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A central goal of systems neuroscience is to relate an organism’s neural activity to be-
havior. Neural population analysis often begins by reducing the dimensionality of the
data to focus on the patterns most relevant to a given task. A major practical hurdle
to data analysis is spike sorting, and this problem is growing rapidly as the number of
neurons measured increases. Here, we investigate whether spike sorting is necessary
to estimate neural dynamics. The theory of random projections suggests that we can
accurately estimate the geometry of low-dimensional manifolds from a small number
of linear projections of the data. We re-analyzed data from three previous studies and
found that neural dynamics and scientific conclusions are quite similar using multi-unit
threshold crossings in place of sorted neurons. This finding unlocks existing data for
new analyses and informs the design and use of new electrode arrays for laboratory
and clinical use.
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Introduction

A growing number of studies, spanning systems neuroscience, seek to relate the dynami-

cal evolution of neural population states with an organism’s behavior (e.g., Briggman et al.

(2005); Machens et al. (2010); Harvey et al. (2012); Churchland et al. (2012); Mante et al.

(2013); Ames et al. (2014); Sadtler et al. (2014); Kaufman et al. (2014, 2015); Morcos &

Harvey (2016)). In this work, we aim to address a major challenge facing neurophysio-

logical experiments: how can we cope with the challenge of attributing action potentials

to individual neurons, termed spike sorting, as the number of electrodes rapidly increases

from several hundred (today’s state of the art) to thousands or even millions in the near

future Stevenson & Kording (2011)? This exciting and rapid increase is necessary for

advancing neuroscientific understanding and brain-machine interfaces, and progress is fu-

eled in part by the U.S. BRAIN initiative and similar efforts around the world Bargmann

et al. (2014). For a typical experiment, composed of several hours of neural and behavioral

recordings, manually spike sorting even 100 channels can take a skilled researcher several

hours, and different human experts often arrive at different results Wood et al. (2004).

Automated spike sorting algorithms show promise, e.g.: Santhanam et al. (2004); Vargas-

Irwin & Donoghue (2007); Wood & Black (2008); Ventura (2009); Chah et al. (2011);

Bestel et al. (2012); Barnett et al. (2016)), but are computationally intensive, sensitive

to changes in waveform due to electrode drift, and no ground truth is available. Excit-

ing recent methods leverage high-density neural recordings to yield reliable single neuron

isolation, but such sensors represent a minority of emerging technologies as they are opti-

mized specifically for high-density recording within a small volume around a linear probe

Harris et al. (2016); Rossant et al. (2016); Pachitariu et al. (2016); Leibig et al. (2016);
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Jun et al. (2017a); Chung et al. (2017). This requirement creates a trade off between spike

sorting quality and measuring from a larger volume of tissue. This is in contrast to the

need to also measure from many regions of the brain simultaneously and to do so for long

durations (i.e., chronic implants Chestek et al. (2011); Barrese et al. (2013)).

Here we investigate whether spike sorting is a necessary data pre-processing step for

data analyses that focus on neural population activity. For investigations involving the

response of a single neuron, or when the nature of the question requires certainty about

neuron identity, spike sorting is required. However, for investigations involving the coor-

dinated response and evolution of large populations of neurons, we ask if spike sorting is

essential. In other words, does combining neurons by not spike sorting result in distorted

estimates of neural population states and neural dynamics, thereby changing the results of

hypothesis tests?

Brain-machine interfaces (BMIs) that measure motor cortical activity and aim to help

people with paralysis have moved away from spike sorting in recent years (e.g., Gilja et al.

(2015); Pandarinath et al. (2017a)). This was motivated by the considerations described

above, as well as by the repeated finding that the performance difference between spike

sorting and not spike sorting is quite small Chestek et al. (2011); Christie et al. (2015);

Todorova et al. (2014). Most pre-clinical and clinical-trial BMIs do not currently employ

spike sorting, and instead use a simple voltage threshold crossing rate, which combines

the responses from all action potentials on an electrode regardless of their source neuron

Fraser et al. (2009); Gilja et al. (2012); Hochberg et al. (2012); Collinger et al. (2013);

Jarosiewicz et al. (2015); Gilja et al. (2015); Perel et al. (2015); Christie et al. (2015); Kao

et al. (2016); Pandarinath et al. (2017a); Ajiboye et al. (2017), and alleviating the burden of

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2017. ; https://doi.org/10.1101/229252doi: bioRxiv preprint 

https://doi.org/10.1101/229252
http://creativecommons.org/licenses/by-nc-nd/4.0/


spike sorting, while maintaining their high level of single-trial neural population decoding.

Here we ask whether this simple and efficient threshold-based approach can be applied in

basic neuroscience investigations (i.e., assessing hypotheses based on identifying structure

and dynamics in neural data), where the need for spike sorting could potentially be more

stringent.

In a standard extra-cellular electrophysiology experiment, a multi-electrode array gives

researchers access to a sparse sample of a few hundred neurons, selected randomly from

the many millions of neurons in a particular brain region. For most typical experiments,

spikes are sorted to associate action potentials from individual neurons, prior to subsequent

analysis steps, such as performing dimensionality reduction. The process of spike sorting

expands the dimensionality of the dataset from the number of recording channels to the to-

tal number of isolatable neurons observed on the array (see Figure 1A). Here, we propose

to bypass this sorting step prior to population-level analyses. Dimensionality reduction

methods, such as PCA, GPFA, dPCA, or LFADS, typically use linear combinations of

individual sorted neurons to capture important aspects of the population response in a re-

duced representation of the data (e.g., Yu et al. (2009); Churchland et al. (2012); Kobak

et al. (2016); Sussillo et al. (2016); Pandarinath et al. (2017b), Figure 1B). By starting

with multi-unit threshold crossings, the multiple neurons present on each channel are lin-

early summed prior to performing a second linear operation via dimensionality reduction,

the resulting population activity closely resemble those found with sorted neurons, shown

schematically in Figure 1C. Applying this to neural data from rhesus monkeys, perform-

ing radial reaching tasks, yields substantial qualitative similarity between neural trajec-

tories using sorted units and multi-unit threshold crossings (Figure 1D-E). While these
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qualitative findings are suggestive, a quantitative study is required before it is possible to

understand its role in neuroscientific studies. That is what we investigate in this study.

