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Abstract 
 
The majority of genetic loci underlying common disease risk act through changing genome 20 
regulation, and are routinely linked to expression quantitative trait loci, where gene expression is 
measured using bulk populations of mature cells. A crucial step that is missing is evidence of 
variation in the expression of these genes as cells progress from a pluripotent to mature state. This 
is especially important for cardiovascular disease, as the majority of cardiac cells have limited 
properties for renewal postneonatal. To investigate the dynamic changes in gene expression across 25 
the cardiac lineage, we generated RNA-sequencing data captured from 43,168 single cells 
progressing through in vitro cardiac-directed differentiation from pluripotency. We developed a 
novel and generalized unsupervised cell clustering approach and a machine learning method for 
prediction of cell transition. Using these methods, we were able to reconstruct the cell fate choices 
as cells transition from a pluripotent state to mature cardiomyocytes, uncovering intermediate cell 30 
populations that do not progress to maturity, and distinct cell trajectories that terminate in 
cardiomyocytes that differ in their contractile forces. Second, we identify new gene markers that 
denote lineage specification and demonstrate a substantial increase in their utility for cell 
identification over current pluripotent and cardiogenic markers. By integrating results from analysis 
of the single cell lineage RNA-sequence data with population-based GWAS of cardiovascular 35 
disease and cardiac tissue eQTLs, we show that the pathogenicity of disease-associated genes is 
highly dynamic as cells transition across their developmental lineage, and exhibit variation between 
cell fate trajectories. Through the integration of single cell RNA-sequence data with population-
scale genetic data we have identified genes significantly altered at cell specification events 
providing insights into a context-dependent role in cardiovascular disease risk. This study provides 40 
a valuable data resource focused on in vitro cardiomyocyte differentiation to understand cardiac 
disease coupled with new analytical methods with broad applications to single-cell data. 
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Introduction 
 45 
Genetic effects on early cardiomyocyte development can lead to significant risks of heart defects at 
birth, and common heart-related health later in life (Bruneau, 2008; Delaughter et al., 2016). While 
there is some plasticity early in fetal and neonatal development, once cardiomyocytes have reached 
maturity, the proportion and composition of cellular phenotypes in the adult heart becomes fixed 
(Porrello, et al., 2011, van Berlo and Molkentin, 2017). As such, many pathological changes in 50 
heart development and cellular function are determined during embryogenesis. Population-based 
studies focusing on cardiac disease, such as coronary artery disease and myocardial infarction, and 
congenital heart defects have identified 4,517 single nucleotide polymorphisms (p < 5x10-8) that are 
significantly associated with disease risk, identifying hundreds of independent genomic loci 
associated with cardiac diseases (Hoffman and Kaplan, 2002; Bruneau, 2008; Nikpay et al., 2015; 55 
Nelson et al., 2017; Howson et al., 2017). The majority of these loci act though changing genome 
regulation, with their effects observable as expression quantitative trait loci (eQTL), which alter the 
expression levels disease-associated genes (Koopmann et al., 2014). The discovery of cardiac tissue 
eQTLs (GTEx Consortium, 2015; Koopmann et al., 2014) is an important step linking 
cardiovascular disease risk with variation in gene expression. A crucial step that is missing is 60 
evidence of variation in the effect of the expression of these genes across the specification of the 
cardiomyocyte lineage. This problem is addressed at least in part through advances in derivation of 
human induced pluripotent stem cells (hiPSC) coupled with protocols for cardiac directed 
differentiation from pluripotency (Eschenhagen et al., 2015, Palpant et al., 2017).  
 65 
Cardiac tissue engineering by in vitro differentiation of hiPSCs is a key approach to developing 
cell-replacement therapies for heart repair and cardiovascular disease modelling (Garbern and Lee, 
2013; van Berlo and Molkentin, 2014; Eschenhagen et al., 2015; Sahara et al., 2015). Current 
differentiation protocols result in heterogeneous cardiac subtypes such as atrial-, ventricular-, and 
nodal-like contractile cells as well as non-contractile cell types (He et al., 2003; Ichimura and 70 
Shiba, 2017). Transcriptomic studies of cardiomyocyte differentiation based on bulk-sample RNA-
sequencing lack the resolution required to determine cell-cell differences, and their contributions to 
overall phenotype. Critically, the purity of differentiated cardiomyocytes is often assessed by a 
single marker, for example Troponin T–positive cells (TNNT2+), detected by qPCR or flow 
cytometry, which mask any underlying heterogeneity (Burridge et al, 2014; Chen et al., 2017). 75 
Single cell RNA-sequencing (scRNA-seq) provides an approach to identify discrete cell 
subpopulations to understand the heterogeneous nature of cellular states defined by differences in 
transcription. When applied over a time course of differentiation, the scRNA-seq data can be used 
to map cell subpopulations and identify differentiation trajectories between subpopulations. 
Importantly, it is also possible to quantitatively estimate the differentiation efficiency (potential for 80 
a cell to transition from early to late stages) and heterogeneity (different subpopulations at a single 
stage) of cells that underlie the differentiation process.  
 
