only representations of the reverberant (distorted) version. Areas 

that are not included in the analysis are shaded with a dark overlay. 

 

To examine the fidelity of neural encoding of speech under different severity 

levels of noise and reverberation, prediction accuracies of the Mixed model (which 

best explained the neural response among the three encoding models compared) 

under different stimulus conditions were compared (Figure 5). A repeated 

measures ANOVA showed a significant interaction between noise and 

reverberation factors (F(2.761, 33.133) = 7.042, p = 0.001). Hence, post-hoc 

analysis was performed at each reverberation level to see the effect of noise. The 

variation of prediction accuracy with respect to noise, as measured by the slope of 

the line fit between noise levels and prediction accuracies, was calculated for each 

level of reverberation, per subject. A t-test at each reverberation level, corrected 

for multiple comparisons at q = 0.05 FDR, showed that the slope was significantly 

less than zero for mild (mean = -0.039, t(12) = -2.649, p = 0.021), medium (mean 

= -0.054, t(12) = -3.285, p = 0.007) and severe (mean = -0.047, t(12) = -3.410, p = 

0.005) reverberation, whereas the anechoic condition showed no significant 
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variation with respect to noise (mean = 0.0054, t(12) = 0.793, p = 0.443). This 

suggests that noise differentially affects the accuracy of neural encoding in 

listening conditions with and without reverberation: In the absence of any 

reverberation, noise did not show a significant effect on the accuracy of neural 

encoding, whereas its effect was adverse in presence of all reverberation levels 

tested. Because it is common in the experimental literature to not place too much 

emphasis on whether a speech stimulus is purely anechoic or instead contains mild 

reverberation (e.g. the case of a free field stimulus), it is worth re-emphasizing this 

result that anechoic listening condition has a representation that is markedly 

different from even the most mild reverberant listening condition. This can be seen 

in terms of their prediction accuracies when there is no noise (‘No Noise’ 

condition in Figure 5), as well as how the prediction accuracies change when noise 

is added.  
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Figure 5.  Effect of noise and reverberation on accuracy of neural encoding.  

In the absence of reverberation (“Anechoic”), noise did not show any 

significant effect on the accuracy of neural encoding. In contrast, encoding 

accuracy was reduced significantly with increase in noise, in the presence 

of any reverberation.  

 

While the results presented so far provide an encoding perspective of speech in 

noisy and reverberant listening conditions, the putative role of delta and theta band 

neural responses in representing different aspects of speech (Ding and Simon 

2014; Kösem and Van Wassenhove 2017) is examined in the following. The 

results from encoding models suggest that the auditory cortex maintains 

representations for both reverberant and cleaned versions of speech in reverberant 
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environments. To assess the relative contributions of delta and theta band neural 

responses to the reverberant and cleaned representations, decoding analysis was 

employed. Here, both the reverberant and the respective clean versions of the 

stimulus envelope were reconstructed using delta and theta band neural responses 

separately, in order to compare which version of the envelope is more faithfully 

represented by delta and theta neural response. Figure 6 shows the difference 

between reconstruction accuracies of the reverberant and cleaned envelopes using 

only delta or only theta band neural responses. A repeated measures ANOVA of 

model differences (Reverb - Cleaned), in the delta band, showed a significant 

effect of noise (F(2, 24) = 7.005, p = 0.004), reverberation (F(2, 24) = 8.564, p = 

0.002) as well as significant interaction (F(4, 48) = 3.019, p = 0.027). Post-hoc t-

tests showed that model difference was significantly greater than zero in all 

reverberant stimulus conditions (multiple comparisons corrected via FDR at q = 

0.05). Similar analysis using theta band neural responses showed that model 

differences were not significantly affected by noise (F(1.395, 16.743) = 0.265, p = 

0.691) or reverberation (F(2, 24) = 0.904, p = 0.418) with no significant 

interaction effect (F(2.622, 31.463) = 2.034, p = 0.104). Further, post-hoc analysis 

showed that the model difference at any stimulus condition was not significantly 

different from zero (correcting for multiple comparisons using FDR). These 

results suggest that the delta band responses dominantly maintain reverberant 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/229153doi: bioRxiv preprint 

https://doi.org/10.1101/229153
http://creativecommons.org/licenses/by-nc/4.0/


 
 

 
28 

representation, whereas theta band contains nearly equal contributions from both 

cleaned and reverberant representations. Delta band neural responses maintain a 

better representation of reverberant speech than cleaned, while theta band showed 

no such distinction.  