This approach is motivated not only by the success of BMI threshold crossing de-

coders, but more fundamentally by the theory of random projections from high dimen-

sional statistics (e.g., Indyk & Motwani (1998); Dasgupta & Gupta (2003); Ganguli &

Sompolinsky (2012); Advani et al. (2013); Lahiri et al. (2016)). Recent work has shown

that if one wishes to recover the geometry of a low dimensional manifold, which is em-

bedded in a high dimensional space, one can still accurately recover this geometry without

measuring all of the coordinates of the high dimensional space. Instead, it is sufficient to

measure a small number of noisy, random linear combinations (i.e., projections) of these

coordinates Ganguli & Sompolinsky (2012). In the neuroscience context, (1) the low di-

mensional manifold is a surface containing the set of low dimensional neural population

trajectories; (2) the coordinates in high dimensional space are the firing rates or spike

counts of individual neurons; and (3) the noisy projections of these coordinates are the

activities measured on each electrode, which consist of the linear combination of a small

number of neurons as well as multi-unit ‘hash’ that cannot be resolved into single neuron

spikes. We posit that this application of random projection theory to neural measurements

suggests that spike-sorting may not be necessary to accurately recover neural population

dynamics, which are inherently low dimensional.

Encouraged by recent BMI results and the theory of random projections, we replicated

analyses from three previously published studies of nonhuman primate motor cortical con-

trol of arm movements, now using multi-unit threshold crossings (i.e., the linear combina-

tion of a small number of neurons as well as multi-unit ‘hash’). We compared the resulting
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neural population state dynamics and hypothesis outcomes with the original studies and

found that all of the new analyses using multi-unit threshold crossings closely recapitu-

lated both qualitative and quantitative features found in the original studies using spike

sorted data and yielded the same scientific conclusions. We further show that the similar-

ity of neural population dynamics extracted from sorted versus unsorted data is consistent

with the theory of random projections, and we derive quantitative scaling laws for how

this similarity depends on the complexity of the population dynamics themselves.

We suggest that these findings may well: (1) unlock large repositories of existing data

for new analyses without time-consuming manual sorting or error-prone automatic sorting,

(2) inform the design and use of new wireless, low power electrode arrays for laboratory

investigations and clinical use (in particular, chronically-implanted multielectrode arrays

and bandwidth and power limited wireless telemetry systems), and (3) enable scientific

measurements using electrode arrays that do not afford high quality spike sorting.

Results

To investigate the necessity of spike-sorting, we re-analyzed data collected in three re-

cently published studies by Ames and colleages, Churchland and colleagues and Kaufman

and colleagues Ames et al. (2014); Churchland et al. (2012); Kaufman et al. (2014). All

three studies relate the spiking activity of populations of single neurons in macaque mo-

tor and dorsal premotor cortex to arm reaching behavior. Here we substitute multi-unit

threshold crossings prior to performing the same analyses used in the original studies. As

described below and in Methods, using a sufficiently large voltage threshold effectively

rejects noise arising from electrical artifacts and noise. Thus, multi-unit threshold cross-
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ings predominantly correspond to action potential emission from one or multiple neurons

relatively close to the electrode. See Figure S1 for a comparison of spike waveforms from

sorted single units and multi-unit threshold crossings. As anticipated, the tuning for single

recording channels tends to broaden (Figure S1D) and peri-movement firing rates increase

(Figure S1E) as the threshold becomes more permissive.

Study 1: Neural dynamics of reaching following incorrect or absent
motor preparation

Ames and colleagues asked whether the preparatory neural population state achieved by

motor cortex prior to the initiation of movement is obligatory for generating an accurate

reach, either when no time is given to prepare the reach (no delay period) or when the target

location switches at the time of the go cue Ames et al. (2014). The key result of the study,

found using manually spike-sorted data, was that in both cases the neural population state

can bypass the preparatory state when no time is provided to prepare the movement. Now,

using multi-unit threshold crossing data, we observed the same results for both behavior

types using the same analyses and statistical tests (p < 0.05; distance metric statistical

test Ames et al. (2014)). In addition, visualizations of neural trajectories using the top two

principal components (Figure 2A,B) reveal quite similar features (which are inherently as-

sessed qualitatively) when using multi-unit threshold crossings instead of sorted neurons.

This suggests that using multi-unit threshold crossings does not substantially distort our

lower-dimensional view of neural population dynamics.

We repeated these analyses with two simulated perturbations to the dataset to further

test the sensitivity of population analyses to combining the contributions of single neu-

rons. First, we analyzed only the multi-unit threshold crossing events that were previously
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discarded through spike sorting. The computed neural trajectories, distance plots, and

peri-stimulus time histograms (PSTHs) for these ‘discarded spikes’ suggest that there is

similar information content in these low-amplitude spikes as there are in the sorted individ-

ual neurons (Figure 2, fourth column). Second, we repeated this analysis with data created

by randomly recombining individual neurons to simulate multi-unit threshold crossings.

In this case, the results also closely matched those found with sorted single neurons (Fig-

ure 2, fifth column). Note that the PSTHs for this case are not anticipated to resemble

those of any particular single units, but are not shown to demonstrate that recombination

of units does not substantially wash out tuning.