Here, we present results showing the cellular heterogeneity and cell fate choices across in vitro 
cardiomyocyte differentiation, and demonstrate the transcriptional networks governing efficient 85 
cardiomyocyte differentiation. We analysed 43,168 single-cell transcriptomes across five 
differentiation stages during cardiac directed differentiation of human iPSCs using small molecule 
Wnt modulation.  We developed an unsupervised clustering approach, and used this method to 
identify 15 distinct cell subpopulations and expression signatures with more than 300 new gene 
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markers that distinguish these subpopulations, and show that not all subpopulations progress to the 90 
next stages of cell development. Using the transcriptional signature of each subpopulation, we 
devised a machine learning prediction model, which quantitatively estimates the direction and 
transition potential for subpopulations within and between different time-points. To determine 
which genes act as drivers of differentiation, we applied an unsupervised modelling approach, 
followed by functional and transcriptional network analysis. Finally, we hypothesised that the 95 
expression levels of genes associated genetic risk to cardiovascular disease can vary throughout 
development and, in particular, across lineage specification. We integrated gene expression and 
GWAS data to identify genes whose expression levels are associated with cardiovascular disease 
susceptibility, and we show that the expression levels of these genes vary across the cell 
developmental lineage in a cell fate specific manner. This provides the first evidence for variation 100 
in the pathogenicity of a disease loci across a cell developmental lineage.  
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Results 
 
Single cell RNA sequence of cardiac directed differentiation from pluripotency 105 
We induced cardiac directed differentiation using a widely implemented small molecule Wnt 
modulation protocol (Friedman et al. under-review) and captured cells at days 0, 2, 5, 15 and 30 for 
scRNA-seq (Figure 1a). These five time-points correspond to established cell differentiation states 
of pluripotency (day 0), germ layer specification (day 2), progenitor (day 5), committed (day 15), 
and definitive (day 30) cardiac cell types (Paige and Murry et al., 2012; Palpant, et al., 2017). 110 
scRNA-Seq data was generated for an average of 4,400 cells from each of two biological replicates 
at each time-point, with the total dataset comprising of 44,123 cells and 33,020 genes (Table S1). 
Through quality control, we removed 955 cells and 15,302 genes that were expressed in <0.1% of 
cells (Table S2, Methods). After filtering, data remained for a total of 43,168 cells and 17,718 
genes, with cells sequenced to an average depth of 48,067 mapped reads (Table S2, Figures S1-2). 115 
Filtered expression data were stringently normalised at three levels, per gene, per cell and per 
sample (Methods, Figure S1). Following normalisation, we observed no evidence for batch effects 
based on library preparation, or sequencing run (Figure S3). Cells from two biological replicates 
for each time-point were distributed in close proximity, with no observed differences across days as 
shown by t-distributed Stochastic Neighbour Embedding (t-SNE) plots (Figure S3c). Similarly, 120 
initial hierarchical clustering of the merged data did not show signs of bias across batch labels 
(Figure S3b-d) 
 
