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Abstract 

 45 
Differentiation into diverse cell lineages requires the orchestration of gene regulatory networks guiding 
diverse cell fate choices. Utilizing human pluripotent stem cells, we measured expression dynamics of 
17,718 genes from 43,168 cells across five time points over a thirty day time-course of in vitro cardiac-
directed differentiation. Unsupervised clustering and lineage prediction algorithms were used to map fate 
choices and transcriptional networks underlying cardiac differentiation. We leveraged this resource to 50 
identify strategies for controlling in vitro differentiation as it occurs in vivo. HOPX, a non-DNA binding 
homeodomain protein essential for heart development in vivo was identified as dys-regulated in in vitro 
derived cardiomyocytes. Utilizing genetic gain and loss of function approaches, we dissect the 
transcriptional complexity of the HOPX locus and identify the requirement of hypertrophic signaling for 
HOPX transcription in hPSC-derived cardiomyocytes. This work provides a single cell dissection of the 55 
transcriptional landscape of cardiac differentiation for broad applications of stem cells in cardiovascular 
biology.  
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Introduction 80 
 

Studies of cardiac development at single-cell resolution have provided valuable new insights into 
cell diversity and genetic regulation of cell types revealing mechanisms underlying cardiovascular 
differentiation and morphogenesis. Single-cell analysis of in vivo mouse heart development have revealed 
chamber-specific and temporal changes in gene expression underlying embryonic heart development from 85 
E9.5 to postnatal day 21 establishing anatomical patterns of gene expression in the heart (Li et al., 2016) 
and new insights into transcriptional programs underlying cardiac maturation (DeLaughter et al., 2016).  
These studies provide a valuable resource by which to understand transcriptional mechanisms underlying 
diverse fate choices involved in cardiac development and morphogenesis in vivo. Like many single-cell 
transcriptomic studies, they further highlight the importance of dissecting cell heterogeneity to understand 90 
mechanisms underlying the identity and fate of cells in health and disease.  

Human pluripotent stem cells are a key model system to study human cardiovascular 
developmental biology (Murry and Keller, 2008). However, the fidelity by which cardiac directed 
differentiation in vitro recapitulates the transcriptional programs governing the diversity of cell fates 
generated in vivo is not well understood. Analyzing differentiation efficiency has relied extensively on 95 
expression signatures from bulk samples consisting of hundreds of thousands of cells which lack the 
resolution to dissect gene expression and cell subpopulation heterogeneity. Furthermore, identification of 
rare populations remains challenging. Cardiac progenitor populations, for example, are difficult to 
identify but important as they constitute cell states underlying decision points in fate diversification 
(Qyang et al., 2007). Lastly, modelling development and disease requires an accurate, quantifiable 100 
analysis of complex decisions underlying the orchestration of heterogeneous cell types responsible for 
cell phenotypes, from molecular characterization to physiological function.  

In this study, we report RNA-sequencing data captured from more than forty thousand single 
cells navigating stage-specific transitions through in vitro cardiac directed differentiation from 
pluripotency using an established small molecule Wnt modulation protocol (Burridge et al., 2014; Lian et 105 
al., 2012). In coordination with a companion paper (Nguyen et al., in review), we utilize the power of this 
data set to expand our understanding of stem cell directed differentiation as a platform to study 
cardiovascular development. The overall objective of this study was first to benchmark in vitro directed 
differentiation against in vivo development by subpopulation and lineage prediction analysis and second 
to identify mechanisms for directing in vitro differentiation to more accurately model in vivo heart 110 
development. To this end, using unsupervised clustering analysis of single cell data we identify 
transcriptionally distinct cell subpopulations transiting cardiac directed differentiation that correlate with 
mesendoderm fate choices made during gastrulation phases of germ layer specification and progressive 
developments in cardiovascular differentiation and morphogenesis in vivo (Li et al., 2016; Peng et al., 
2016). To dissect cell fate choices, we implement scdiff (Ding et al., 2018) which is specifically designed 115 
for time-course single-cell data, to study transcription factors and their regulatory networks underlying 
coordinated differentiation of diverse cell subpopulations through differentiation from pluripotency into 
the cardiac lineage. Since heart development in vivo requires instructive cues from exogenous sources like 
signaling from endoderm and mechanical forces of heart beat and growth, we aimed to leverage single-
cell transcriptomic data to identify novel signaling or mechanical strategies for differentiating hPSCs to 120 
more accurately pattern cardiac fates. We identify the non-DNA binding homeodomain protein HOPX, a 
key regulator of heart development (Jain et al., 2015), as dysregulated during differentiation and a 
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potential cause for the immature state of in vitro derived cardiomyocytes. We use genetic gain and loss of 
function hPSCs to show that HOPX is responsive to signals of hypertrophy and is required to drive 
hypertrophic growth of in vitro derived cardiomyocytes. We also dissect the transcriptional complexity of 125 
the HOPX locus to show the mechanism for HOPX regulation of hypertrophic growth. Taken together, 
these data provide a new resource for the community and identify a novel strategy for enhancing 
derivation of in vitro derived cardiomyocytes for applications in cardiovascular biology.  

 
Results 130 
 
Single-cell RNA-sequencing analysis of cardiac directed differentiation 
 
To gain insights into the genetic regulation of cardiovascular development, we performed single-cell 
transcriptional profiling of human iPSCs navigating from pluripotency through stage-specific transitions 135 
in cardiac differentiation (Figure 1A). Small molecule Wnt modulation was used as an efficient method 
to differentiate pluripotent cells toward the cardiac lineage (Burridge et al., 2014; Lian et al., 2012). 
WTC-CRISPRi hiPSCs (Mandegar et al., 2016) were chosen as the parental cell line for this study. These 
cells are genetically engineered with an inducible nuclease-dead Cas9 fused to a KRAB repression 
domain. Transcriptional inhibition by gRNAs targeted to the transcriptional start site is doxycycline-140 
dependent and can be designed to silence genes in an allele-specific manner. The versatility of this line 
provides a means to use this scRNA-seq data as a reference point for future studies aiming to assess the 
transcriptional basis of cardiac differentiation at the single-cell level. Cells were verified to have a normal 
46 X,Y male karyotype by Giemsa banding analysis before analysis by scRNA-Seq. As with previous 
time-course genomics studies (Paige et al., 2012; Palpant et al., 2017b), we captured cells at time points 145 
corresponding to stage-specific transitions in cell state including pluripotency (day 0), germ layer 
specification (day 2), and progressing through progenitor (day 5), committed (day 15), and definitive (day 
30) cardiac cell states. We harvested a total of 44,020 cells of which 43,168 cells were retained after 
quality control analysis. In total, we captured expression of 17,718 genes (detected in at least 44 cells and 
with expression values within the overall expression range of 3 median absolute deviation, as described in 150 
our companion paper (Nguyen et al., in review)). We used dimensionality reduction approaches to 
visualize all 43,168 cells in low-dimensional space (Figure 1B), in which cell’s coordinates were 
estimated so that they preserve the expression similarity (local and global distance in the original 
multidimensional space) in t-SNE plots (left), and the differentiation pseudotime (transition probability 
between cells) in diffusion plots (right). These data show distinct transcriptomic clustering and 155 
distribution of cells undergoing differentiation. 

We generated a time-course gene expression profile using a wide range of known cardiac 
developmental genes by measuring expression among all cells to reveal the temporally-restricted 
expression dynamics of stage-specific genes reflecting cardiac fate choices (Figure 1C). To confirm that 
the differentiation follows known developmental trajectories, we used dimensionality reduction methods  160 
(Coifman et al., 2005; Moignard et al., 2015) (Figure 1D) and unsupervised clustering (Clustering at 
Optimal REsolution (CORE) (Nguyen et al., in review)) (Figure 1E) to analyze the expression of known 
genes governing stage-specific transitions in cardiovascular differentiation at single cell resolution. 
Overall, these data show that small molecule-mediated cardiac directed differentiation generates 
developmentally distinct populations of cells displaying expected temporal-specific transcriptional 165 
profiles. Our parallel computational genomics study (Nguyen et al., in review) presents a web interface 
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(http://computationalgenomics.com.au/shiny/CardioDifferentiation/), provided as complementary 
resources for this study. 

 
Phenotypic diversity and lineage heterogeneity during differentiation. 170 

 
With recent developments in high-resolution transcriptomic mapping of mouse in vivo development of the 
cardiovascular system from the earliest stages of gastrulation (DeLaughter et al., 2016; Li et al., 2016; 
Peng et al., 2016), we set out to map single-cell heterogeneity of human in vitro derived subpopulations to 
cell types against stages of lineage specification in vivo. While cross species comparisons have 175 
limitations, this strategy has been used previously for benchmarking in vitro differentiation of hPSCs 
(DeLaughter et al., 2016). To assist in elucidating the molecular identity of each subpopulation, we 
analyzed high-resolution spatio-temporal gene expression during mouse in vivo gastrulation to identify 
genes that mark known developmental populations and cell types (Figure S1). Using previously 
published approaches, laser microdissection was used to capture germ layer cells of mid-gastrula stage 180 
(E7.0) embryos (Peng et al., 2016), with an expanded analysis to include early- (E6.5) and late-
gastrulation (E7.5) mouse embryos (unpublished data). High-throughput RNA-sequencing data were 
compiled into corn plots, with each plot depicting discrete spatial-temporal patterns of gene expression 
corresponding to individually sequenced sections. To determine phenotypic identities based on gene 
expression networks governing each human in vitro-derived subpopulation during differentiation, we 185 
visualized the spatio-temporal patterns of gene expression in the gastrulating mouse embryo including: 
EOMES (pan-mesendoderm), MESP1 and MIXL1 (mesoderm), SOX17 and FOXA2 (endoderm), and 
NKX2-5 (cardiac lineage transcription factor) (Figure 2A, Figure S2A-D). These in vivo expression 
dynamics of mouse gastrulation established spatiotemporal reference points for identifying in vitro 
subpopulations.  190 

Based on these observations, we dissected the transcriptional phenotype of subpopulations 
identified during human cardiac directed differentiation. From pluripotency (Figure S3A-B), cells 
navigate through germ layer specification (day 2), comprising three transcriptionally distinct 
subpopulations that express the pan-mesendoderm gene, EOMES (Figure 2B-C, Figure S2A). Specific 
day 2 subpopulations express genes involved in mesoderm (D2:S2), mesendoderm (D2:S3), and 195 
definitive endoderm (D2:S1) (Figure 2B-C and Figure S2D and Figure S3C-D). Gene ontology (GO) 
analysis of differentially expressed genes between subpopulations indicated that only D2:S2 showed 
significant enrichment for cardiogenic gene networks (Figure 2D, Table S1). Surprisingly, these data 
show that only 34% of day 2 cells comprise cardiogenic mesoderm marked by MESP1 with the majority 
of cells characterized by mesendoderm and definitive endoderm expression patterns. At the progenitor 200 
stage (day 5), we identified cardiac precursors (D5:S1 and D5:S3) (Figure 2E-G and Figure S3E), a 
persistent population of definitive endoderm (D5:S2) (Figure 2E-F and Figure S3E), and endothelial 
cells (D5:S3) (Figure 2E-G). Day 15 and day 30 cells comprised two subpopulations (Figure 2H-M and 
Figure S3F-G). NKX2-5, MYH6, TTN and other cardiac structural and regulatory genes were identified 
in S2 (Figure 2H-M and Figure S3F-G). In contrast, S1 was primarily characterized by GO enrichment 205 
for genes associated with extracellular matrix deposition, motility, and cell adhesion (Figure 2J and M) 
which was supported by identification of a significant number of fibroblast-like cells marked by THY1 
(CD90) in S1 (Figure 2I and L). The co-existence of a non-contractile cell population, which is 
characterized as non-myocytes, is common in directed cardiac differentiation (Dubois et al., 2011). Taken 
together, these data show iPSC differentiation into committed (day 15) and definitive (day 30) 210 
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cardiomyocytes (S2) and non-contractile cells (S1) (Figure 2N). To assess the level of maturity derived 
from this protocol relative to in vivo human development, we compared day 30 clusters against ENCODE 
RNA-seq data from foetal and adult hearts (Figure 2O). Using genes that reflect either early foetal 
(TNNI1, MYH6) vs late stages of heart development (MYH7, TNNI3, MYL2), the most differentiated in 
vitro derived cardiac population (D30:S2) remains more developmentally immature than even first 215 
trimester human hearts.  
 