These results afford several observations. First, for some electrode channels, the shape

of the PSTH across conditions is closely recapitulated regardless of the threshold level or

inclusion of hash (Figure 2C). For these channels, the spatial and temporal properties of the

constituent parts of the multi-unit threshold crossings (i.e., individual neurons and hash)

are similar enough that combining these components just results in a simple vertical scal-

ing of the PSTH. For other electrode channels, however, the inclusion of additional units

via re-thresholding with a more permissive threshold does change the spatial and temporal

tuning by adding neurons with different tuning properties (Figure 2D). Interestingly, how-

ever, when we consider all electrode channels together and reduce the dimensionality of

the data using PCA, we find the resulting low-dimensional projections are not sensitive to

these individual channel-level changes. For both the randomly recombined units and the

discarded spikes, the resulting neural population analyses replicate the original findings,

including hypothesis tests evaluate with statistical criteria (e.g., p values), and the result-

ing low-dimensional neural population state trajectories closely resemble those estimated
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using only well-isolated neurons.

Study 2: Neural population dynamics during reaching

We tested this analysis method on a second study, conducted by Churchland and col-

leagues, who discovered that neural population activity in motor cortex exhibits strong

rotational dynamics during reaching Churchland et al. (2012); Pandarinath et al. (2015).

The population rotational dynamics were revealed using jPCA, a dimensionality reduc-

tion algorithm that identifies 2D planes exhibiting rotational dynamics within the higher-

dimensional neural state space. This study argues that motor cortex uses a set of oscil-

latory basis functions to construct the complex time-varying signals required to control

muscles during a reach. Further statistical support for this observation has been provided

provided by Elsayed & Cunningham (2017), demonstrating that the rotational dynamics

are not a trivial consequence of smooth firing rates and applying dimensionality reduction

algorithms to high-dimensional spaces.

The rotational dynamics described in Churchland et al. (2012) arise from limited-

duration oscillatory patterns present in the firing rates of individual neurons, which poses

a more challenging circumstance for testing whether multi-unit threshold crossings would

reveal the same low-dimensional neural structure. A potential concern is that linearly

combining the multiple units recording on a single channel would distort the observed

population dynamics by “washing out” temporally-precise tuning features of individual

units, since each of the constituent units in the multi-unit are not constrained to have sim-

ilar relationships with behavioral parameters or time-varying patterns of activity. Thus,

for this particular study, we might expect that combining oscillatory units with different
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periodicity or phases could decrease or eliminate rotatory dynamics at the level of the

population.

We did not find this to be the case, and instead were able to recapitulate Churchland

and colleagues’ findings using multi-unit threshold crossing data. Applying jPCA to the

original spike sorted data yields a 2D jPCA plane which captures 23% of the variance

in the neural data. Applying the same analysis to threshold crossing data yielded planes

which capture 23%, 23%, and 21% of the variance in neural data when using voltage

thresholds of -3.5, -4.0, and -4.5 × RMS, respectively. The key rotatory structure in the

neural population data reported by Churchland and colleagues was also preserved and

clearly present when using multi-unit threshold crossing data (Figure 3).

Study 3: Cortical activity in the null space: permitting preparation
without movement

The third and final study we replicated sought to understand how there can be large

changes in PMd and M1 firing rates during a preparatory instructed delay period, without

causing the circuit’s downstream muscle targets to move Kaufman et al. (2014). The mech-

anism the authors proposed is that the brain makes use of specific “output-null” dimensions

in the neural state space (i.e., weighted combinations of firing rates of neurons that cancel

out from the perspective of a downstream readout) to enable computation within a given

circuit without influencing output targets. Other “output potent” neural dimensions do not

cancel out, resulting in signals which do cause muscle activity. Kaufman and colleagues

showed that neural population activity patterns before movement lay in the putative output-

null subspace, consistent with this ‘output-null hypothesis’. Importantly, the output-null

and output-potent dimensions were not separate sets of neurons (such as separate pools of
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delay-active neurons and movement-only neurons) Kaufman et al. (2014). Instead, these

output-null and output-potent neural dimensions consisted of different weightings of the

same neurons which were identified by contrasting the dominant modes within the low-

dimensional population activity (found using PCA) between preparation and movement.

Recently these dimensions have been shown to be truly orthogonal Elsayed et al. (2016).

Kaufman and colleagues’ findings represent a particularly strict and challenging test

of the threshold crossing approach, as one might expect that combining multiple neurons

might mix together output-potent and output-null dimensions. On the other hand, since

these dimensions are weighted sums of many different neurons, then one might expect

that that combining sums of neurons would provide similar results. Indeed, we find that

with 192 threshold crossing channels (96 electrodes in PMd and 96 electrodes in M1),

we observed the same distinction between output-potent and output-null neural dimen-

sions as in the original study (Figure 4). This was quantified using the ratio of variance

of neural activity in output-null to output-potent dimensions, found to be 3.84 (p = .048)

using threshold crossings (−3.5×RMS), compared with tuning ratio 5.6 (p = .021) (Fig-

ure 4, dataset N20100812). In addition, we observed a larger transient component in both

the output-null and output-potent response following target appearance, as shown in Fig-

ure 4C,D. Despite these differences, the multi-unit threshold crossing analysis of these

data recapitulated the key finding that motor cortical firing patterns are largely restricted

to output-null dimensions during movement preparation, which provides an explanation

of how this activity is prevented from prematurely causing movements.

Kaufman and colleagues’ study assessed whether preparatory activity occupies an or-

thogonal subspace to that comprising the movement activity. This analysis uses PCA to
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find a 6D space, then partitions that space into two 3D subspaces, an output potent and

output null subspace. All neural activity, regardless of task-relevance, must exist in either

of these two orthogonal subspaces, making this analysis intrinsically hungry for statistical

power. The p-values calculated using the original study’s most conservative metric (which

includes all neural data following target presentation, both initial transient and steady state)

were 0.269 and 0.554 for thresholds of −4.0×RMS and −4.5×RMS, respectively (com-

pared to X and Y using sorted neurons). The effect sizes are 2.006 and 1.926, respectively.