Visualizing by t-SNE and Clustering from Imputation and Dimensionality Reduction – CIDR (Lin 
et al., 2017) showed a clear separation of cells transcriptional states corresponding to five discrete 125 
time-points (Figure 1b). As predicted, cells that were expected to represent pluripotent (day 0), 
germ layer specification (day 2), progenitor (day5), committed (day 15) and definitive (day 30) 
cardiac cell types consistently clustered together. To further validate that our scRNA-seq data 
represented the transcriptional signatures of cell development across the cardiomyocyte lineage, we 
compiled a list of 139 known markers for pluripotency, germ layer specification, endoderm, 130 
ectoderm (Tsankov et al., 2015), and cardiac differentiation (Paige et al., 2012) (Figure 1d-e, Table 
S3). The expression levels of these markers strongly confirmed the success of the differentiation 
process throughout the 30-day time-course (Figure 1d-e, Figure S5).  
 
Differential expression analysis of genes between cells at days 0 vs. 2, 2 vs. 5, 5 vs. 15, and 15 vs. 135 
30, identified consistent directional fold changes of pluripotent and cardiac developmental markers 
(Figures S5-7, Tables S4, S5). The transition from day 0 to 2 shows changes in pluripotency 
markers such as a reduction in the expression of POU5F1, SOX2, NANOG, and a number of 
signalling pathways such as WNT (WNT9A, WNT4, DKK1, WNT3A), FGF and FGFR. From day 
2 to 5, we observed an increase in the expression of cardiac progenitor genes, including those 140 
involved in striated muscle contraction (MYL4, MYL3, ACTN2, TNNI1, TNNT2, MYH6), smooth 
muscle contraction (MYL7, MYL9, ACTG2, ACTA2, TPM1), and the continuing reduction of 
pluripotency maintenance genes (NANOG, POU5F1, FOXD3, SOX2). From day 5, cells become 
committed towards the cardiac lineage, and the expression of genes in the cardiac conduction 
pathway significantly increase between day 5 to 15 (p = 3.4x10-5) (Table S4). From day 15 to 30, 145 
we show that genes associated with cardiomyocyte functions, such as cation transport (RUNX1, 
SLC22A3) and striated muscle contraction (MYL1, TNNC2) are the most significantly up-
regulated (Table S4), indicating increasing maturity of the cardiac cells. These results collectively 
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demonstrate that transcriptional variation captured at a single cell level can recapitulate the known 
functional changes across a cardiogenic differential lineage, but also reveal the substantial 150 
limitations of understanding cell fate trajectories from bulk time-point RNA-sequence data. 
  
Reconstructing the trajectories of heterogeneous cells across the cardiomyocyte lineage 
We next aimed to understand cell population diversity represented across each time point during 
differentiation, and to identify different cell fates of the differentiation lineage. To identify distinct 155 
subpopulations of cells, and to identify their trajectories across the lineage, we developed two 
methods to first classify subpopulations of cells, and subsequently predict their transition to 
subpopulations at later points within the cardiac lineage.  
 