Lineage predictions based on regulatory gene networks governing differentiation 
 
While these bulk population analyses provided clarity into the diversity of cell types represented in 220 
cardiac differentiation, we sought to understand the lineage trajectories and gene regulatory networks 
governing diversification of cell fates. We implemented a probabilistic method for constructing regulatory 
networks from single-cell time series expression data (scdiff: Cell Differentiation Analysis Using Time-
series Single-cell RNA-seq Data) (Ding et al., 2018). The algorithm utilizes TF-gene databases to model 
gene regulation relationships based on the directional changes in expression of TFs and target genes at 225 
parental and descendant states. These prerequisites impact both cell assignment and model learning since 
each state is represented by a probabilistic model that takes into account not just the expression but also 
the regulatory information. As such, scdiff does not exclusively rely on expression similarity to connect 
states allowing it to overcome problems related to sampling since it can still identify descendent states 
even if they are less similar in terms of their actual expression profiles.  230 

We used scdiff to predict lineages underlying the diversity of fates during small molecule-
mediated cardiac directed differentiation (Table S2 and Figure 3A). Overall, the algorithm identified 
three distinct lineages from pluripotency comprising 10 nodes. Since this algorithm reassigns cells based 
on regulatory networks, we analyzed the distribution of cell subpopulations based on our CORE cluster 
classifications as outlined in Figure 2 to establish population identities linking predicted lineages (Figure 235 
3A-B and Figure S4A). The first lineage (N1:N2) diverts from pluripotency into a 
SOX17/FOXA2/EPCAM+ definitive endoderm population that terminates at day 2 and is comprised 
almost exclusively of D2:S1 and D2:S3 (Figure 3A-B and Figure S4A). The second lineage, N1:N3:N5, 
transitions from pluripotency (N1) into node 3 which is primarily comprised of definitive endoderm 
(D2:S1) and mesendoderm (D2:S3) but includes a larger fraction of MESP1/T+ mesoderm (D2:S2).This 240 
node is predicted to be the origin of another terminal lineage endpoint, node 5 at day 5, comprising 
FOXA2/EPCAM+ definitive endoderm cells (D5:S2 and D5:S4) (Figure 3A-B and Figure S4A). The 
third lineage comprises the longest trajectory through differentiation involving stepwise transitions in 
cardiac fate (N1:N4:N6-N9 and N6-N10). Pluripotent cells (N1) give rise initially to node 4 mesoderm 
(D2:S2) and mesendoderm (D2:S3) cells with subsequent progression into cardiac precursor cells (N6: 245 
primarily D5:S1 and D5:S3). From day 5 the algorithm predicts a bifurcation of fate giving rise to 
THY1+/NKX2-5- non-contractile cardiac derivatives (N8-10: D15:S1 and D30:S1) or NKX2-5+/MYH6+ 
committed CM (N7: D15:S2) that progress onto MYH7+/MYL2+ definitive CM (N9: D30:S2) (Figure 
3A-B and Figure S4A).  
 We leveraged the regulatory network predictions to identify key transcription factors and target 250 
genes underlying progressive fate changes across all 10 nodes (Figure 3C and Table S2). These data 
reinforce established mechanisms of cardiac lineage specification. In particular, we found evidence for 
down-regulation of Wnt/β-catenin signaling (LEF1) between N4-N6 which is required to transition from 
mesoderm into the cardiac progenitor cell (Paige et al., 2010; Palpant et al., 2013; Ueno et al., 2007). 
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From the progenitor node N6 into contractile cardiomyocytes N7:N9, the data show proper down-255 
regulation of progenitor transcription factors such as YY1 and up-regulation of TFs known to control 
cardiomyocyte differentiation such as NKX2-5. Downstream target genes involved in governing the 
transition from progenitor cells to a differentiated cardiac state were expressed concomitantly (Figure 
3C). Further subtype specification through computational analysis of D30:S2 did not reveal further atrial 
or ventricular cardiomyocyte subtypes by transcriptional profiling. Additionally, empirical studies are 260 
required to evaluate the composition, stoichiometry, and trajectory of these computationally determined 
lineages.    

To gain new insights into lineage trajectories derived during differentiation, we sought to 
understand the gene network underlying specification of non-contractile cardiac derivatives N8:N10, a 
population currently not well defined although widely used for tissue engineering applications 265 
(Thavandiran et al., 2013). The predicted network underlying this transition showed significant down-
regulation of cardiac TFs NKX2-5 and MAZ while other TFs involved in lipid metabolism/sterol 
regulation (SREBF2) and protein sumoylation (TOPORS) were up-regulated (Figure 3C). Of particular 
note, we observed up-regulation of Pre-B cell leukemia transcription homeobox (PBX1: P =  1.1e-16, 
mean DE target fold change = 2.72), a transcriptional regulator that activates a network of genes 270 
associated with cardiac outflow tract (OFT) morphogenesis (Arrington et al., 2012).  

To further assess an OFT phenotype, we compared expression of a panel of cardiomyocyte, early 
developmental vascular endothelial, and OFT development genes across all subpopulations comprising 
transitions from day 5 to 30 (Figure 3D). While early developmental vascular EC differentiation genes 
(TAL1, CDH5) were expressed in D5:S3, these genes were not expressed in D15 or D30. Furthermore, 275 
while D15 and D30 S2 cells expressed cardiac sarcomere genes and transcription factors associated with 
first heart field specification (IRX4 and HCN4), S1 cells exclusively expressed an extensive network of 
genes associated with OFT development including PITX2, TBX18, HOXA1-3, FGF10, GJA1, and KDR 
(Figure 3D). We also performed gene ontology analysis of differentially expressed genes between 
D30:S1 (N10) and D30:S2 (N9) cells. These data show a significant enrichment for gene networks related 280 
to vascular development (P = 1.1e-11) and blood vessel morphogenesis (P = 4.7e-9) exclusively within 
node 10 D30:S1 cells. This finding is supported by single-cell visualization showing enrichment of OFT 
gene expression in S1 vs S2 by t-SNE analysis of THY1 (59% D30:S1 vs 2% D30:S2), BMP4 (70% 
D30:S1 vs 6% D30:S2), and PITX2 (73% D30:S1 vs 17% D30:S2) (Figure 3E-F).  

Lastly, to anchor this observation to in vivo cell types, we used single-cell RNA-seq data of in 285 
vivo heart development (Li et al., 2016) to identify the top most differentially expressed genes between 
outflow tract and left ventricle (LV). These data show expression of BMP4, RSPO3, TNC, and COL1A2 
in D30:S1 and in vivo OFT derivatives and MYL2 and HOPX upregulated in cardiomyocytes (Figure 
3G). Lastly, to assess cell-type specific transcriptional signatures, we identified differentially expressed 
genes between D30 S1 vs S2 and performed a Spearman rank correlation analysis against expression 290 
profiles of in vivo FACS sorted (Quaife-Ryan et al., 2017) or single cell-derived cardiac subtypes (Li et 
al., 2016). These data show that D30:S1 has a significantly stronger correlation to OFT cells (Spearman’s 
ρ = 0.442) than fibroblasts (Spearman’s ρ = 0.219), endothelium (Spearman’s ρ = 0.175), or myocardium 
(Spearman’s ρ = 0.243) (P < 2.2x10-16 for all pairwise comparisons) (Figure 3H). As expected, there was 
a significantly stronger correlation of D30:S2 to myocardium (Spearman’s ρ = 0.448) compared to 295 
D30:S1 (Spearman’s ρ = 0.243, P < 2.2x10-16) (Figure 3H). Collectively, these data indicate that directed 
differentiation generates definitive cell populations comprising contractile cardiomyocytes and a non-
contractile cell type whose transcriptional signature correlates with cardiac outflow tract cells. Due to the 
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complex cellular origins of outflow tract and the diversity of non-contractile cell types of the heart in vivo, 
further studies are required to determine the specific identity and biology of these cells and their 300 
application in disease modelling and tissue engineering.  
 
HOPX is dysregulated during in vitro directed differentiation from hPSCs 
 
Having established subpopulation identities and benchmarked in vitro derived subpopulations to in vivo 305 
development, we next aimed to identify dysregulated gene networks with the objective of determining 
novel mechanisms for modelling in vitro differentiation to more accurately reflect in vivo heart 
development. To this end, we analyzed a panel of 52 transcription factors and epigenetic regulators 
known to govern diversification of mesoderm and endoderm lineages represented in this data set (Table 
S3). Expression of these regulatory genes was measured across eleven subpopulations identified between 310 
days 2-30 of differentiation. HOPX, a non-DNA binding homeodomain protein identified in this analysis, 
has previously been shown to be one of the earliest, specific markers of cardiomyocyte development (Jain 
et al., 2015), and governs cardiac fate by regulating cardiac gene networks through interactions with 
transcription factors, epigenetic regulators, and signaling molecules (Chen et al., 2002; Jain et al., 2015). 
We have also recently shown that HOPX functionally regulates blood formation from hemogenic 315 
endothelium (Palpant et al., 2017b). Consistent with mouse heart development, analysis of human foetal 
development at each trimester indicate a robust activation of HOPX during heart development in vivo 
(Figure S5A). 

Previous studies have shown HOPX is expressed during cardiomyocyte specification at the 
progenitor stage of mouse development in vivo (Jain et al., 2015) whereas we detected HOPX only in 320 
endothelium (D5:C3) and not in cardiac precursor cells (D5:C1) at an equivalent time point (day 5) of in 
vitro differentiation (Figure 4A-B). Second, in contrast to previous studies in vivo where HOPX lineage 
traces almost all cardiomyocytes of the heart (Jain et al., 2015), HOPX is detected in only 16% of D30:S2 
cardiomyocytes (Figure 4B-D). To rule out stochastic expression in cardiomyocytes due to low 
sequencing read depth resulting in dropout, we analyzed expression of a panel of genes known to regulate 325 
cardiac lineage specification and differentiation (Figure 4C-D). While HOPX is rarely detected, its 
expression level is equivalent to that of other cardiac TFs that are detected in a high percentage of D30:S2 
cardiomyocytes (HAND1: 67%, HAND2: 64%, GATA4: 67%, NKX2-5: 86% vs HOPX: 16%) (Figure 
4B-D).    

We analyzed spatio-temporal gene expression throughout mesoderm and endoderm development 330 
in the gastrulating mouse in vivo. Assessment of gene expression during mouse gastrulation in vivo shows 
HOPX expression as early as  E6.5 in the proximal portion of the nascent primitive streak (P) (Figure 4E 
and Figure S5B-C) similar to the expression pattern of MESP1 (Figure S5D-E). From E7.0 to E7.5, 
HOPX is increasingly expressed throughout the developing endoderm. By E7.5, HOPX displays residual 
expression in the remaining distal primitive streak, endoderm (EA to EP), and the anterior mesoderm 335 
(MA) in coordination with other cardiogenic genes including NKX2-5 and MESP1 (Figure 4E and 
Figure 2A). From E8.5 onward, cardiac development and morphogenesis occurs as chambers, valves, and 
outflow tract form. We analyzed HOPX expression across diverse cell types contributing to heart 
development in vivo using single-cell transcriptomic analysis of the E9.5 mouse heart (Li et al., 2016). 
These data indicate that HOPX expression is distributed throughout all chambers and cell types of the 340 
heart. While HOPX expression largely coincides with expression of cardiac genes MYH7 and ACTN2, 
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HOPX is also expressed in endothelial cells (CDH5+ and/or PECAM1+), smooth muscle cells (MYH11+ 
and/or TAGLIN2+), and epicardial cells (WT1+) (Figure 4F and Table S4).  
 