The p-values calculated at steady state, however, were 0.042 and 0.119 respectively, and

the variance tuning ratio plots are qualitatively quite similar. While these results are close,

but do not quite both reach a p-value of 0.05 significance level, we speculate that the sta-

tistical power would grow significantly with additional channels of threshold crossing data

as was used for the other array dataset in Kaufman et al. (2014). A germane independent

validation of measuring the output-null hypothesis using threshold crossings (rather than

sorted spikes) comes from our recent study which used BMI experiments to definitively

show that the output-null mechanism isolates visuomotor feedback from prematurely af-

fecting motor output Stavisky et al. (2017).

To summarize our experimental analysis results, we selected three recent studies based

on the potential challenges and insights they could offer for this investigation of using

multi-unit threshold crossings instead of sorted single unit activity. For all three previously

published studies considered here, the key scientific advances have been recapitulated us-

ing threshold crossings instead of individual neurons. While this outcome need not be the

case for all studies, the fact that it worked for these three different studies, which span

a variety of datasets, questions, and analysis techniques, suggests that it will generalize
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to many other population-level analyses of neural activity. This could enable many new

scientific analyses, and we anticipate its relevance and importance to continue to grow as

the number of recorded neurons in experiments increases.

A random projection theory of recovering neural population dynamics
using multi-unit threshold crossings

We observe that the low-dimensional neural population dynamics reported here using

threshold crossings are very similar to those reported in previous studies that relied on

single neurons isolated using spike-sorting methods. Given that combining action poten-

tials from several neurons on each electrode channel discards some information, this result

may seem surprising. Why does discarding information have such a small effect on the

estimated dynamics? Here we use the theory of random projections to provide a quanti-

tative explanation. Central to this explanation is the concept of a manifold, or a smooth,

low dimensional surface containing the data. This explanation reveals that when a mani-

fold embedded in a high dimensional space is randomly projected to a lower dimensional

space, then the underlying geometry of the manifold will incur very little distortion under

the following conditions: the manifold itself is simple (i.e., smooth, with limited volume

and curvature) and the number of projections is sufficiently large with respect to the dimen-

sionality of the manifold. While true theoretically, the key practical question is, does this

theory guarantee accurate recovery of neural population dynamics under experimentally

and physiologically relevant conditions?

To apply random projection theory to our data, we must first define the high-dimensional

space and the low-dimensional manifold. In this neuroscientific application, the high di-

mensional space has one axis per neuron, with the coordinate on that axis corresponding
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to the firing rate of that neuron. Thus, the space’s full dimensionality is equal to the total

number of neurons in the relevant brain area, which is much larger than the total number

of neurons from which we are able to record. However, in many brain areas, particu-

larly within the motor system, most neurons’ trial-averaged neural activity patterns vary

smoothly across both time and behavioral-task conditions and exhibit consistent correla-

tion structure between neurons. Thus, as one traces out time and conditions, the resultant

set of covarying neural activity patterns constitutes the embedded manifold in random

projection theory Gao & Ganguli (2015) (i.e., blue curve in top-left of Figure 5A). Em-

pirically, we find that the dimensionality of neural activity is far lower than the number of

recorded neurons. This is likely due in large part to the structure of connections within the

network, but may also be in part due to the fact that the experimental conditions do not

fully span the set of possible behaviors.

Empirically, we find that activity in motor cortex is much lower dimensional than the

number of neurons, limiting the manifold volume. The manifold also has limited curva-

ture, precisely because neural activity patterns vary smoothly across time and conditions.

Thus this manifold satisfies the condition of simplicity posited in random projection the-

ory.

Finally, the mapping from single neuron firing rates to threshold crossing activity con-

stitutes a random projection itself: each electrode’s activity is a weighted linear combina-

tion of a small number of isolated neurons plus any additional hash that passes the thresh-

old. More specifically, threshold crossings are not only a linear weighting but an equal

weighting of each neuron’s action potentials (i.e., multi-unit threshold crossing rate = neu-

ron 1’s rate + neuron 2’s rate + ...). Thus, the low dimensional space in random projection
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theory has dimensionality equal to the number of electrodes. Within this low-dimensional

space of electrodes (which itself is a subset of the high dimensional space of neurons), neu-

ral activity traces out a simple manifold (Figure 5A) due to the even lower-dimensional

latent dimensionality of the activity.

This raises the critical question: how much is the geometry of the manifold distorted

when combining single-neuron firing rates within each electrode? To help understand this

question, we generated random manifolds of neural activity using simulated single units

and multi-unit firing rates, and estimated the dynamics of these random neural manifolds.

In generating these synthetic datasets, we incorporated the average correlation structure

between single neurons (Figure 5B) and between single units and multi-unit threshold

crossings on a given channel (Figure 5C). Neural population state-space trajectories ob-

tained from simulated single neurons (Figure 5D) closely match those obtained from sim-

ulated threshold crossings (Figure 5E). These results are consistent with and reinforce the

previous sections’ comparisons of single unit and threshold crossing neural dynamics in

real neural data.

Random projection theory enables us to go beyond this qualitative view and derive

a quantitative theory of how the geometric distortion between threshold crossings and

single-neuron neural population state-space trajectories depend on their underlying com-

plexity and on the number of measurement channels Donoho (2006); Baraniuk & Wakin

(2009); Ganguli & Sompolinsky (2012); Advani et al. (2013). Here we define the distor-

tion as the worst case fractional error in distances between all pairs of points on all tra-

jectories, measured in the space of electrodes, relative to the space of single neurons (see

Methods, and also Lahiri and colleagues for a detailed discussion Lahiri et al. (2016)).
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This distortion will depend on the volume and curvature of the trajectories. In the simple

case where neural population dynamics consists of C different neural trajectories each of

trial duration T , the volume can be taken to be proportional to CT . In turn, the curvature

is related to the inverse of the temporal auto-correlation length τ of the neural trajectories

Clarkson (2008); Baraniuk & Wakin (2009); Verma (2011); Gao & Ganguli (2015); Lahiri

et al. (2016). Intuitively, τ (see Methods) measures how long one must wait before a neural

trajectory curves appreciably, so that small (large) τ indicates high (low) curvature.