Normalised expression data were analysed using our novel unsupervised clustering method, 160 
Clustering at an Optimal REsolution (CORE) (Figure 1c and Figure S4), to identify 
subpopulations consisting of transcriptionally similar cells. Using CORE, we identified distinct 
subpopulations of cells in each of the five differentiation stages (Figure 1c and Figure S4), which 
were consistent with clusters separated by the first 2-3 principal components. Our results were 
consistent with alternative dimensionality reduction approaches, including linear (PCA and MDS), 165 
non-linear (t-SNE), and imputation approaches (CIDR) (Figure S4). Importantly, functional 
enrichment analysis confirms that these subpopulations are biologically distinct in their 
differentiation and cell-lineage commitment states (Friedman, et al., under-review, Figure S6, 
Figure S7, Table S5). For pluripotent cells (day 0), we identified four distinct subpopulations 
representing pluripotency states, including: a core pluripotent (D0:S1 - 6701 cells), a proliferative 170 
(D0:S2 - 5614 cells), an early-primed (D0:S3 - 1330 cells), and a late-primed (D0:S4 - 34 cells) 
subpopulation. This result is consistent with our previous work showing distinct subpopulations of 
hiPSCs across a pluripotency trajectory (Nguyen et al.). At day 2, we identified a MESP1+ 
mesoderm subpopulation (D2:S2 - 1994 cells) as well as SOX17+ definitive endoderm (D2:S1 - 
2245 cells) and GSC+ mesendoderm (D2:S3 - 1666 cells). Similarly, we observed a diverse cell-175 
type composition at day 5 comprising TNNI1+ cardiomyocyte precursors (D5:S1 - 3850 cells), 
cardiovascular progenitors expressing low levels of cardiac contractile genes TNNI1+ cells as well 
as TAL1+ endothelial cells (D5:S3 - 2474 cells), a persistent population of SOX17+ definitive 
endoderm (D5:S2 - 2577 cells) and 10% of cells with no significantly differentially expressed genes 
(D5:S4 - 996 cells). 180 
 
Differential expression and gene set enrichment revealed ‘cardiac muscle cell morphogenesis’ as 
the most significant downregulated pathway in the D5:S2 subpopulation (Figure S6, Table S5). 
This pathway includes known cardiac transcriptional regulators such as HAND1, NKX2-5, 
WNT5A, FOXC2, and ISL1 (Figure S6c), and is in contrast to the upregulation of transcription 185 
regulators for endodermal commitment such as FOXA2, SOX17 (Figure S6b).  
 
From day 15, as cells become committed within the cardiomyocyte lineage, we observed two major 
subpopulations, that we identified as non-contractile cells (subpopulation 1: D15:S1 – 3520 cells; 
D30:S1 – 4038 cells) and contractile cardiomyocytes (subpopulation 2: D15:S2 – 2783 cells; 190 
D30:S2 – 3001 cells).  Cells identified as cardiomyocytes in D15:S2 and D30:S2 expressed more 
definitive cardiomyocyte markers, specifically transcription regulators (NKX2-5, FOXC2, IRX4) 
and cardiac structural genes (ACTC1, MYH7, MYH6, MYL4, TTN, TNNT2, TNNI1, TNNC1) 
(Figure S7d, e; Table S5, and Figures 2 and 4 in Friedman et al., under-review), whereas the non-
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contractile cells in D15:S1 and D30:S1 expressed markers consistent with an outflow tract-like cell 195 
(THY1, KDR PITX2, PDGFRB, BMP4, FGF10). Extensive analysis of cell subpopulations and 
transcriptional comparison to in vivo cell types is provided in our companion study (Friedman et al, 
under review). 
 
To confirm that clustering was not an artefact of differences in cell cycle, we estimated the 200 
probability of a cell being in G1, S, or G2M stages of the cell cycle (Table S6).  In total, 36,419 
cells in G1, 4,528 cells in S phase and 1806 cells in the G2M phase. The majority of the cells 
(>75%) in each cluster are in the G1 phase (Figure S9).  
 
To facilitate public access and interpretation of time-course scRNA-seq data, we have created a 205 
publicly accessible database and analysis server (Figure S8), which can be accessed here: 
http://computationalgenomics.com.au/shiny/hipsc2cm/. 
 