Lineage trajectory of HOPX-expressing cells in vitro 345 
 
We analyzed the lineage trajectory of HOPX+ cells at single-cell resolution during cardiac directed 
differentiation to determine the core gene networks and transcription factors governing successive fate 
choices of HOPX expressing cells during cardiac differentiation (Figure S4B-D, and Table S5). At day 2 
rare HOPX expressing cells are identified in mes-endoderm (D2:S2 9% and D2:S3 6%) and rarely in 350 
definitive endoderm (D2:S1 2%) with the HOPX lineage at this early stage of specification comprising 2 
lineages (N2 and N3) enriched for expression of cardiogenic mesoderm genes such as MESP1 (Figure 
S4C-D). From day 2 into day 5, HOPX+ cells remain sparse in progenitor cell populations where day 2 
N3 splits into two day 5 lineages N4 and N5 (Figure S4B). Based on lineage prediction, an equal 
proportion of HOPX+ cells give rise to TNNI1+ cardiac precursor cells (N4: 389 cells) or TAL1+ 355 
expressing endothelial cells (N5: 381 cells) with both fates governed by established TFs and downstream 
gene networks required for endothelial (NRP2, KDR) vs cardiac fate specification (TNNI1, TMEM88) 
(Figure S4C-D and Table S5). Progressing to day 15 of differentiation, HOPX remains rare (2-4% of 
cells) and splits into two separate lineages derived from day 5 cardiac precursor cells (N4). Governed in 
part by increased NKX2-5 and downregulation of the cardiac progenitor TF YY1, HOPX cardiac 360 
precursor cells differentiate into MYL2/IRX4+ cardiomyocytes (N6-N7) while a separate branch governed 
by TFs such as PBX1 differentiate into non-contractile derivatives (N8-N9) (Figure S4B-D). Overall, 
analysis of HOPX gene expression across populations shows that HOPX is most highly expressed in 
endothelial cells at day 5 and in committed cardiomyocytes at day 30 of directed differentiation (Figure 
4A).   365 
 
Chromatin and expression analysis of HOPX in cardiac lineage specification  
 
To determine the epigenetic basis for HOPX dysregulation during in vitro differentiation, we analyzed 
chromatin and transcriptional regulation at the HOPX locus (Palpant et al., 2017a) (Figure S5F). 370 
Chromatin immunoprecipitation data for repressive chromatin (H3K27me3), actively transcribed 
chromatin (H3K4me3), and gene expression by RNA-seq (Palpant et al., 2017b) show that in the context 
of cardiac directed differentiation HOPX is epigenetically repressed on the basis of abundant H3K27me3 
compared to H3K4me3 in day 5 cardiac precursor cells (Figure S5F). This is consistent with RNA-seq, 
qRT-PCR, and analysis of HOPX activity in knockin HOPX reporter cells showing that HOPX is 375 
expressed late during cardiac differentiation, well after sarcomere formation and weeks after the onset of 
spontaneously beating cells during cardiac directed differentiation (Figures 4B, S5F, and S6A-D). The 
highest level of HOPX expression was observed in cardiomyocyte cultures maintained for 1 year (Figure 
S6F-G). Collectively, these data show a direct link between chromatin regulation of the HOPX locus and 
expression of HOPX in cardiac lineage specification in vitro.  380 
 
HOPX drives cardiomyocyte hypertrophy 
 
To determine the functional role of HOPX in in vitro-derived cardiomyocytes, we established conditional 
HOPX over-expression hPSCs in which a nuclear localized HOPX is targeted to the AAVS1 locus 385 
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(Figure 5A and Figure S7). Using western blot, qRT-PCR, and immunostaining, we show that HOPX is 
over-expressed in a doxycycline inducible manner and is nuclear localized (Figure 5A-C). Morphometric 
analysis of dox treated cardiomyocytes showed a significant increase in cell area under conditions of 
HOPX overexpression (Figure 5D). We performed bulk RNA sequencing analysis on control vs HOPX 
OE cardiomyocytes to determine global transcriptomic changes (Figure 5E-H and Table S6). Analysis 390 
of differentially expressed genes showed a significant enrichment of gene ontologies associated with 
signaling pathways (ERK1-2, IGF) and gene networks involved in cell growth and maturation in HOPX 
OE cardiomyocytes with IGF-1 representing the most highly up-regulated among a panel of known 
regulators of hypertrophy (Figure 5G-H and Table S7).  
 395 
The HOPX locus is activated by hypertrophic stimulation 
 
These over-expression data indicate that HOPX is sufficient to drive cardiomyocyte hypertrophy in vitro. 
Hypertrophic stimulation is not modelled well in high density monolayer cardiac directed due to the 
absence of mechanical stretch or exogenous hypertrophic signals present during in vivo heart 400 
development. On the basis that this may, at least in part, explain the dysregulation of HOPX in vitro, we 
tested the reciprocal hypothesis: whether exogenous hypertrophic stimuli is sufficient to drive HOPX 
expression in vitro. To this end, we implemented an established approach for stimulating hypertrophy 
(Uesugi et al., 2014) in which high-density monolayer-derived cardiomyocytes are replated at low density 
at day 10 and analyzed at day 15 (Figure 6A). In keeping with a hypertrophic response, replating 405 
cardiomyocytes results in significantly increased cell area and anisotropy (Figure 6B-C) and up-
regulation of genes known to govern hypertrophic growth in cardiomyocytes including NPPB, MYOCD, 
EDN1, IGF1 and others (Figure 6D). Importantly, we found by quantitative PCR analysis that replating 
cardiomyocytes resulted in a greater than 10 fold increase in HOPX (Figure 6E) in coordination with 
significant increases in expression of myofibrillar isoforms (MYH7, MYL2, TNNI3) and transcription 410 
factors (SRF) involved in cardiomyocyte maturation (Figure 6F). To assess HOPX expression at single 
cell resolution, we utilized HOPX- reporter hPSCs in which tdTomato is knocked into the translational 
start site of HOPX (Palpant et al., 2017b) (Figure S6C). These data show that HOPX is robustly activated 
uniformly in replated cardiomyocytes (Figure 6G). We further show that treatment with Endothelin-1 
(ET-1), a potent stimulus of cardiomyocyte hypertrophy, significantly increases HOPX expression albeit 415 
to a much lower level than replated cardiomyocytes (Figure 6H). Taken together, these results indicate 
that transcriptional activation of the HOPX locus is downstream of hypertrophic signaling.   
 
Dissecting the transcriptional complexity of HOPX regulation underlying cardiomyocyte 
hypertrophy  420 
 
While genetic loss of HOPX did not impact specification of cardiomyocytes (Figure S6E-F), we set out 
to study the functional requirement and underlying complexity of the HOPX locus in cardiomyocyte 
hypertrophy. To this end, we utilized CRISPRi loss of function hPSCs to conditionally block HOPX 
expression at each of its two transcriptional start sites which we term the proximal TSS (inhibited by 425 
guide 4, g4) and distal TSS (inhibited by guide 1, g1) relative to the HOPX translational start site (Figure 
6I). Quantitative PCR primers were designed to amplify different exons of the HOPX locus to map the 
transcriptional landscape of HOPX relative to the distal or proximal TSS in the context of hypertrophic 
stimulation (Figure 6I, Table S8). Cells were differentiated into the cardiac lineage +/- dox and analyzed 
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at day 15 of differentiation under standard high density monolayer conditions vs replating. Transcriptional 430 
analysis of HOPX revealed a striking difference in the regulation of HOPX expression in the context of 
hypertrophy. As expected, all HOPX transcripts were significantly increased during replating (Figure 6J, 
Table S8). However, inhibition of the proximal TSS (g4) repressed expression from that locus (HOPX C) 
with no effect on transcriptional activity from the distal TSS (HOPX A) (Figure 6J). In contrast, 
inhibition of the distal HOPX TSS (g1) resulted in a global reduction of HOPX expression (HOPX A-E) 435 
with no transcriptional compensation from the proximal TSS (HOPX C) (Figure 6J). This indicates that 
HOPX has functionally distinct transcriptional start sites with the distal TSS functioning as the primary 
target of regulatory factors driving expression of HOPX in the context of hypertrophic stimulation.  

To further determine the functional requirement of the proximal or distal HOPX TSS in 
hypertrophy, we analyzed hypertrophy-related genes up-regulated in replating (Figure 6K, Table S8). 440 
Loss of HOPX function from the distal or proximal TSS did not impact expression of any hypertrophic 
genes tested including IGF1 (Figure 6K), the most highly upregulated hypertrophy gene in HOPX OE 
(Figure 5I). We next assessed a panel of cardiac myofilament genes and transcription factors to 
determine the downstream impact on genes associated with cardiomyocyte maturation. We found that 
myofibrillar genetic isoforms associated with late stages of cardiomyocyte maturation (MYL2, MYH6, 445 
MYH7, TNNI3) were significantly depleted when the distal HOPX TSS was inhibited (g1). However, 
isoforms associated with early cardiac development (MYL4, MYL7, TNNI1) were not impacted. In 
contrast, knockdown of the proximal TSS (g4) had small but significant effects on expression of MYL2 
and MYH7 but a significant increase in expression of the early fetal MYH6 isoform relative to controls 
(Figure 6L, Table S8). Expression of selected key cardiac transcription factors were not impacted by 450 
HOPX loss of function from either TSS with the exception of a significant increase in GATA4 with 
knockdown of the distal TSS (g1) (Figure 6M, Table S8). These data indicate that while genetic 
networks underlying hypertrophy and early cardiomyocyte myofibrillar development are not dependent 
on HOPX, we found it plays a key role driving maturation at least in part through regulating expression of 
late-stage genetic isoforms of myofibrillogenesis with the distal TSS playing a more dominant role 455 
compared to the proximal TSS.  

We next assessed the impact of HOPX loss of function on morphometric parameters of 
cardiomyocyte hypertrophy. Cell area was measured at two time points post replating and showed a 
progressive and significant increase in cell size indicative of cardiomyocyte cell hypertrophy and 
maturation in control cells and conditions blocking the proximal HOPX TSS (g4) (Figure 6N). However, 460 
blocking transcription of the distal HOPX TSS attenuated the hypertrophic growth (Figure 6N).  

Taken together, we have identified HOPX is a known key epigenetic regulator of cardiovascular 
development that is dysregulated during in vitro directed differentiation from hPSCs. Lineage tracing and 
transcriptional analysis of single cells transiting cardiac differentiation show HOPX predominantly 
expressed in day 5 endothelium and day 30 definitive cardiomyocytes (Figure 6O). We used genetic gain 465 
and loss of function models to determine mechanisms underlying transcriptional regulation of HOPX with 
the aim of directing gene networks underlying in vitro differentiation more closely mimicking in vivo 
development. We show that HOPX is situated downstream from hypertrophic signaling pathways, a 
stimulus not mimicked effectively in high density monolayer differentiation. Furthermore, HOPX 
activation directly drives hypertrophic growth and is essential for downstream expression of cardiac 470 
myofibrillar genetic isoforms involved in cardiomyocyte cell growth and maturation. Through genetic 
dissection underlying the transcriptional landscape of HOPX, we show that the distal HOPX TSS is the 
primary regulatory driver of HOPX activity underlying hypertrophic stimulation (Figure 6O). 
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Discussion 475 
 
This study provides single-cell resolution RNA-sequencing of human cardiac directed in vitro 
differentiation. Transcriptomic analysis of 43,168 cells traversing stepwise transitions in fate revealed 
cellular heterogeneity and the underlying gene networks involved in cardiac fate choices from 
pluripotency. The identification and characterization of in vitro derived cell types are supported by spatio-480 
temporal gene expression of the gastrulating mouse embryo and single-cell analysis of in vivo heart 
development, providing a direct link to the complex restriction of fates underlying cardiovascular lineage 
specification in vivo. We leverage the computational power of single-cell level analysis to identify the 
framework of transcription factors and gene regulatory networks underlying progressive diversification of 
fates from pluripotency into mesoderm, definitive endoderm, endothelium, cardiomyocytes, and outflow 485 
tract fates. Transcriptional analysis of subpopulations revealed context-specific functions of transcription 
factors and epigenetic regulators underlying cardiovascular fate choices. We utilize this resource to 
identify novel mechanisms driving in vitro differentiation more accurately reflecting in vivo heart 
development and reveal the complex transcriptional landscape of HOPX in regulating cardiomyocyte 
hypertrophy. Collectively, we use a widely implemented protocol using Wnt modulation for cardiac 490 
directed differentiation (Burridge et al., 2014; Lian et al., 2012) with CRISPRi hiPSCs (Mandegar et al., 
2016) providing a platform to dissect cardiac differentiation at single-cell resolution.  