We can parametrically vary the complexity of neural population dynamics by analyz-

ing subsets of neural trajectories of different durations T and subsets of conditions of

different sizes C. In doing so for real data, we find that the distortion grows with both T

andC (Figure 5F). However, random projection theory predicts a very striking and specific

scaling relation between the squared distortion ε2 and the parameters T , C, and number

of channels M . In particular it predicts that ε2 scales linearly with 1
M

ln
(
CT
τ

)
. Thus, dis-

tortion is predicted to be directly proportional to the logarithm of the product of manifold

volume and curvature (i.e. CT
τ

), and inversely proportional to the number of recording

channels M . This predicted scaling relation is seen both in neural data (Figure 5G) and

in simulations where the data was generated so as to match the overall average statistics

of the recorded data (Figure 5H).

We note, however, that the distortion relationships found in the two different datasets

(and the simulated data generated based on their statistics) form two different lines in

(Figure 5G,F). A key reason for the discrepancy is that these analyses deal not with deter-

ministic random projections, but rather noisy random projections, in which the presence

of hash introduces both signal and additional noise, or activity which is uncorrelated to
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the single neurons on a channel. A natural measure of signal to noise is the ratio of the

variance of single unit activity, to the variance of that part of the hash that is not correlated

with the single units. By fitting a generative model to the neural data, we can estimate this

SNR (see Methods). We found it to be 1.9 for dataset N20101105 in Ames et al. (2014)

and 1.3 for dataset N20100812 in Kaufman et al. (2014). Thus, as expected, both the

recorded and simulated data incur higher distortion at fixed complexity CT
τ

if the SNR is

lower.

How does the SNR more generally impact distortion? While there is as yet no general

theory of how noisy random projections distort the geometry of smooth manifolds, we em-

pirically find the scaling relation to be ε2 ∝ 1
M

[
ln
(
CT
τ

)
+ 1

SNR

]
, as verified in simulations

in Fig 5H. Thus this novel scaling relationship provides quantitative theoretical guidance

for when we can expect to accurately recover neural population dynamics without spike

sorting. Intuitively, analyzing threshold crossings makes sense when (1) neural trajectories

are not too long (small T , e.g.: less than a few seconds), (2) not too curved (large τ ), (3)

not too many in number (small C), (4) the additional multi-unit hash has small variance

relative to that of single-units on the same electrode (non-negligible SNR), and (5) we have

enough electrodes (large M ). Under these conditions, neural dynamics can be accurately

inferred using multi-unit threshold crossings. All of these conditions are satisfied in the

datasets considered here, and are likely to be satisfied in many more. Future studies of

recordings from other brain regions, in other species, and across a range of conditions (1-5

above) will be needed to further establish the generality of these experimental, analytical

and theoretical findings.
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Discussion

We investigated whether multi-unit threshold crossings can be used instead of isolated sin-

gle neurons for questions involving neural population dynamics. We believe that this ques-

tion is necessary and timely, as neuroscientists and neuroengineers are currently engaged

in a massive and expensive scale-up in the number of electrodes used to make measure-

ments. Moreover, the field is facing the question of the type of neural data (e.g., single

neurons, multi-units, local field potentials) that will be important to record when thou-

sands to millions of electrodes are available. Some of these questions are already starting

to be confronted in the related but distinct endeavor of large-scale neural imaging using

genetically-encoded calcium indicators.

We report here both an empirical validation and a theoretical justification which to-

gether argue that many of the same scientific conclusions can be made about motor cor-

tical population activity without spike sorting. We believe that these findings are broadly

useful for several reasons. First, the process of spike sorting is both time consuming and

inexact, with significant variability between experts Wood & Black (2008). For a typical

experiment composed of several hours of neural recordings, an expert human sorter may

spend several hours to manually sort spikes on a single 100-channel electrode array (e.g.,

“Utah array” Maynard et al. (1997)). New high-channel-count recording technologies are

becoming available that will enable recording from thousands to millions of channels si-

multaneously. A data set composed of 1,000 channels could take over 100 hours to hand

sort, with no ground truth available to validate results. As reported here, this effort has the

potential to yield little if any impact on the resulting scientific insight.

Second, in real-world experimental conditions, chronically implanted multi-electrode
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arrays in animal models or in humans often feature many channels with neural activity

that cannot be isolated into single neurons (e.g., Pandarinath et al. (2015)). Ignoring these

channels throws out potentially meaningful task-related information, possibly weakening

statistical power and subsequent scientific conclusions. Insisting on spike sorting in these

situations would fail to capitalize on valuable experimental and clinical opportunities. In-

cluding such electrodes will enable analyses of vastly larger datasets from neurons in more

brain areas; permit more efficient use of experimenter time by avoiding time-consuming

manual spike sorting; and reduce the number of research animals and clinical participants

needed, by making use of electrode sensors with less pristine recordings due to device age

or random variability.

Third, these results support the design of novel classes of sensors for both scientific

experimentation and BMI clinical trials, as described in more detail below.