 

 

Figure 6. Comparing stimulus reconstruction accuracies for reverberant and 

corresponding clean speech. Results above the midline favor the Reverb 

model; below the midline favor the Cleaned model. A. Using only delta 

band (1 – 4 Hz) neural responses, the stimulus reconstruction of reverberant 

speech is significantly better than the corresponding clean speech (FDR 

with q = 0.05). B. Reconstruction using only theta band (4 – 8 Hz) neural 

responses did not show significant differences (FDR with q = 0.05) 
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between reconstruction accuracies of the reverberant and respective clean 

stimulus. 

 

Discussion 

Using MEG to record the cortical activity of subjects listening to noisy, 

reverberant speech, and linear methods of neural response prediction and stimulus 

reconstruction, we observed that (1) the cortex maintains both distorted as well as 

the corresponding distortion-free (cleaned) representations of speech (2) noise 

differentially affects the accuracy of neural encoding in absence and presence of 

reverberation (3) theta band neural responses are a more likely candidate than 

delta band neural responses to hold the distortion free representation of the 

(distorted) acoustic stimulus. 

 That the Mixed model has better encoding accuracy compared to both the 

Reverb and Cleaned models (Figure 3) suggests that both distorted (reverberant) 

and distortion free (cleaned) versions of the speech are represented in auditory 

cortex. Such a dual representation is feasible given the hierarchical nature of 

auditory processing in cortex (Okada et al. 2010), where progressively distortion 

free (Moore et al. 2013; Rabinowitz et al. 2013) and ultimately categorical 

representations of speech emerge (Chang et al. 2010; Di Liberto et al. 2015; Peelle 

et al. 2010). Reverberation cleaning is often tied to the phenomenon of echo 
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suppression, typically investigated in simple stimuli such as lead-lag pairs where it 

is referred to as the precedence effect and is often explained using inhibition 

triggered by the leading sound (Litovsky et al. 1999; Xia and Shinn-Cunningham 

2011). Mesgarani et al. (2014b) suggest a similar mechanistic model based on 

feed-forward synaptic depression and feed-back gain normalization to reduce the 

distortion due to reverberation. Traer and McDermott (2016) suggest that the 

problem of speech comprehension in reverberant conditions is solved by the 

auditory system as part of the general cocktail party problem due to its ill-posed 

nature. They suggest that the brain uses prior information, accumulated through 

experience, to separate the clean speech from distorted reverberant speech input to 

the ear and identify it as an auditory object, separate from the environment in 

which it was produced. Both of these approaches ((Mesgarani et al. 2014b) and 

(Traer and McDermott 2016)) argue for simultaneous cortical representations of 

cleaned speech and the original reverberant speech, as shown in the current study. 

Significant difference between the prediction accuracies of the Mixed and Reverb 

models, reflecting the contribution of the distortion free part of the Mixed model, 

was confined to Heschl’s gyrus and middle to posterior superior temporal gyrus 

(Figure 4). Similar anatomical areas have been implicated as the substrate of 

categorical (phonemic) representation of speech in the cortex (Mesgarani et al. 

2014a), suggesting that the cleaned contribution of the Mixed model could be 
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related to the computation of distortion invariant categorical representation of 

speech. 

 In the absence of reverberation, the accuracy of neural encoding of speech 

is not significantly affected by noise (Figure 5). Such robustness to stationary 

noise has been previously demonstrated (Ding and Simon 2013) and is thought to 

be the result of neural adaptation to statistics (such as mean and variance) of sound 

intensity (Dean et al. 2005; Dean et al. 2008; Robinson and McAlpine 2009). 