While the progression of heart development and morphogenesis from time points spanning E8.5 
to P21 have been analyzed at single-cell resolution (DeLaughter et al., 2016; Li et al., 2016), a 
comprehensive transcriptomic profiling of the lineages derived by human pluripotent stem cell directed 495 
differentiation from pluripotency has not been available. Cardiac directed differentiation protocols using 
small molecules to modulate Wnt signaling have emerged in recent years as a simple, cost-effective, and 
reliable method to generate high-purity cardiac derivatives from hPSCs. Stem cell-derived 
cardiomyocytes generated using this approach have been utilized in translational applications to model 
patient-specific diseases (Ang et al., 2016; Bayzigitov et al., 2016; Ebert et al., 2014; Smith et al., 2017; 500 
Wu et al., 2015), test cardiotoxicity (Maillet et al., 2016), screen novel therapeutic drugs (Casini et al., 
2017; Sharma et al., 2014), generate engineered heart tissue constructs to model the 3D environment of 
the heart (Huebsch et al., 2016; Tzatzalos et al., 2016), and develop cell-based regenerative therapies to 
repair heart tissue post-infarct (Hartman et al., 2016). In light of these diverse applications of this protocol 
in cardiovascular discovery and translational research, the current study provides whole genome-wide 505 
analysis of 43,168 transcriptomes undergoing stage-specific changes in gene expression during cardiac 
differentiation as a resource with which to dissect cell subpopulations at the molecular level.  

Analysis of subpopulations during early stages of differentiation indicate a surprising contribution 
of mesendoderm and definitive endoderm coordinately specified with cardiac fates through the progenitor 
stage of differentiation. In particular, a minority of cells (34%) comprise MESP1+ cardiogenic mesoderm 510 
at day 2 that ultimately give rise to all cardiac derivatives at day 30. The interaction between endoderm 
and mesoderm in governing lineage specification in vivo is well known, and these data suggest that a 
critical functional role of induction cues provided by directed differentiation protocols is to establish the 
necessary population stoichiometry of transiently sustained endoderm required to support mesoderm in 
the derivation of high purity cardiac fates in vitro.  515 
 We evaluated lineage trajectories from single-cell data by implementing a lineage prediction 
algorithm, scdiff, specifically designed for learning regulatory networks controlling differentiation from 
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single-cell time series data. This method relies on iterative analysis of known transcription factor-gene 
interactions to establish a gene regulatory framework that statistically links disparate populations captured 
across intermittent time intervals through differentiation. Analysis of cardiac directed differentiation using 520 
scdiff revealed stage-specific genetic regulators underlying diversification of cardiac fate from 
pluripotency. In particular, these data revealed new insights into the bifurcation of cardiac precursor cells 
at day 5 of differentiation into NKX2-5+/MYL2+ ventricular cardiomyocytes and a population of non-
contractile cells with transcriptional networks similar to NKX2-5-/PITX2+ cardiac outflow tract (OFT) 
cells. While previous studies have routinely described a non-contractile THY1+ (CD90+) fibroblast-like 525 
cell used commonly for tissue engineering applications (Dubois et al., 2011; Thavandiran et al., 2013), 
this population remains poorly studied with no strong evidence for an in vivo correlate. Using 
transcriptional fate mapping and gene network analysis, we provide single-cell level transcriptome-wide 
evidence directly linked to in vivo cell cardiac types that non-contractile THY1+ cells are similar to 
cardiac OFT derivatives. Of importance, congenital heart disease (CHD) is among the most common 530 
forms of congenital defects (van der Linde et al., 2011), and OFT anomalies account for roughly 30% of 
CHD incidences (Thom et al., 2006). Given the complexity of outflow tract differentiation and 
morphogenesis that involves cell types form diverse origins, future work will require analysis of this 
population as it pertains to the cellular origins of outflow tract, septum, and other non-contractile cell 
types of the heart. While the genetic basis of OFT and septal malformations has been well studied 535 
(Arrington et al., 2012), the capacity to study development and disease using hPSC models has not been 
possible. Our findings have provided new insights into a cell subpopulation derived from in vitro cardiac 
directed differentiation that present new opportunities to develop translational platforms utilizing this cell 
type for disease modelling or therapies.  

It is well-established that in vitro cardiac differentiation does not generate cardiomyocytes with 540 
the transcriptional profile, cellular diversity, morphometry, or functional maturity of adult in vivo-derived 
cardiomyocytes (Yang et al., 2014). This is at least in part a consequence of dysregulation of the stage-
specific gene networks not properly modelled in vitro. In this study, we analyzed a panel of 52 
transcription factors and epigenetic regulators across eleven cardiac differentiation-derived cell 
subpopulations at single-cell resolution. While HOPX is a key developmental regulator of cardiac 545 
myoblasts early in heart development in vivo (Jain et al., 2015) and data from this and other studies (Chen 
et al., 2002; Trivedi et al., 2010) showing a key role in heart maturation, we observe it rarely expressed in 
in vitro derived cardiomyocytes. We tested the hypothesis that the dysregulation of HOPX was the 
consequence of deficiencies in directed differentiation accurately mimic the signaling and mechanical 
stimuli of the developing heart. To address this, we aimed to understand the basis for activating HOPX 550 
and its downstream gene networks in vitro by identifying the upstream cues required for its expression. 
Utilizing gain and loss of function genetic models, we provide a comprehensive profiling of the complex 
transcriptional landscape of HOPX as a central regulator of the cardiomyocyte response to hypertrophy. 
These data show that the distal TSS is the primary hypertrophy responsive element and regulation of 
HOPX through this TSS functionally governs gene networks and cellular morphometric growth 555 
associated with cardiomyocyte hypertrophy and maturation.  

Taken together, our study provides transcriptional profiling of human in vitro cardiac 
differentiation from more than forty thousand single-cells revealing cell diversity and genetic networks 
governing lineage progression of hPSC cardiac directed differentiation by small molecule Wnt 
modulation. These data provide new insights into the complexity of cell populations represented in stage-560 
specific transitions from pluripotency and, coupled with the use of CRISPRi loss of function, establish a 
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unique reference point for dissecting gene networks involved in human cardiac development and disease. 
Promoting adult-like phenotypes from in vitro differentiated cell types is essential for the realization of 
the translational applications of hPSCs in disease modelling and therapy. This study provides evidence 
that HOPX expression is a key transcriptional regulator near absent during high density cardiac directed 565 
differentiation in vitro, requiring hypertrophic stimulation to accurately direct HOPX and its downstream 
networks underlying the transcriptional and functional maturity of hPSC-derived cardiomyocytes.  
  
Acknowledgements. Sequencing was performed by the Institute for Molecular Bioscience Sequencing 
Facility at the University of Queensland. Assistance with Figure 1A schematic was provided by Suzy 570 
Hur. The WTC CRISPRi hiPSCs and pQM plasmid backbone were kindly provided by the Conklin lab 
(UCSF, Gladstone Institute). We thank Prof Richard Harvey (Victor Change Cardiac Research Institute) 
for assistance reviewing the draft manuscript. This work was supported by the Australian Research 
Council (SR1101002) (NJP), the ARC Discovery Early Career Award (DE160100755) (ESW), National 
Health and Medical Research Council grants 1107599 and 1083405 (JP). ZBJ and JD were supported in 575 
part by grant 1R01GM122096 from the National Institute of Health, USA. This work was also supported 
by a Strategic Priority Research Program of the Chinese Academy of Sciences (XDA01010201 to N.J., 
XDA01010303 to J.D.J.H), National Key Basic Research and Development Program of China 
(2014CB964804, 2015CB964500, 2015CB964803), and National Natural Science Foundation of China 
(91219303, 31430058, 31401261, 91329302, 31210103916, and 91519330).  P.P.L.T. is a Senior 580 
Principal Research Fellow of the National Health and Medical Research Council of Australia (1110751). 
 
Author contributions: 
 
CEF: Generated cells for single-cell RNA-seq, performed cell-based experiments including HOPX LOF, 585 
and wrote the manuscript 
QN: Primary lead on computational analysis of single-cell data and wrote the manuscript 
SWL: Performed single-cell isolation, barcoding, and sequencing and performed computational analysis 
of single-cell RNA-seq data and edited the manuscript 
AH: Performed computational analysis of single-cell RNA-seq data and edited the manuscript 590 
HSC: Generated cells for single-cell RNA-seq 
JM: Generated the HOPX inducible over-expression cell line and carried out HOPX OE assays 
SSS: Conceived and generated iTranscriptome data for mouse gastrulation in vivo 
JDJH: Conceived and generated iTranscriptome data for mouse gastrulation in vivo 
OP: Assisted with the preparation of iTranscriptome data for publication 595 
GP: Conceived and generated iTranscriptome data for mouse gastrulation in vivo 
GJB: Assisted with sequencing 
AS: Performed computational analysis of single-cell data 
ANC: Assisted with sequencing 
TJB: Assisted with sequencing 600 
NJ: Conceived and generated iTranscriptome data for mouse gastrulation in vivo 
CEM: Supervised HOPX LOF experiments and edited the manuscript 
ESW: Adapted scdiff for large scale single-cell data sets and generated scdiff data 
JD: Conceived of and developed scdiff 
ZBJ: Conceived of and developed scdiff and wrote the manuscript 605 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/229294doi: bioRxiv preprint 

https://doi.org/10.1101/229294
http://creativecommons.org/licenses/by/4.0/


HRB: Supervised HOPX over-expression assays  
YW: Performed computational analysis of single-cell data and edited the manuscript 
JH: Assisted with bioengineered heart tissue experiments and edited the manuscript 
PPLT: Supervised iTranscriptome analysis, consulted single-cell phenotypes and edited the manuscript 
JEP: Conceived and supervised experiments involving computational genomics analysis of single-cell 610 
RNA-seq data, wrote manuscript, and generated funding for the work 
NJP: Conceived and supervised experiments involving stem cell differentiation, performed HOPX 
experiments, wrote manuscript, and generated funding for the work. 
 