Finally, and from a broader scientific perspective, this study may help increase sci-

entific reproduceability and reduce the number of animals or clinical trial participants

required for a given study. Regarding reproduceability of findings, removing the often

subjective step of spike sorting, which typically includes only vague descriptions of how

spike sorting was accomplished, ought to increase the ability of multiple labs to replicate

results from the same data set or to replicate findings as part of subsequent studies. Regard-

ing reducing the number of subjects needed, by quantitatively and theoretically grounding

the approach of using threshold crossings, large numbers of unused existing data sets can

now be brought to bear on new hypotheses. Data sets collected using older electrode tech-

nologies, or where biological conditions prevent detection of well isolated cells, are likely

appropriate for answering new questions without spike sorting, as opposed to the more
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stringent spike sorting step, and thereby potentially reduce the number of new subjects

required.

We stress that this method is not appropriate for scientific questions that seek to in-

vestigate the properties of individual neurons (i.e.: not for questions regarding stimulus

selectivity, single cell tuning properties, etc). For such studies, we must either rely on

closely clustered electrodes and automated sorting methods or restrict the number of neu-

rons to a feasible hand-sortable quantity.

Necessary conditions for using this paradigm

The Johnson-Lindenstrauss lemma shows that manifold estimation error increases as the

complexity of the underlying manifold increases Johnson & Lindenstrauss (1984). The

studies replicated here have all focused on neural recordings from PMd and M1, where

roughly 10-15 dimensions capture 90% of the variability of trial-averaged neural popu-

lation activity when monkeys perform a simple 2D reaching task (e.g., Yu et al. (2009)).

Recording from one or two Utah arrays (i.e., 96 or 192 electrodes) provides sufficiently

redundant sampling. In this regime, we robustly find that we can replicate scientific hy-

potheses using electrical threshold crossings in place of well isolated single units.

The observation of low-dimensional neural population dynamics is well established in

the motor system, but may not be true for all brain areas. In other brain areas, particu-

larly input-driven sensory areas, the dimensionality of neural activity may be significantly

higher or scale rapidly with the complexity of a sensory stimulus, resulting in more com-

plex activity manifolds Cowley et al. (2016). Under these other conditions, it remains to

be determined how many independent random projections (multi-unit recording channels)
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would be required to accurately recover the underlying structure of neural activity.

Implications for neural recording sensor design

These findings unlock the potential for developing both acute and chronic multielectrode

arrays which feature many thousands to millions of electrode channels at the expense of

discarding information necessary to sort individual neurons.

Virtually all existing acute and chronic electrode arrays are designed with the ability to

record broadband analog data from each channel (e.g., digitizing 30,000 samples per sec-

ond). Relaxing these constraints reduces the storage and processing requirements for acute

experiments and enables low power, high-channel count devices for clinical applications,

where size, power, and communication bandwidth requirements constrain the number of

channels. Regarding acute experiments, saving only the spike times for multi-unit thresh-

old crossings reduces the total data volume between 4 and 5 orders of magnitude relative

to saving broadband data. This is especially relevant for clinical applications, where wire-

less neural data communication is necessary. Radios consume considerable power at high

bandwidth, which increases with sampling rate and bit depth. This work argues in fa-

vor of developing chronically-implantable electrode arrays with integrated electronics and

wireless-data transmission, which optimize for low power consumption and communica-

tion bandwidth in place of spike sorting, enabling dramatically higher total channel count

given a space and power budget (e.g.: Chestek et al. (2009); O’Driscoll et al. (2011).

Second, for any fixed number of electrodes to be distributed throughout some vol-

ume of tissue (e.g., across the surface of the cortex, in depth through cortex, as well as

in deeper structures), there exists a trade-off between the goals of spike sorting, which
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benefits from closer electrode spacing, and recording from a larger number of neurons dis-

tributed through a larger volume. For example, the newly-developed Neuropixels probes

enable a user to select a subset of 384 active channels from a total of 966 along a single-

shank silicon probe. By selecting a sparse subset of the active channels, a user can elect to

trade off additional tissue coverage for spike sorting quality at the outset of an experiment

Jun et al. (2017b).

This study reinforces the idea that selecting an appropriate sensor depends on both

the scientific goals of an experiment and the structure of activity in the recorded brain

region. In brain areas whose neural population activity is governed by low-dimensional

dynamics, a sensor that prioritizes quantity of independent neural channels over quality of

unit isolation may be appropriate.

Conclusions

The experimental neuroscience paradigm proposed here, using threshold crossings, ap-

plies to neural population-level analyses. It is not applicable in cases where one wishes to

make statements about the properties (e.g. stimulus selectivity) of individual neurons. We

nonetheless anticipate that this approach is broadly applicable to systems neurophysiol-

ogy and is relevant not only to the analysis of experimental data, but also to the design and

use of new chronic electrode arrays and acute multi-site recording probes. Using thresh-

old crossings in lieu of spike sorted units will likely become increasingly important and

enabling for population analyses in order to address growing dataset sizes and to enable

next-generation brain-machine interfaces with considerably greater capabilities, perfor-

mance and robustness. The present work demonstrates that this method is theoretically
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justified, empirically supported, and simple to use.

Methods

Details of the experimental procedures for the three previous studies whose data was re-

analyzed here using threshold crossings, including these studies’ behavioral analyses, neu-

ral recordings, and neural analyses, have been detailed previously in Ames et al. (2014);

Churchland et al. (2012); Kaufman et al. (2014). In all three of those experiments, mon-

keys performed a delayed point-to-point reaching task to targets presented on a touch

screen while neural data was recorded from two Utah arrays (Blackrock Microsystems,

USA) placed in PMd and M1 of the contralateral hemisphere. All surgical and animal

care procedures were performed in accordance with National Institutes of Health guide-

lines and were approved by the Stanford University Institutional Animal Care and Use

Committee.