A novel differentiation trajectory analysis framework  
To study cell transition and fate choices of the different distinct subpopulations of cells, we 210 
developed a method to predict the transition of cells in one subpopulation to cells in a subsequent 
subpopulation. This method is called single cell Global fate Potential of Subpopulations (scGPS), 
which trains a regularized logistic classifier to estimate the probability of cells transitioning to 
another subpopulation. We applied this between subpopulations of cells within a time point, and 
between adjacent time points (Figure 2a, Figure S10 and Table S7). Cell lineage commitment 215 
revealed by trajectory or pseudotime analysis often focuses on continuous transition between 
neighbouring cells (Haghverdi, 2016; Qiu et al., 2017), but not between discrete subpopulations, 
making fate choices difficult to identify especially in time course single cell data that lack 
continuity of transcriptional states between cells through differentiation. The scGPS method 
addresses this problem by estimating a probability that cells in one subpopulation are able to 220 
transition to another subpopulation. We call this probability a transition score. The combination of 
CORE and scGPS methods form a framework that can be applied for any unknown (sub)population 
of cells to classify cells into subpopulations, to objectively identify gene markers and to estimate 
transition scores between the subpopulations (Figures S10 and S11, Table S7). The prediction of 
transitions cell subpopulations by scGPS is consistent with Monocle2 (Qiu et al, 2017) and 225 
Diffusion pseudotime (PT) (Haghverdi et al., 2016) (Figure 2). However, scGPS has multiple 
advantages over these methods. In particular, scGPS quantitatively estimates the transitioning 
potential of each subpopulations within and across a time course. Compared to existing methods, 
scGPS does not assume a linear continuum trajectory in the total population, and can statistically 
predict the transition between any pair of subpopulations. Importantly, scGPS can be applied in an 230 
unsupervised manner to both discover novel trajectories and new markers. Alternatively, a 
transition score can be calculated using a gene list of known markers.    
 
To illustrate the value in using scGPS to identify novel genes governing cell fate decisions, we 
estimate the transition scores for all subpopulations across the time-series using the unsupervised 235 
approach, and also the list of 139 cardiac lineage markers (Table S3). In all cases, the transition 
score, and deviance explained were consistently higher (0.2-8.6%, and 6-44% respectively) when 
scGPS was trained using unsupervised method, compared to known the pluripotency and 
cardiogenic  markers (Figure S11, Table S8). These results provide evidence that our analysis of 
single cell transcription profiles can identify novel drivers of fate choice and cell differentiation 240 
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consistently across the cardiomyocyte lineage. For example, scGPS identifies PAX2 with the 
highest coefficient for the D5:S1 subpopulation, which is the most cardiogenic subpopulation 
giving raise to day 15 cells (see below). PAX2 has not been reported to be involved in 
cardiomyocyte differentiation, but is highly expressed heart tissue, suggestive of a gene important 
in early heart morphogenesis. As expected, scGPS also identified genes known to be involved in 245 
cardiomyocyte development, with positive coefficients estimated for TNNC1, NKX2-5, MYL7, and 
MYH6 in the derivation of D30:S2 cardiomyocytes. In contrast, PDGFRB and HOXA3 had a 
negative coefficient for D30:S2, and are involved in non-cardiomyocyte fates. Our results 
demonstrate that scGPS is able to identify both known markers of cell identity, and reveal extensive 
new statistical evidence for novel genes underlying cell subtype specification during cardiac 250 
differentiation.  
 