See Supplemental Information for extended methods. 615 
 
 
 
 
 620 
 
 
 
 
 625 
 
 
 
 
 630 
 
 
 
 
 635 
 
 
 
 
 640 
 
 
 
 
 645 
 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/229294doi: bioRxiv preprint 

https://doi.org/10.1101/229294
http://creativecommons.org/licenses/by/4.0/


Figures 650 
 

 
Figure 1. Single-cell analysis of cardiac directed differentiation. (A) Schematic of protocol for small 
molecule directed differentiation from pluripotency into the cardiac lineage. hPSC: human pluripotent 
stem cell; GLS: germ layer specification; PC: progenitor cell: cCD: committed cardiac derivative; dCD: 655 
definitive cardiac derivative. (B) 43,168 single-cells transiting cardiac differentiation beginning at 
pluripotency (day 0) and transitioning through mesoderm (day 2) into progenitor (day 5), committed (day 
15), and definitive (day 30) cardiac derivatives. Data are presented using t-SNE plot, pseudospacing cells 
by the nonlinear transformation of similarity in gene expression to preserve the local and global distance 
of cells in multidimensional space when embedded into two dimensional t-SNE space (left), and diffusion 660 
plot, pseudospacing cells in a trajectory based on diffusion distance (transition probability) between two 
cells (right). (C) Mean gene expression across all cells at individual time points showing proper temporal 
expression of stage-specific genes governing differentiation into the cardiac lineage. Shown are 
pluripotency genes (DNMT3B, POU5F1, NANOG), mes-endoderm genes (EOMES, MIXL1, T, 
MESP1), and genes governing cardiomyocyte differentiation including signaling regulators (TMEM88), 665 
transcription factors (ISL1, HAND1, NKX2-5, TBX5, GATA4), calcium handling genes (ATP2A2, PLN) 
and sarcomere genes (TNNI1, MYH6, MYH7, MYL7). (D) Diffusion plots showing pseudospacing at 
single-cell resolution for gene expression of stage-specific genes during differentiation based on known 
genetic regulators of cardiac fate specification including POU5F1 (day 0), EOMES (day 2), TMEM88 
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(day 5), TNNI1 (day 15), and TTN (day 30). Cells are colored in a binary manner. If the cell expresses the 670 
gene it is colored according to the day of isolation (0, 2, 5, 15, or 30). Non-expressing cells are shaded 
gray. (E) Representation of unsupervised clustering analysis (Nguyen et al., in review) using t-SNE plots 
to show single-cell level expression of stage-specific gene expression at each day of differentiation based 
on known genetic regulators of cardiac fate specification including POU5F1 (day 0), EOMES (day 2), 
ISL1 (day 5), TNNI1 (day 15), and MYL7 (day 30). If the cell expresses the gene it is colored according 675 
to subpopulation 1-4 in which the cell is associated. Non-expressing cells are shaded gray. Above each t-
SNE plot, the percentage of cells expressing the gene in each subpopulation is shown together with the 
expression histogram and the reference t-SNE plot. Subpopulation coloration across time points does not 
reflect developmental fate relationship. UMI: unique molecular identifier.  
 680 
 
 
 
 
 685 
 
 
 
 
 690 
 
 
 
 
 695 
 
 
 
 
 700 
 
 
 
 
 705 
 
 
 
 
 710 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/229294doi: bioRxiv preprint 

https://doi.org/10.1101/229294
http://creativecommons.org/licenses/by/4.0/


 
Figure 2. Subpopulation identification and characterization. (A) Corn plots showing spatial domains 715 
of EOMES, MESP1, SOX17 and NKX2-5 expression in the mesoderm and endoderm of E6.5, E7.0, and 
E7.5 mouse embryos during gastrulation (unpublished RNA-seq data for E6.5 (n = 6) and E7.5 (n = 6) 
embryos and published data for E7.0 embryo (Peng et al., 2016)). Positions of the cell populations 
(“kernels” in the 2D plot of RNA-Seq data) in the germ layers: the proximal-distal location in descending 
numerical order (1 = most distal site) and in the transverse plane of the mesoderm and endoderm – 720 
Anterior half (EA) and Posterior half (EP) of the endoderm, Anterior half (MA) and Posterior half (MP) 
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of the mesoderm, and Posterior epiblast (P) containing the primitive streak. Color scales represent levels 
of expression as log10 of fragments per kilobase million (FPKM + 1) (see Figure S3 for schematic of 
iTranscriptome). (B-D) Analysis of day 2 subpopulations represented by (B) Reference t-SNE (left) and 
diffusion (right) plots and the percent of cells in each subpopulations (D2:S1-S3), (C) analysis of 725 
primitive streak genes EOMES (pan-mesendoderm transcription factor), MESP1 (cardiogenic mesoderm 
transcription factor), and SOX17 (definitive endoderm transcription factor). Below each gene name are 
shown the following data from left to right: t-SNE plot and diffusion plot of cells expressing each gene, 
percent of cells expressing gene, expression level of gene in each subpopulation. (D) Gene ontology 
analysis of differentially expressed genes showing enrichment for networks governing cardiac 730 
development enriched in subpopulation 2. (E-G) Analysis of day 5 progenitor subpopulations represented 
by (E) reference t-SNE (left) and diffusion (right) plots and the percent of cells in each subpopulations 
(D5:S1-S4), (F) analysis of progenitor genes TAL1 (endothelial fate transcription factor), TNNI1 (early 
development sarcomere isoform of TNNI), and SOX17 (definitive endoderm transcription factor). Below 
each gene name are shown the following data from left to right: t-SNE plot and diffusion plot showing 735 
cells expressing each gene, percent of cells expressing gene, expression level of gene in each 
subpopulation. (G) Gene ontology analysis of differentially expressed genes showing enrichment for 
networks governing cardiac development (D5:S1), definitive endoderm (D5:S2), and endothelium 
(D5:S3). (H-J) Analysis of day 15 subpopulations represented by (H) reference t-SNE (left) and diffusion 
(right) plots and the percent of cells in each subpopulations (D15:S1-S2), (I) analysis of cardiac genes 740 
MYL7 (early development sarcomere isoform of MYL), NKX2-5 (cardiac transcription factor), and 
THY1 (fibroblast marker). Below each gene name are shown the following data from left to right: t-SNE 
plot and diffusion plot showing cells expressing each gene, percent of cells expressing gene, expression 
level of gene in each subpopulation. (J) Gene ontology analysis of differentially expressed genes showing 
enrichment for networks governing extracellular matrix and cell motility (D15:S1) and cardiac 745 
development (D15:S2). (K-M) Analysis of day 30 subpopulations represented by (K) reference t-SNE 
(left) and diffusion (right) plots and the percent of cells in each subpopulations (D30:S1-S2), (L) analysis 
of cardiac genes TNNI1 (early development sarcomere isoform of TNNI), MYH7 (mature sarcomere 
isoform of MYH), and THY1 (fibroblast marker). Below each gene name are shown the following data 
from left to right: t-SNE plot and diffusion plot showing cells expressing each gene, percent of cells 750 
expressing gene, expression level of gene in each subpopulation. (M) Gene ontology analysis of 
differentially expressed genes showing enrichment for networks governing system development and 
morphogenesis (D30:S1) and cardiac development (D30:S2). (N) Overall phenotypic determinations of 
subpopulation identity based on in vivo anchoring genes outlined through stage-specific transitions in 
differentiation. CM: cardiomyocyte. (O) Expression of cardiac genes in day 30 hPSC-derived 755 
cardiomyocytes (all cells vs S1 vs S2) relative to expression levels in human foetal and adult heart 
samples (ENCODE).  Gene expression is measured as counts per million mapped reads and each gene is 
internally normalized to maximum expression. Subpopulation coloration across time points does not 
reflect developmental fate relationship. UMI: unique molecular identifier. 
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Figure 3. Transcription factor regulatory networks predict developmental fate choices during 
cardiac differentiation. (A) Stepwise transitions into cardiac lineages from pluripotency predicted on the 
basis of gene regulatory networks (GRN) detected between pairwise changes in cell state during 
differentiation. Circles indicate distinct nodes governed by a common GRN. Since cells can be re-770 
assigned based on the expression of their genes, the re-distribution of subpopulations established by 
clustering analysis and phenotyping as outlined in Figure 2 are represented as pie charts within each 
circle indicating the percent of cells from each subpopulation contributing to that node. Each node is 
numbered N1-N10 for reference. (B) Phenotypic identity of nodes reflecting stage-specific transitions in 
cell state through cardiac directed differentiation. (C) Analysis of transcription factors (TFs) and genes 775 
controlling stage-specific regulatory networks underlying cell fate transitions. Mean DE target fold 
change calculates the fold change for the differentially expressed targets of the TF. DE gene fold change 
shows up or down-regulated fold change of TF target genes. (D) Heat map comparing expression across 
all cells from day 5, 15, and 30 subpopulations for genes involved in progenitor specification, vascular 
endothelial development, outflow tract development, and primary heart field cardiomyocyte development. 780 
(E) Gene ontology analysis comparing day 30 S1 vs S2 showing gene networks involved in vascular 
development enriched in S1 vs cardiac muscle development enriched in S2. (F) t-SNE and diffusion plots 
for all cells from days 15 and 30 showing expression distribution of the cardiac gene MYH7 (high in S2 
at day 15 and 30) relative to outflow tract development genes THY1, PITX2, and BMP4 (high in S1 at 
day 15 and 30). (G) The top most differentially expressed genes identified by in vivo single-cell analysis 785 
comparing outflow tract (OFT) vs ventricular cardiomyocyte (Li et al., 2016) were compared against their 
expression level in D30:S1 vs D30:S2 in vitro derived cardiac derivatives. (H) Differentially expressed 
genes between subpopulations D30:S1 and D30:S2 were used to assess transcriptional similarity to in 
vivo cell types using Spearman’s correlation analysis. Values are presented median Spearman’s value ρ. 
Significant differences between pairs of correlation coefficients were calculated using a Fisher Z-790 
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transformation. Subpopulation coloration across time points does not reflect developmental fate 
relationship. P-values for all tests were below the double precision limit of 2.2e-308 
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 835 
Figure 4. HOPX is rarely expressed during in vitro cardiac directed differentiation. (A) Analysis of 
HOPX expression in eleven subpopulations from day 2 to day 5 of differentiation showing expression as 
early as day 2 mesoderm and highest expression in day 5 endothelial cells (ECs) and day 30 
cardiomyocytes (CMs). (B) Single-cell expression analysis of HOPX at day 2, 5, 15, and 30. Data 
presented include t-SNE plots indicating distribution and localization of HOPX expressing cells in 840 
different subpopulations (bottom), the percentage of HOPX+ cells in each subpopulation (top left), bar 
graphs showing expression of HOPX in each subpopulation (top middle), and the reference t-SNE plot 
demarcating subpopulations (top right). (C) Analysis of known genetic regulators of heart development 
only in subpopulation 2 at day 30 of differentiation. (D) t-SNE plots of merged data sets from two 
continuous days for all cells between day 15-30 for each gene showing robust distribution of key cardiac 845 
regulatory genes with the exception of HOPX. (E) Corn plots showing the spatial domains of HOPX 
expression in the mesoderm and endoderm of E7.0 and E7.5 mouse embryos during gastrulation 
(unpublished RNA-seq data for E7.5 (n = 6) embryos and published data for E7.0 embryo, (Peng et al., 
2016)). Positions of the cell populations (“kernels” in the 2D plot of RNA-Seq data) and in the germ 
layers: the proximal-distal location in descending numerical order (1 = most distal site) in the transverse 850 
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plane of the mesoderm and endoderm – Anterior half (EA) and Posterior half (EP) of the endoderm, 
Anterior half (MA) and Posterior half (MP) of the mesoderm, and Posterior epiblast (P) containing the 
primitive streak. Color scales represent levels of expression as log10 of fragments per kilobase million 
(FPKM+1). (F) Single-cell expression analysis of E9.5 mouse heart (Li et al., 2016) showing HOPX 
expression relative to markers of cardiomyocytes (MYH7, ACTN2) and endothelial cells (CDH5, 855 
PECAM1) (scale bars are Log2(RPM)). Table (right) shows percent of cardiac (MYH7), endothelial 
(PECAM1), and smooth muscle (TAGLN2) cells co-expressing HOPX in various regions of the 
developing mouse heart. UMI: unique molecular identifier.  
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 895 
Figure 5. HOPX is a key regulator of cardiomyocyte hypertrophy. (A) Gene targeting strategy for 
conditional HOPX over-expression. Schematic shows design of conditionally expressed HOPX-NLS-
EGFP construct. Below, western showing doxycycline induction of control (NLS-eGFP) and HOPX OE 
iPSC lines. (B) Quantitative PCR analysis of HOPX transcript abundance in control vs HOPX OE iPSCs. 
(C) Immunohistochemistry showing nuclear localization of HOPX-GFP in cardiomyocytes. (D) Cell size 900 
analysis showed that HOPX OE treated hiPSC-CMs led to a significant increase in area. (E-G) Volcano 
plot (E), quantification of DE genes (F), and gene ontology analysis (G) of differentially expressed genes 
identified by RNA-seq of control vs HOPX OE cardiomyocytes. (H) Genes known to govern hypertrophy 
showing IGF1 as the most significantly upregulated hypertrophic gene in HOPX OE vs control cells. For 
heat maps, data are presented as Log10 transformed relative gene expression normalized to HPRT. NLS: 905 
nuclear localization signal, EGFP: enhanced green fluorescent protein. Scale bars = 100 µm. * P <0.05 by 
t test.  
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Figure 6. HOPX functionally governs cardiac hypertrophy through the distal transcriptional start 
site. (A) Schematic of in vitro directed differentiation of hPSCs with re-plating at day 10 and analysis at 910 
day 15. (B-C) Representative images (B) and quantification (C) of morphometric changes during 
replating including cell area and circularity. (D) Quantitative PCR analysis of a selected panel of 
hypertrophic genes differentially expressed in the context of replating cardiomyocytes. HD: High density 
monolayer. (E-F) Quantative PCR analysis showing significant increases in HOPX (E) among a range of 
other cardiac transcription factors and myofilament genes (F) involved in cardiomyocyte maturation in 915 
replated cardiomyocytes compared to controls. (G) Immunohistochemistry of HOPX-tdTomato reporter 
cells showing uniform expression of HOPX in α-actinin+ replated cardiomyocytes. (H) Treatment with 
the hypertrophic signaling molecule Endothelin-1 (ET1) significantly increases HOPX expression. (I) 
UCSC genome browser analysis of transcript variants mapped to the HOPX locus, the position of guide 
RNAs blocking the proximal (g1) or distal (g4) TSS, and position of qPCR primers amplifying different 920 
exons of the HOPX locus. (J-M) Analysis of gene expression in control high density monolayer cells vs 
replated cells and HOPX KD replated cells by quantitative PCR for various exons of the HOPX locus as 
outlined in panel H (J), genes governing cardiomyocyte hypertrophy (K), cardiac myofilament genes (L), 
and cardiac transcription factors (M). (N) Morphometric analysis of cell area in control vs HOPX KD 
cells over 64 hrs of replating. (O) Schematic lineage tree showing fate choices governed by HOPX during 925 
cardiac directed differentiation and a proposed mechanism whereby hypertrophic signaling is identified as 
a stimulus required for expression of HOPX during in vitro differentiation and showing that HOPX 
engages with cardiomyocyte hypertrophic growth through its distal transcriptional start site. For heat 
maps, data are presented as Log10 transformed relative gene expression normalized to HPRT. * P < 0.05. 
Data are presented as mean ± SEM.  930 
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Cardiac directed differentiation using small molecule Wnt modulation at single-cell resolution 
 