Data Preprocessing

In all three sets of experiments, raw neural recordings (voltage measurements taken at

30,000 Hz) were first high-pass filtered above 250 Hz (4-pole, ”spikes medium” setting)

by the Blackrock neural recording system. Then, voltage snippets around measurements

that crossed a threshold at −3.5× root mean square voltage level for a given channel were

saved. Spike sorting for the original studies was performed by hand, based on grouping

spikes by similarity of waveform (i.e., assigning them to putative single neurons). For the

present study’s re-analyses, ’re-thresholded’ datasets were constructed by calculating new

voltage threshold levels for each channel, and retaining the subset of original waveforms
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that also crossed the more conservative thresholds at −4.0 and −4.5× RMS. Threshold

crossings, regardless of waveform shape, were treated as spike events and processed fur-

ther into temporally-smoothed, trial-averaged PSTHs prior to subsequent analyses such as

PCA Ames et al. (2014); Kaufman et al. (2014) or jPCA Churchland et al. (2012).

The result obtained by Kaufman and colleagues is particularly hungry for statistical

power, as it simply involves a binary partition of a 6D space, and looks for differences in

activity at different time points in the two subspaces. For this study, after re-thresholding

data, noisy and/or very weakly modulated units were removed using an SNR threshold.

For this context, SNR as a unit’s modulation depth (i.e., maximum minus minimum firing

rate) across all conditions and time, divided by the peak of that unit’s standard deviation

across all conditions and time. Sweeping the SNR rejection threshold between 0 and 1.2

results in rejecting 0 to 8.8% of units, respectively (-3.5 rms dataset). The calculated p-

value varies between a maximum of 0.065 (no unit filtering) and a minimum of 0.0475

across this range.

Definition of the Distortion of Manifolds under a Projection

Let r be a high-dimensional vector of single neuron firing rates at an instant of time. Let

e be the corresponding thresholded, temporally smoothed electrode activities at the same

time. They are related via a noisy projection e = Ar + h where the elements of the

matrix A indicate how much each neuron contributes to each electrode, and the noise

vector h indicates the additional contribution of hash that passes threshold. The geometric

distortion of a single electrode pattern e, relative to a firing rate pattern r is defined as

ε =

∣∣∣∣λ‖e‖ − ‖r‖‖r‖

∣∣∣∣ ,
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where λ is a scale factor, used to remove the effect of multiplication of all vectors by a

single scalar. Here ‖·‖ denotes the length of a vector, and so the distortion is the fractional

change in length up to a scale λ.

The distortion of a set of manifolds is computed by finding the maximum distortion of

the vectors between all pairs of points on any of the manifolds, including those between

different manifolds. The scale factor λ is chosen to minimize the maximum distortion

of the manifold set, thereby correcting for trivial overall changes in scale induced by the

projection. Thus the distortion of a set of manifolds is the worst case fractional error in

pairwise distances, up to an overall scale.

A generative model for neural manifolds and their projections

To quantitatively test how well the framework of random projections of smooth manifolds

matches neural data, we developed a generative model of neural state space dynamics in

single neuron firing rate space, its projection to electrodes, and the addition of hash. We

modeled the neural population dynamics themselves as a random smooth manifold. We

generated 50 different such manifolds and their noisy projections by sampling T × C ×

(N +M) numbers (firing rates) from a multivariate Gaussian distribution, with mean and

covariance chosen to have the same statistics as in the data, where T is the number of time

points in a neural trajectory, C is the number of conditions, N is the number of single units

and M is the number of recording channels (192 in this case). The multivariate Gaussian

distribution we used corresponds to the following generative model for the PSTHs of single

units, rn, multi-unit hash, hµ, and channels, eµ:
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eµ(t, c) =
∑
n

Aµnrn(t, c) + hµ(t, c),

rn(t, c) = R(t, c) + βr (zn(t, c) + krz(t, c)) ,

hµ(t, c) = H(t, c) + βh (εµ(t, c) + khε(t, c)) +
1

N

∑
n

(MksAµn + kd) rn(t, c),

where zn(t, c), z(t, c), εµ(t, c), and ε(t, c) are independent Gaussian random processes

whose autocovariance across time and conditions were set equal to corresponding quantity

computed from data, normalized to have unit total variance. The functionsR(t, c), H(t, c),

and the constants βr, kr, βh, kh, ks, kd, were fit to the data by setting the means, standard

deviations and correlation coefficients of rn and hµ in the model equal to the mean of

the corresponding quantity in the data. The constant kr accounts for correlations between

single units, kh for correlations between hashes, kd for correlations between hash and

single units, and ks for the stronger correlations between hash and single units on the same

channel.

In this generative model it is possible to separate the simulated unsorted activity, eµ,

into noise (the terms proportional to βh) and signal (everything else). This allows us to

calculate a signal-to-noise ratio for each dataset after fitting the model parameters, defined

as the ratio of the variances of signal and noise.

For each manifold set, 100 random projections were sampled, which were M × (N +

M) matrices of ones and zeros, where each of theN single units contributes to one channel

chosen randomly fromM of them, and each of theM hashes contributes to its correspond-

ing channel.

For each random projection and random manifold set, the distortion of the manifold

set was computed as described above. The 95th percentile of the distortions under the 100
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projections was recorded. The mean and standard deviation of these distortion percentiles

was taken over the 50 manifold sets.

Distortion of PSTHs

The PSTHs of the spike sorted data were taken to be the set of unprojected manifolds and

the thresholded data was taken to be the set of projected manifolds. The distortion of the

manifolds was then computed as described above.