Using scGPS, we were also able to identify transitions between subpopulations within a given time 
point (Figure 2c). For example, for cell subpopulations identified at day 0, we identified a 
transition from pluripotency to late primed cells consistent to our previous work using hiPSCs 255 
(Nguyen et al.). Over 70% of the cells in the D0:S1 were capable of transitioning into the D0:S2, 
while D0:S2 and D0:S3 had the highest potential transition scores (~80%) to D0:S3 and D0:S4 
respectively (Figure 2a, c, Table S7). The scGPS data for day 0 is in agreement with the observed 
trajectories identified from the Diffusion prediction method (Haghverdi et al., 2015, 2016) (Figure 
2c), and Monocle2 (Qiu et al., 2017) (Figure 2c, Figures S10 and Table S7).  260 
  
Cell fate of subpopulations across differentiation stages identified using scGPS 
For cells sequenced at day 2, the D2:S2 (mesoderm) subpopulation, characterised by high 
expression of the cardiac mesoderm gene MESP1, had the highest potential to transition into cells 
in D5:S1 (cardiomyocyte precursors), D5:S3 (cardiovascular progenitors) and D5:S4 (intermediate) 265 
subpopulations in day 5 (Figure 2a, Table S7). Analysis of the transition between day 5 and 15 
demonstrates the progression of the cardiomyocyte precursors (D5:S1) and cardiovascular 
progenitors (D5:S3) (Figure 2) and the termination of the definitive endoderm (D5:S2) in the 
cardiomyocyte differentiation trajectory. In contrast, subpopulations D5:S1 and D5:S3 both 
transition into the non-contractile cardiovascular subpopulation (D15:S1). Interestingly, from day 270 
15 to day 30, we identified a consistent overlap between two the subpopulations of non-contractile 
cardiovascular subpopulations (D15:S1 vs. D30:S1) and contractile committed/definitive 
cardiomyocytes (D15:S2 vs. D30:S2), providing evidence of bifurcation at day 5 into two distinct 
lineage branches (Figure 2d).  One of these branches forms non-contractile, fibroblast-like cardiac 
derivatives (with high expression of outflow tract cell markers such as THY1, PITX2, KDR, PBX2 275 
and BMP4 and low NKX2-5 expression), and the other branch forms a mature, contractile heart 
muscle cardiomyocyte subpopulation with strong expression of contractile cardiomyocyte markers 
such as TNNI1, TTN, MYL2. In vivo functional analysis of the two subpopulations showed a 
reduction in contractile force of the D30:S1 compared to D30:S2 subpopulations (p = 0.0009) 
(Friedman et al., under review). Moreover, the scGPS results for subpopulations in days 15 and 30 280 
predicted that over 90% of cells in D30:S1 and D30:S2 are direct transitions of cells in D15:S1 and 
D15:S2 respectively (Figure 2a, Figure S10). Additional validation of the scGPS prediction 
algorithm demonstrated the reproducibility of known, in vivo developmental lineage choices 
(Friedman et al., under review). Finally, we separately normalised data consisting of pairs of time 
points, from day 0 to 2, 2 to 5, 5 to 15, and 15 to 30, and implemented Monocle2 and Diffusion 285 
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pseudotime methods to reconstruct pseudotime differentiation trees between these time-points. The 
results strongly support our conclusions regarding cell fate trajectories (Figure 2d, Figure S12). 
 
Co-expressed genes are dynamically regulated across the cardiomyocyte lineage 
We hypothesised that during differentiation, gene expression was dynamically regulated for co-290 
expressed modules governing gene networks from pluripotency to committed cardiac fates. Gene 
regulatory circuits, which contain a large number of genes that are mutually inhibited or stimulated, 
have been shown to underlie cell fate decision in systems, such as the differentiation from bone 
marrow-derived cell line to erythroid and myelomonocytic lineages (Huang et al., 2007), and from 
mouse embryonic stem cells to mesendodermal cells (Shu et al., 2013). In line with these studies, 295 
cellular reprogramming from a defined intermediate population in mouse, was shown to involve 
nine gene categories dynamically regulated by two distinct transcriptional waves (Polo et al., 2012). 
These modules consist of co-ordinately regulated genes, including master regulators (e.g. 
transcription factors) and effector genes (e.g. structural genes or genes related to physiological 
activities), enabling subsequent identification of pathways potentially driving differentiation.  300 
 