Supplemental Information 
 
Methods 
 
Cell Culture. All human pluripotent stem cell studies were carried out in accordance with consent from 
the University of Queensland’s Institutional Human Research Ethics approval (HREC#: 2015001434). 
Human RUES2 hESCs and WTC11 hiPSCs were maintained on Vitronectin XF (Stem Cell Technologies, 
07180) coated plates in mTeSR media (Stem Cell Technologies, 05850). Unless otherwise specified, 
cardiomyocyte directed differentiation using a monolayer platform was performed with a modified 
protocol based on previous reports (Burridge et al., 2014; Lian et al., 2012). On day -1 of differentiation, 
hPSCs were dissociated using 0.5% EDTA, plated into vitronectin coated plates at a density of 1.8 x 105 

cells/cm2, and cultured overnight in mTeSR media. Differentiation was induced on day 0 by changing the 
culture media to RPMI (Life Technologies Australia, 11875119) containing 3µM CHIR-99021 (Stem Cell 
Technologies, 72054), 500µg/mL BSA (Sigma Aldrich, A9418), and 213µg/mL ascorbic acid (Sigma 
Aldrich, A8960). After 3 days of culture, the media was replaced with RPMI containing 500µg/mL BSA, 
213µg/mL ascorbic acid and 1µM Xav-939 (Stem Cell Technologies, 72674). On day 5, the media was 
exchanged for RPMI containing 500µg/mL BSA, and 213µg/mL ascorbic acid without supplemental 
cytokines. From day 7 onwards, the cultures were fed every 2 days with RPMI plus 1x B27 supplement 
plus insulin (Life Technologies Australia, 17504001). For endothelin 1 assays, cells were treated with 300 
nM ET-1 (Sigma-Aldrich,  E7764) from day 9-15 of directed differentiation. For HOPX over-expression 
studies (Figure 5), the following protocol was utilized: A monolayer-based directed differentiation 
protocol was followed to generate hiPSC-CMs, as described previously (Palpant et al., 2017a).  On day 
15 hiPSC-CMs were enriched by lactate selection (Tohyama et al., 2013). 
  
Genetically modified cell lines. HOPX reporter cells were generated as previously described (Palpant et 
al., 2017b). WTC CRISPRi cells were generously provided by Bruce Conklin (UCSF, Gladstone 
Institute) as previously described (Mandegar et al., 2016).  For HOPX loss of function studies, WTC 
CRISPRi hiPSCs were used. HOPX-targeted guide RNAs (gRNA) (Table S9) were designed to target 
sequences near the human HOPX distal and proximal transcription start sites, were cloned into the pQM-
u6g-CNKB doxycycline-inducible construct and transfected into WTC CRISPRi GCaMP hiPSCs using 
GeneJuice Transfection Reagent (Merck, 70967). Stable clones were selected using successive rounds of 
re-plating with blasticidin (10 µg/ml). Populations were tested for knockdown efficiency by qPCR 
following doxycycline addition continuously from day 0 of cardiac-directed differentiation. HOPX OE-
line creation:  1x106 WTC hiPSCs were transfected with 0.5μg AAVS1-TALEN, 0.5μg AAVS1-TALEN 
and 4μg of HOPX-NLS-eGFP or 4μg of NLS-eGFP to generate the HOPX OE line and the HOPX 
negative control (NC) line using Amaxa Lonza Human stem cell Kit #2 (Figure S7).  The cells were then 
plated with 5mM Rocki onto matrigel in mTeSR.  Two days following the nucleofection, the cells were 
selected for Puromycin 0.5μg/ml for 2 days.  The sequence for the HOPX-NLS-eGFP construct can be 
found in Figure S7. 
 
Quantitative RT-PCR. For quantitative RT-PCR, total RNA was isolated using the RNeasy Mini kit 
(Qiagen, 74106). First-strand cDNA synthesis was generated using the Superscript III First Strand 
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Synthesis System (Life Technologies Australia, 18080051). Quantitative RT-PCR was performed using 
SYBR Green PCR Master Mix (Life Technologies Australia, 4312704) on a ViiA 7 Real-Time PCR 
System (Applied Biosystems). The copy number for each transcript is expressed relative to that of 
housekeeping gene HPRT. Primers used for quantitative PCR are listed in Table S6. Quantification of 
cardiac hypertrophy gene expression was performed using Cardiac Hypertrophy H384 qPCR panels 
(BioRad, 10025144) with SYBR Green PCR Master Mix. Samples were run in biological triplicate. The 
copy number for each transcript is expressed relative to that of housekeeping gene HPRT1. FC was 
calculated on a gene by gene basis as gene expression divided by control gene expression.  
  
Immunofluorescence and Morphometric analysis. Cells were fixed with 4% paraformaldehyde, 
permeabilized in PBS containing 0.025% Triton-X, and blocked in PBS containing 1.5% normal goat 
serum. Cells were stained with alpha-actinin (Sigma, Clone EA-53; Cat.#A7811, 1:800) and dsRed 
(Clontech, 632496) followed by secondary staining with AlexaFluor-594 Donkey Anti-Goat (Invitrogen 
lot #1180089, 1:200) or AlexaFluor-594 Goat Anti-Mouse (Invitrogen lot # 1219862, 1:200). Nuclei were 
counterstained with DAPI. For HOPX over-expression studies (Figure 5), cells were fixed in 4%(vol/vol) 
paraformaldehyde, blocked for an hour with 5% (vol/vol) normal goat serum (NGS), and incubated 
overnight with primary antibody in 1% NGS, followed by secondary antibody staining in NGS.  
Measurements of CM area were performed using Image J software.  Analysis was done on a Leica TCS-
SPE Confocal microscope using a 40x or 63x objective and Leica Software.  Primary antibodies used 
were: αActinin 1:250 Sigma A7811 anti-mouse, Titin 1:300 Myomedix TTN-9 (cTerm) anti-rabbit, GFP 
1:300 Invitrogen A-11122 anti-rabbit. Secondary antibodies and other reagents used were: DAPI at a 
concentration of 0.02μg/mL, phalloidin alexa fluor 568 1:250, alexa fluor 488 or 647-conjugated goat 
anti-mouse and anti-rabbit secondary antibodies 1:500 (Molecular Probes).   
  
Flow Cytometry. Cells were fixed with 4% paraformaldehyde and permeabilized in 0.75% saponin. Cells 
were labeled for flow cytometry using cardiac troponin T (Pierce, MA5-12960) or APLNR (R&D, 
FAB856A) and corresponding isotype control. Cells were analyzed using a BD FACSCANTO II (Becton 
Dickinson, San Jose, CA) with FACSDiva software (BD Biosciences). Data analysis was performed 
using FlowJo (Tree Star, Ashland, Oregon). 
 
Single cell isolation. For each differentiated day 0, 2, 5, 15, and 30 time point, differentiated cells were 
dissociated with 0.5% EDTA + 0.25% Trypsin (ThermoFisher, 15400054) and neutralized with foetal 
bovine serum (Scientifix, FFBS-500) and DMEM/F12 media (Life Technologies Australia, 11320033) 
(1:1 ratio). For each time point, 2 pooled samples were collected, each pool comprised approximately 12 
independent differentiation samples. Cells were centrifuged at 1200 rpm for 4 minutes and resuspended in 
Dulbecco’s PBS (Gibco; 14190) with 0.04% bovine serum albumin (Sigma Aldrich, B6917) and 
immediately transported for scRNA-Seq processing. Viable cells were sorted using a Propidium Iodide 
stain and retained on ice in Dulbecco's PBS + 0.04 % bovine serum albumin. A Countess automated 
counter (Invitrogen) was used to check final cell viability using Trypan Blue exclusion. 
 
Single cell RNA-Sequencing. A Chromium instrument (10X Genomics, Millennium Sciences) was used 
to partition sorted, viable cell suspensions (8x105-1x106 cells/mL) into single cell droplets using the 
Single Cell 3' Library, Gel Bead and Multiplex Kit (version 1; 10X Genomics; PN-120233) as per the 
manufacturer’s protocol. Each time point was run in duplicate, resulting in 10 sample preparations. The 
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samples were loaded into Single Cell 3' chips (10X Genomics) at a concentration optimized to capture 
approximately 5,000 cells in individual 1-cell droplets. Single cell libraries were sequenced using an 
Illumina NextSeq 500 instrument as previously described (Nguyen et al., in review-b).  
 