Correlations of PSTHs

The covariance matrix across time and conditions was computed from spike sorted data

by treating each neuron as a sample. The normalized covariance matrix was computed

by dividing the covariance matrix by the total variance across time and conditions. To

compute the correlation time, this covariance was then averaged for pairs of times with the

same separation. This covariance function was then fit to a sum of two Gaussians centered

at zero. The correlation time τ was then computed by matching the value and second

derivative at zero to that of a single Gaussian. The correlation coefficients and standard

deviations of single units and hash were computed from spike sorted data by treating each

time point and condition as a sample.
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Figure 1: SortFree Concept A) Data acquisition and preprocessing pipeline The experimentally measured dimen-
sionality of neural activity in the motor system suggests that a small number of latent factors (often 8-12) captures
the majority of task-relevant neural variability. In most experiments, neural recordings are sparsely sampled from up
to a few hundred neurons in systems containing many millions of neurons. B,C) Typically, spikes from individual
neurons are sorted using action potential waveforms and dimensionality reduction is performed on the smoothed
firing rates of the isolated units. Here, we propose that for certain specific classes of analyses, it’s theoretically sensi-
ble to bypass the sorting step and perform dimensionality reduction or population-level analyses on voltage threshold
crossings directly. Neural trajectories for delayed reaches to one of eight radial targets using manually sorted neurons
D) or multi-unit threshold crossings E) display little distortion in the low-dimensional projections using PCA.
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Figure 2: Replication of “Neural population dynamics during reaching Ames et al. (2014)”. (A) Neural trajec-
tories calculated using PCA on trial-averaged neural activity for reaches with and without delay period using hand
sorted units, more conservative threshold set at −4.5×RMS, more permissive threshold set at −3.5×RMS, using
only threshold crossings that were discarded after sorting, and when sorted units were randomly combined to simu-
late multi-unit channels. (B) Key results from Ames et al. (2014), distance in full-dimensional neural space between
trial-averaged neural trajectories of reaches when the monkey was or was not presented with a delay period. Note that
the y-axis is scaled between columns, illustrating that although ensemble firing rates are higher with more permissive
thresholds, the key qualitative and quantitative features of the population neural response are conserved. (C) Example
unit 1: PSTHs for center-out reaches to eight radially spaced targets. In this example, the Y-axis scales upward with
a more permissive threshold, but the overall shape of the PSTH is quite similar regardless of sorting or thresholding.
(D) Example unit 2: Features of the PSTHs for this unit do change as a more permissive threshold is used. Despite
this variation, the estimated neural state from the population response, as shown in A is largely invariant to choice of
threshold.
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Figure 3: Replication of “Neural population dynamics during reaching” Churchland et al. (2012). Neural
trajectories from 108 conditions including straight and curved reaches using... (A) Hand sorted units. (B-D) Multi-
unit activity using a voltage thresholded at −4.5, −4.0 and −3.5 × the root mean square (RMS) of the overall
electrical recording. The total amount of variance captured in the top rotational plane as well as qualitative features
of neural population state space trajectories is similar across sorted units and all three threshold crossing levels.
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Figure 4: Replication of “Cortical activity in the null space: permitting preparation without movement” Kauf-
man et al. (2014). Comparison of output-null results from Kaufman et al. 2014 using sorted and thresholded data.
(A) Neural activity in one output-null and output-potent dimension for one data set (NA), as in Figure 4A,B in Kauf-
man et al. (2014). Activity is trial-averaged, and each trace presents the neural activity for one condition. (B) Same
as (A), computed using activity thresholded at −3.5× RMS. (C) Tuning depth at each time point in output null and
output potent dimensions, as in Figure 4C in Kaufman et al. (2014). (D) Same ac (C), computed using activity
thresholded at −3.5× RMS.
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Figure 5: Random projection theory supports not spike sorting. (A) Schematic depiction of a projection of a
trajectory through high-D firing rate space defined by single units, projected onto a subspace defined by the number
of recording channels. A small amount of information is lost by combining units on each channel. Adding the contri-
bution of multi-unit hash may introduced additional distortion to the estimated neural trajectories, though in practice
this appears to be small. (B) Pearson correlation coefficient between single units on the same recording channel
(blue) and different channels (green) for dataset N20101105. (C) Hash has a larger Pearson correlation coefficient
(p < 0.05) with single units on the same channel (blue) than from other channels (green). Same dataset as (B).
(D) PCA trajectories sampled from simulated random Gaussian manifolds were measured from (simulated) single
neuron activities. Manifold mean and covariance were matched to those of neural activity from dataset N20101105
spike sorted data. (E) the same as (D) for threshold crossings data. (F) The maximum distortion of random one-
dimensional manifolds under random projections of N = 125 neurons. The length of the manifolds, T (sec), and the
number of manifolds, C, are varied with fixed correlation length, τ = 14.1. The 95th percentile of the distortions
under 100 random projections is plotted (mean ± standard deviation for 50 repetitions). This collapses into a simple
linear relationship when viewed as a function of ln(CT/τ), plotted for data (G) and for simulated random Gaussian
manifolds (H).
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Figure S1: Waveforms and tuning of single and thresholded units (A) Hand-isolated waveforms from channels
with either one or two units. (B) All waveforms detected using signal threshold −4.5× RMS. Additional waveforms
not already present in (A) are highlighted in red. (C) All waveforms detected using signal threshold −3.5× RMS.
Additional waveforms added not already present in (B) are shown in purple. (D) Firing rate tuning curves during
reaches to eight radially spaced targets for the three thresholding levels shown in A-C. Consistent with expectations,
more permissive thresholds broaden tuning curves but generally preserve peak tuning direction. (E) Firing rate for
peak tuning direction for each threshold level A-C. More permissive thresholds result in higher firing rates.
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Figure S2: Behavior and population vector decode (A) Hand trajectories and reach endpoint covariance ellipsoids
for dataset N20101105. (B) Population vector decode of reach direction using binned spike counts durign peri-
movement period from sorted and threshold crossings at multiple threshold levels.
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Figure S3: Consistency of rotational dynamics of thresholded data Figure reproduced from Churchland et al.
(2012), Figure 6, with additional data points for the re-thresholded data sets (green markers), illustrating that the
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M for thresholded datasets is consistent with hand sorted neural data.
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