However, in the case of reverberant environments, our results show that the neural 

encoding of speech is strongly and detrimentally affected by the addition of 

stationary noise (Figure 5). A similar detrimental effect of stationary noise has 

been previously observed using vocoded speech (Ding et al. 2013), highlighting 

the importance of TFS integrity for accurate neural encoding of speech in noisy 

background in contrast to the quite listening conditions, wherein envelope cues are 

thought to be sufficient. Further, this suggests that the envelope entrainment to 

speech observed in MEG and EEG studies is a function of TFS along with the 

envelope. 

On the other hand, in the absence of noise the encoding accuracy of 

reverberant speech (even under mild reverberation) is significantly higher 

compared with anechoic condition (Figure 5). The low-pass nature of the cortical 

response modulation transfer function (Simon and Ding 2010), combined with the 
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downward shift of modulation spectrum with increasing reverberation (Figure 2B), 

could explain the increase in accuracy of neural encoding with reverberation in the 

absence of noise. However, the effect of listening effort due to reverberation 

cannot be discounted here either. Thus, the observed increase in encoding 

accuracy with increase in reverberation, in the absence of noise, could be due to 

combined effect of a change in modulation spectrum and listeners’ effort. Another 

distinct possibility could be due to the fact that reverberant listening conditions, 

even mild, are pervasive in daily life, whereas anechoic listening conditions are 

rarely experienced. Slama and Delgutte (2015), using an animal model, observed 

enhanced coding of amplitude modulated stimuli in reverberant environments 

compared with the anechoic condition. Thus, it is possible that ecologically 

irrelevant anechoic speech is not encoded as accurately as speech in ecologically 

relevant listening conditions. 

 Along with successful comprehension of speech in typical reverberant 

environments, a listener can also perceive and make subjective judgments 

regarding the reverberant environment, suggesting that such information is readily 

accessible to the auditory system. The observation that a reverberant envelope is 

better reconstructed than the corresponding cleaned envelope using only delta 

band neural responses (Figure 6A) suggest that the delta band is a candidate to 

convey the perception of reverberation. Similar reconstruction results using theta 
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band neural responses (Figure 6B) showed no preference for either the reverberant 

or cleaned envelope. Despite the increased stimulus contrast (reduced correlation) 

between the reverberant and clean envelopes in the theta band compared to delta 

band (Figure 2C), the shift away from the reverberation-dominated decoding in 

delta to the more balanced representation in theta provides limited evidence for 

reverberation removal occurring dominantly in theta band neural responses. These 

observations are consistent with the hypothesized roles of slow varying delta band 

and fast varying theta band neural responses to encode information related to the 

perceived non-speech specific acoustic rhythm and speech specific modulations 

necessary for intelligibility respectively (Ding and Simon 2014). As such, it is 

beneficial for the auditory system to reduce the distortion in the theta band more 

than the delta band (Figure 6). In contrast to the decoding results presented here, 

using a combination of both delta and theta band neural responses, Fuglsang et al. 

(2017) showed that cleaned speech envelope was better reconstructed than 

reverberant speech envelope in case of severe reverberation. This difference may 

be due to the lack of binaural cues in the current study, which are known to 

enhance speech perception in reverberant and noisy environments (Nabelek and 

Robinson 1982). Also, using single unit recording from the primary auditory 

cortex of ferrets, Mesgarani et al. (2014b) showed that cleaned speech was better 

reconstructed when listening in reverberant conditions. This difference with the 
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decoding results presented here could be due to the availability of spike/high-

gamma (> 40 Hz) neuronal responses in single unit recordings, in contrast to the 

current study, which examined only slow temporal modulations.  

 In summary, the results suggest that while listening to speech distorted by 

additive noise and reverberation, the auditory cortex maintains representations for 

both distorted and the corresponding cleaned (distortion free) speech. The additive 

noise differentially affects the accuracy of neural encoding in presence and 

absence of reverberation. Finally, theta band neural responses are a candidate for 

containing distortion free representations of speech in reverberant environments, 

while the delta band neural responses may convey the non-speech-specific 

information regarding the reverberant listening environment. 
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