Bioinformatics processing. Bioinformatics mapping of reads to original transcripts and cells was by 
cellranger pipeline v1.3.1 (mkfastq, count, aggr) using GRC38p7 human reference genome using the 
STAR software (Dobin et al., 2013). Raw sequencing data between two biological replicates in each 
timepoint were aggregated and normalised by a subsampling procedure (Zheng et al., 2017). Methods for 
data preprocessing to filter outlier genes and cells based on median absolute deviation, and data 
dimensionality reduction by PCA and tSNE normalization are previously described in Nguyen et al 
(Nguyen, 2018) and as is implemented in the R ascend package (Senabouth   et al., 2018). After sample-
to-sample normalisation and data filtering, cell-to-cell normalisation was done by scran (Lun et al., 2017). 
Clustering algorithm was described in Nguyen et al (2017 and 2018) and is implemented in the ascend as 
well as the scGPS R packages. Furthermore, for reproducibility and broader usability of the valuable data 
resource, we have submitted all data to Array Express and created a web database resource with 
interactive data mining tools for users to explore the entire dataset without requirement for programming. 
 The clustering algorithm, CORE, builds a high-resolution clustering tree structure, dynamically 
groups branches of the tree at 40 different height cutoffs, and compares clustering results by using adjusted 
Rand indexes to find a stable clustering point (Nguyen et al., in review-a). The optimal clustering point 
meets two criteria, including robust to changing parameters and less different from a reference with the 
highest number of clusters. CORE algorithm is described in details in Nguyen et al (2017) and is 
implemented in the ascend R package (Senabouth   et al., 2018). We validated the clustering results using 
multiple dimensionality reduction methods (PCA, tSNE, MDS), imputation method (CIDR), and pseudo-
time mapping (Diffusion and Monocle).  

The processed data. post filtering, normalisation, and clustering was used as the input for 
differential expression analysis. We performed DESeq (Anders and Huber, 2010) differential expression 
analysis between cells in one subpopulation compared to all remaining cells in a given time-point. We 
observed that DESeq performed better than DESeq2, consistent to the report by Dal Molin et al(Dal Molin 
et al., 2017). scran normalised  counts were used as input to DESeq with adjustments to add and subtract 
pseudocount before and after DE analysis to better estimate fold changes. Bonferroni correction as applied 
to account for multiple testing.  
 
Bulk RNA-Sequencing:  hiPSC-CMs were harvested for RNA preparation and genome wide RNA-seq 
(>20 million reads).  RNA-seq samples were aligned to hg19 using Tophat, version 2.0.13 (Trapnell et al., 
2009).  Gene-level read counts were quantified using htseq-count (Anders et al., 2015) using Ensembl 
GRCh37 gene annotations.  Genes with total expression above 1 normalized read count across RNA-seq 
samples in each binary comparison (e.g., HOPX vs. control) were kept for differential analysis using 
DESeq (Anders and Huber, 2010).  Princomp function from R was used for Principal Component 
Analysis.  TopGO R package (Alexa et al., 2006) was used for Gene Ontology enrichment analysis.   
 
Protein extraction and western blot analysis: Cells were lysed directly on the plate with a lysis buffer 
containing 20mM Tris-HCl pH 7.5, 150mM NaCl, 15% Glycerol, 1% Triton X-100, 1M β-
Glycerolphosphate, 0.5M NaF, 0.1M Sodium Pyrophosphate, Orthovanadate, PMSF and 2% SDS 
(Moody et al., 2017).  25U of Benzonase Nuclease (EMD Chemicals, Gibbstown, NJ) was added to the 
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lysis buffer right before use.  Proteins were quantified by Bradford assay (Bio-rad), using BSA (Bovine 
Serum Albumin) as Standard using the EnWallac Vision.  The protein samples were combined with the 
4x Laemmli sample buffer, heated (95°C, 5min), and run on SDS-PAGE (protean TGX pre-casted 4%-
20% gradient gel, Bio-rad) and transferred to the Nitro-Cellulose membrane (Bio-Rad) by semi-dry 
transfer (Bio-Rad).  Membranes were blocked for 1hr with 5% milk and incubated in the primary 
antibodies overnight at 4°C.  The membranes were then incubated with secondary antibodies (1:10000, 
goat anti-rabbit or goat anti-mouse IgG HRP conjugate (Bio-Rad) for 1hr and the detection was 
performed using the immobilon-luminol reagent assay (EMD Millipore).  Primary antibodies are as 
follows: Alpha tubulin antibody Cell Signalling Technologies (2144) 1:2000 and anti-GFP Invitrogen (A-
11122) anti-rabbit 1:1000. 
 
Genomics data sets. Previously published ChIP-seq and gene expression data sets were analyzed for this 
study. Analysis of cardiac differentiation chromatin dynamics and gene expression by RNA-seq were 
published previously (Kuppusamy et al., 2015; Palpant et al., 2017b) with data accessed from GEO 
GSE97080. HOPX gene expression analysis were derived from Stemformatics (Wells et al., 2013) using 
the following data sets: a dual reporter MESP1-mCherry/NKX2-5 GFP reporter hESC line at day 0 and 
day 3 of directed differentiation sorted for MESP1 positive vs. negative cells (Stemformatics ID: 
Hartogh_2015_25187301) (Den Hartogh et al., 2015) and human foetal heart samples isolated at each of 
three trimesters comparing ventricle and atrial expression (Stemformatics ID: 
van_den_berg_2015_26209647) (van den Berg et al., 2015). Human fetal heart gene expression data were 
downloaded from ENCODE (experiment #: ENCSR047LLJ, ENCSR863BUL, ENCSR769LNJ, 
ENCSR433XCV, and ENCSR675YAS). HOPX expression in engineered tissue, adult heart tissue, and 
hPSC-CMs were acquired from previous work by Mills et al (Mills et al., 2017).  
 
Gene ontology visualization. Gene ontology analysis was performed using DAVID with significance 
threshold set at FDR < 0.05. The p-values from gene ontology analysis were visualized using the R 
package corrplot (Wei and Simko, 2016), where the radius of the circle is proportional to the negative 
natural log of the input p-value.  
 
Spearman correlation analysis. We obtained FACS sorted bulk cardiac subtypes (Quaife-Ryan et al., 
2017) and single-cell RNA-seq data generated from developing mouse heart (Li et al., 2016). The 
normalized expression data from these two sources was merged with our scRNA-seq expression data. 
Mouse Ensembl IDs were converted to human ortholog gene IDs and a new expression matrix was 
generated using only the 13,490 genes common to all three datasets. Spearman's rank correlation was 
used to compare the expression levels of genes between samples, and the significance of the differences 
between pairs of correlation coefficients were calculated using a Fisher Z-transformation. 
 
iTranscriptome sample preparation and data analysis. Samples were generated according to the 
methodology published in (Peng et al., 2016). E6.5, E7.0 and E7.5 embryos were cryo-sectioned along 
the proximal-distal axis.  Populations of approximately 20 cells were collected from different regions of 
the cross-section by laser microdissection and processed for RNA sequencing. Two sets of embryos for 
each embryonic age were dissected (Figure S1): the first set from the epiblast - E6.5: anterior and 
posterior; E7.0: anterior, left, right and posterior; E7.5: anterior, left anterior and posterior, right anterior 
and posterior, posterior. The second set from the three germ layers - E6,5: posterior epiblast and 
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endoderm: anterior and posterior; E7.0: posterior epiblast, mesoderm: anterior and posterior, and 
endoderm: anterior and posterior; E7.5: posterior epiblast, mesoderm: anterior and posterior, and 
endoderm: anterior and posterior. Differentially expressed genes (DEGs) were screened first by 
unsupervised hierarchical clustering method to group samples in the respective regions. Genes with an 
expression level FPKM>1 and a variance in transcript level across all samples greater than 0.05 were 
selected. To identify inter-region specific DEGs, each of these selected genes was submitted to a t-test 
against the level of expression in the other regions. Genes with a p.value< 0.01 and a fold change >2.0 or 
<0.5 were defined as DEGs.  The gene expression pattern (region and level of expression by transcript 
reads) of the gene of interest was mapped on the corn plots, where each kernel represents the cell 
population sampled at a defined position in the germ layers, to generate a digital rendition of whole mount 
in situ hybridization. 
 
Constructing regulatory differentiation networks: scdiff. Detailed computational model and derivation 
for scdiff are provided in (Ding et al., In review). scdiff software is available on GitHub 
(https://github.com/phoenixding/scdiff). The method is initialized using Spectral clustering based on cell-
to-cell Spearman correlation, followed by an ensemble strategy to determine the optimal K clusters. The 
model then iteratively connects clusters (representing states in the probabilistic model) between time 
points using a “Similarity To Ancestor-STA” strategy (with day 0 as the first time-point), based on 
expression similarity (Spearman correlation). Cell reassignment is based on a Kalman filter probabilistic 
model. The initial set of states and their connectivity is iteratively updated by learning trajectory and 
branching models constrained by transcription factor (TF)-gene interactions via a logistic regression 
classifier to maximize the ability to predict the expression of target gene based on the interaction data.  
Details of the implementation of scdiff are outlined below.   
Initial clustering of single cells. scdiff starts by clustering the cells in each of the time points measured. 
While the original scdiff method used spectral clustering, this method was unable to scale for the large 
number of cells profiled in this study. We have thus revised scdiff for this study by changing the original 
clustering methods to a more efficient method. Specifically, we used PCA with 10 dimensions followed 
by K-means for the initial clustering which led to faster runtime while not greatly affecting performance. 
To determine the initial number of clusters (k) for each time point we combine 3 widely used clustering 
quality assessment scores: the Silhouette Score (Rousseeuw, 1987), Davis-Bouldin index (Davies and 
Bouldin, 1979) and AIC (Akaike, 1998) (Akaike information criterion). We used a bootstrapping strategy 
to combine these. We first selected a random subset of 90% of the genes. Next, we calculate the 
Silhouette score, Davis Bouldin score and AIC scores for different k values between 2 and 20 for each 
time point. We compute a combined score for each of these k values based on the subset of genes selected 
and repeat this process 100 times (each time with a new random gene subset). We select the optimal k by 
summing up the scores for each of the possible k values across the 100 repeats. 
Initial model construction. Initial clustering is based on the time point associated with each cell. 
However, several recent studies indicate that cells may be unsynchronized with respect to their state even 
if they are collected at the same time point (Trapnell et al., 2014). Thus, some of the clusters at a specific 
time point may represent states that are either earlier or later than other clusters in the same time. To 
address this we next use a correlation-based method to reassign clusters to time points. Once we 
determined the set of clusters associated with each level (time point), we connect clusters in each level to 
the most similar cluster (in terms of correlation) at the level directly above it (its parent cluster). This 
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leads to a directed graph with potentially multiple roots (initial set of clusters for the first time points) 
which structurally represents the initial differentiation model.  
Predicting TFs regulating differentiation pathways. An important aspect of scdiff is the ability to both 
reconstruct and analyze the differentiation pathways based on the set of TFs that regulate various state 
transitions. We used bulk TF-gene interaction data from (Ernst et al., 2007; Schulz et al., 2012) for this 
analysis. Following the initial model construction, we first identify a set of differentially expressed (DE) 
genes for each cluster (state) in our model. Using this set, we identify TFs that are enriched for DE targets 
based on the hyper-geometric distribution. Next, we check which of the candidate TFs is expressed in the 
parent node of the state. TFs that are both significantly enriched and expressed are used in the to define a 
logistic regression function which modifies the likelihood of assigning cells to the different clusters in the 
model Thus, cell assignment is based on both, expression similarity to other cells in the state and the 
expression of targets of TFs predicted to regulate this state.  
Iterative assignment of cells to states. Given initial assignments of cells and TFs to states, we can 
compute the MLE of the transition and emission noise variance. We next iterate between two steps. The 
first uses the parameters learned to reassign cells and TFs to states and the second uses the assigned cells 
and TFs to re-learn model parameters. During the iterative process some states may become empty and if 
this happens they are removed from the model. The process stops when it converges (no more cells are re-
assigned) and the resulting model is returned. 
 
scdiff was run with the following parameters: -k auto –l 1 –s 1 –d 1. The expression data matrix was 
normalized at two levels: by batches (using the 10x cellRanger R package), and then by cells (using the 
deconvolution method in the ‘SCRAN’ package) in R. A thorough quality check to remove outlier genes 
and cells (outside 3 x median absolute deviation range) based on mitochondrial, ribosomal genes, library 
sizes, and number of detected cells (as described in our ASCEND R package – under review). 
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Supplemental Figures 
 
 

 
Figure S1 related to Figure 2. iTranscriptome analysis of the gastrulating mouse embryo.  
Schematic of the germ layer regions in E6.5, E7.0 and E7.5 embryos from which cell populations were 
sampled by laser capture microdissection and analyzed by RNA-seq.  Sections numbered in distal-
proximal order: E6.5: 1 to 7; E7.0: 1 to 11; E7.5: 1 to 9.  E6.5, epiblast: anterior (A), posterior (P), 
Endoderm: anterior (EA), posterior (EP); E7.0, Epiblast: anterior (A), left (L), right (R), posterior (P), 
Mesoderm: anterior (MA), posterior (MP), Endoderm: anterior (EA), posterior (EP); E7.5: Epiblast: 
anterior (A), left anterior (L1), left posterior (L2), right anterior (R1), right posterior (R2), Mesoderm: 
anterior (MA), posterior (MP), Endoderm: anterior (EA), posterior (EP). Triple double-headed arrows 
indicate the embryonic axes of the gastrula-stage embryo. 
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Figure S2 related to Figure 2. Comparative analysis of single cell expression patterns against spatio-
temporal RNA-seq analysis of gene expression in mouse gastrula stage embryos. Corn plots showing 
the spatial domains of (A) EOMES, (B) MIXL1, (C) FOXA2, and (D) SOX17 expression in the 
epiblast/ectoderm, mesoderm, and endoderm of E6.5, E7.0, and E7.5 mouse embryos during gastrulation 
(unpublished RNA-seq data for E6.5 (n=6) and E7.5 (n=6) embryos and published data for E7.0 embryo, 
(Peng et al., 2016)). Positions of the cell populations (so-called “kernels” in the 2D plot of RNA-Seq 
data) in the germ layers: the proximal-distal location in descending numerical order (1 = most distal site); 
in the transverse plane of the epiblast/ectoderm – E6.5, Anterior (A) and Posterior (P) quadrants;  E7.0,  
Anterior (A), Posterior (P), Left (L), and Right (R) quadrants; E7.5,  Anterior (A) and Posterior (P) 
quadrants,  Left-anterior half (L1), Right-anterior half (R1), Left-posterior half (L2), and Right-posterior 
half (R2) of left and right quadrants; in the transverse plane of the mesoderm and endoderm – Anterior 
half (EA) and Posterior half (EP) of the endoderm, Anterior half (MA) and Posterior half (MP) of the 
mesoderm, and Posterior epiblast (P) containing the primitive streak. Color scales represent levels of 
expression as log10 of fragments per kilobase million (FPKM+1). Below each set of corn plots, the mean 
expression value of each gene during cardiac directed differentiation in each subpopulation over the time 
course of lineage decisions are shown. UMI: Unique Molecular Identifier.  
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Figure S3 related to Figure 2. Analysis of lineage-specific genes identified at specific time points of 
differentiation to establish subpopulation identities. (A-B) Analysis of day 0 subpopulations 
represented by t-SNE (left) and diffusion (right) plots and the percent of cells in each subpopulations 
(D0:S1-S4), (B) analysis of pluripotency genes POU5F1, SOX2, NANOG, and DNMT3B (data from left 
for each gene: (i) t-SNE plot and (ii) diffusion plot showing cells +/- for gene, (iii) percent of cells 
expressing gene, (iv) histogram of gene expression, and (v) expression level of gene in each 
subpopulation). (C) Analysis of computational analysis of the mesoderm marker APLNR on day 2 of 
differentiation from single cell RNA-seq data (left) compared to FACS analysis of APLNR (right). (D-G) 
Analysis of expression patterns and dynamics of genes associated with (D) mes-endoderm specification at 
day 2 of differentiation (definitive endoderm transcription factor FOXA2 and anterior primitive streak 
mes-endoderm transcription factor NODAL), (E) the progenitor stage of differentiation at day 5 
(definitive endoderm transcription factor FOXA2 and cardiac progenitor Wnt regulatory gene TMEM88), 
(F) early cardiomyocyte stage of differentiation at day 15 (fetal sarcomere isoform of myosin MYH6 and 
troponin I TNNI1), and (G) late stage of cardiomyocyte differentiation at day 30 (sarcomere gene TTN 
and cardiac transcription factor GATA4) (data from left for each gene: (i) t-SNE plot and (ii) diffusion 
plot showing cells +/- for gene, (iii) percent of cells expressing gene, (iv) histogram of gene expression, 
and (v) expression level of gene in each subpopulation).  UMI: Unique Molecular Identifier. 
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Figure  S4 related to Figures 3 and 4. Lineage prediction analysis of cardiac differentiation by 
scdiff. (A) Expression level within each node for known cardiac and endodermal lineage markers 
reflecting in vivo populations. Gene expression is represented across all nodes: EOMES (pan-mesoderm), 
MESP1 and T (cardiogenic mesoderm), SOX17, FOXA2, EPCAM (endoderm), TMEM88, GATA4, 
TNNI1 (cardiac progenitors), THY1 (fibroblasts), MYH6, MYH7, MYL2, TTN, NKX2-5 (late-stage 
cardiac differentiation markers). (B) Lineage tracing prediction of only HOPX cells at each stepwise 
transition from pluripotency into cardiac lineages predicted on the basis of gene regulatory networks 
(GRN) detected between pairwise changes in cell state during differentiation. Circles indicate distinct 
nodes governed by a common GRN. Since cells can be re-assigned based on network stability, the re-
distribution of subpopulations established by our initial unsupervised clustering analysis (as outlined in 
Figure 2) are represented as pie charts within each circle indicating the percent of cells from each 
subpopulation contributing to that node. Nodes are demarcated as N1-N9. (C) Expression level within 
each node for known developmental lineage markers. Gene expression is represented across all nodes: 
NANOG (pluripotency), MESP1 (cardiac-mesoderm), TAL1 and CDH5 (endothelium) TNNI1, MYH7, 
NKX2-5, IRX4 (primarily first heart field cardiac genes), THY1, PITX2, HOXA2, and TBX18 (second 
heart field and outflow tract development). (D) Expression level within each node for known 
pluripotency, mes-endodermal, and cardiac genes in HOPX cells comprising different stages of 
differentiation as outlined in Figure 4F-G and Table S5. The analysis identifies transcription factors and 
genes controlling stage-specific regulatory networks underlying cell fate transitions. Mean DE target fold 
change calculates the fold change for the differentially expressed targets of the TF. DE gene fold change 
shows up or down-regulated fold change of TF target genes. 
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Figure S5 related Figure 4. Analysis of HOPX expression during cardiac development in vitro and 
in vivo. (A) Expression of HOPX from human foetal heart samples isolated at each of three trimesters 
comparing ventricle and atrial expression. (B-E) Corn plots showing the spatial domains of (C) HOPX 
and (E) MESP1 expression in the epiblast/ectoderm, mesoderm, and endoderm of E6.5, E7.0, and E7.5 
mouse embryos during gastrulation (unpublished RNA-seq data for E6.5 (n=6) and E7.5 (n=6) embryos 
and published data for E7.0 embryo, (Peng et al., 2016)). Positions of the cell populations (so-called 
“kernels” in the 2D plot of RNA-Seq data) in the germ layers: the proximal-distal location in descending 
numerical order (1 = most distal site); in the transverse plane of the epiblast/ectoderm – E6.5, Anterior 
(A) and Posterior (P) quadrants;  E7.0,  Anterior (A), Posterior (P), Left (L), and Right (R) quadrants; 
E7.5,  Anterior (A) and Posterior (P) quadrants,  Left-anterior half (L1), Right-anterior half (R1), Left-
posterior half (L2), and Right-posterior half (R2) of left and right quadrants; in the transverse plane of the 
mesoderm and endoderm – Anterior half (EA) and Posterior half (EP) of the endoderm, Anterior half 
(MA) and Posterior half (MP) of the mesoderm, and Posterior epiblast (P) containing the primitive streak. 
Color scales represent levels of expression as log10 of fragments per kilobase million (FPKM+1). Below 
each set of corn plots are shown the mean expression value of HOPX (B-C) and MESP1 (D-E) during 
cardiac directed differentiation in each subpopulation over the time course of lineage decisions. (F) ChIP-
seq and RNA-seq analysis of the HOPX locus in day 5 cardiac progenitor cells showing chromatin levels 
for H3K4me3 vs H3K27me3 and gene expression by RNA-seq of cardiomyocyte differentiation from day 
5 to 1 year old differentiated cardiomyocytes. (G) Human hPSC-monolayer derived cardiomyocytes at 20 
days (day 20 RH-B, n=3) and 1 year of differentiation (1 yr RH-B, n=3), h cardiac organoids in control 
(hCO CTRL JH, n=4) and maturation media (hCO MM JH, n=4), human fetal ventricle (hFV RH-B, 
n=2), and human adult heart (hAH HR-B, n=2 and hAH JH, n=1). UMI: Unique Molecular Identifier.  
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Figure S6 related to Figure 4. HOPX expression in Activin A/BMP4 mediated directed 
differentiation from pluripotency. (A) Schematic of protocol for Activin A/BMP4 differentiation 
(ABCX-100) from pluripotency as described previously (Palpant et al., 2017a). (B) Gene expression 
profiling by qRT-PCR during Activin A/BMP4 differentiation using hESC line RUES2 showing proper 
temporal dynamics of expression for mesoderm at day 2 (MESP1, EOMES) cardiac progenitor at day 5 
(TMEM88, ISL1) and GATA4 activated between days 5-40 compared to the temporal expression of 
HOPX. (C) Schematic of the HOPX-tdTomato reporter cell line in which the fluorescence reporter is 
knocked into the TSS of the HOPX locus for real-time dynamic analysis of HOPX activity during 
differentiation (Palpant et al., 2017b). (D) Mean fluorescence intensity analysis of HOPX reporter cells 
(normalized to WT controls) during a time course of cardiac directed differentiation using Activin 
A/BMP4 induction. (E-F) FACS analysis of HOPX loss of function stem cell lines including HOPX 
genetic KO (E) and HOPX CRISPRi (F) showing no difference in cardiac specification in HOPX 
deficient cells.  
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Figure S7 related to Figure 5. HOPX-NLS-eGFP construct sequence 
 
HOPX-NLS-GFP 
 
ATGTCGGCGGAGACCGCGAGCGGCCCCACAGAGGACCAGGTGGAAATCCTGGAGTACAACT
TCAACAAGGTCGACAAGCACCCGGATTCCACCACGCTGTGCCTCATCGCGGCCGAGGCAGG
CCTTTCCGAGGAGGAGACCCAGAAATGGTTTAAGCAGCGCCTGGCAAAGTGGCGGCGCTCA
GAAGGCCTGCCCTCAGAGTGCAGATCCGTCACAGACGGTGGTCCAAAGAAGAAGCGGAAGG
TCGGTGGTACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTC
GAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATG
CCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGG
CCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT
GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCT
TCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCT
GGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCAC
AAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACG
GCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGA
CCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACC
TGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCT
GGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA 
 
Supplemental Tables 
 
Table S1. Differential gene expression and gene ontology analysis of subpopulations identified during 
cardiac directed differentiation at single cell resolution. 
 
Table S2. Computational analysis of transcription factor and gene regulatory networks underlying scdiff 
prediction of lineage trajectories for the full single cell time course data set.  
 
Table S3. Transcription factor and epigenetic regulators of cardiovascular fate diversification analyzed 
for expression in eleven subpopulations comprising cell fate transitions from day 2, 5, 15, and 30.  
 
Table S4. Analysis of HOPX expression in various cell types from in vivo heart development.  
 
Table S5. Computational analysis of transcription factor and gene regulatory networks underlying scdiff 
prediction of lineage trajectories for only HOPX+ cells during the full time course data set.  
 
Table S6. RNA-seq analysis of HOPX over-expression in cardiomyocytes. 
 
Table S7. Gene ontology analysis of differentially expressed genes in HOPX over-expression vs control.  
 
Table S8. Statistical analysis of gene expression shown in heat maps in Figure 6J-M.  
 
Table S9. Primer sequences for HOPX CRISPRi and qRT-PCR analysis.  
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