We initially identified a total of 483 genes whose expression levels were significantly (p < 0.05 / 
17,718) associated with polynomial model of the differential time-course (Figure 3a, Tables S9, 
S10, S11). We stratified these genes into co-expression modules, based on topological analysis of 
gene expression co-regulation (Figure 3b). This identified two distinct modules. The first, which 305 
we termed the ‘early’ module, contains 367 genes, whose expression levels decrease as cells 
differentiate into mature cardiac fates. The second module, termed ‘late’, contains 116 genes that 
are up-regulated as the cells exit from pluripotency into differentiated states (Figure 3, Tables S9, 
S10, S11). Interestingly, the between-module gene correlations are in opposite sign directions, 
suggesting independent regulatory networks (Figure 3c, Table S11). Examples of hub genes in 310 
these two modules include a pluripotency marker, POU5F1 (early module), and a cardiac 
conduction marker, TPM1 (late module). From day 0 to day 30, when cells progressed from 
pluripotency into the cardiac lineage, POU5F1 expression decreased, while TPM1 expression 
increased (Figure 3c).  
 315 
To identify the mechanisms controlling the co-regulation of expression, we tested for enrichment of 
transcription factor (TF) binding targets for genes within the early and late modules (Figure S13). 
The early module contains gene targets enriched for 16 transcription factors (Normalised 
Enrichment Score >= 3) (Table S11). In particular, ZFP42 is predicted to target 62 genes in the 
early module, and the critical role of ZFP42 in governing the exit from pluripotency and germ layer 320 
commitment has been confirmed in vitro and in vivo (Kalkan et al., 2017). Similarly, we identified 
14 independent TFs that are significantly enriched for gene targets in the late module (NES >= 3) 
(Table S11), with the most highly enriched being MEF2A (Myocyte Enhancer Factor 2A), a core 
cardiac transcription regulator (Desjardins and Naya, 2016) that binds to 55 of the 116 genes. 
 325 
While our initial data provide strong evidence for co-regulated early and late gene networks 
identified using a polynomial model to analyse the time course differentiation data, we next utilized 
this approach to further understand cell fate diversification of subpopulations. To gain insights into 
genetic regulators of subpopulation lineage trajectories, we conducted the gene-model analysis with 
trajectories identified by scGPS (Figure 2a). The two definitive cardiac fate trajectories identified 330 
at day 15 of differentiation differ from the bifurcation in day 5 (Figure 2a). Our annotation analysis 
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based on cardiac developmental biology (Friedman et al., under review) suggests that trajectory 2 
gives rise to contractile cardiomyocytes, while trajectory 1 generates non-contractile cells with an 
outflow tract (OFT)-like transcriptional signature.  
 335 
 
We found a strong distinction between the two trajectories in the gene-model analysis. Trajectory 2 
had more genes whose expression levels significantly change over the time-series (498 genes vs. 
136 genes), and more trajectory-specific genes (110 genes vs 31 genes) (Table S12). Trajectory 2 
contains significant genes enriched for cardiomyocyte differentiation (Table S12), and iRegulon 340 
analysis of genes in trajectory 2 identified key cardiomyocyte regulators, including MEF2D, 
MEF2C and MEF2A, as the highest ranked transcription factors (Table S11, Figure S13). 
Importantly, we observed two key OFT markers, namely PBX1 (Pre-B cell leukemia transcription 
homeobox) and SOX17 (SRY-box 17), that were enriched for transcription factors for trajectory 1 
genes (Verzi et al., 2005; Buckingham et al., 2005; Chang et al., 2008). These results further 345 
support the biological annotation of the pathway to outflow tract (trajectory 1) and to definitive 
cardiomyocytes (trajectory 2) and provide insights into co-regulated transcriptional networks 
underlying cell fate diversification during differentiation.     
 
Comparison of gene expression in single cardiomyocytes with bulk RNA-seq of postnatal and 350 
adult heart  
In vitro differentiated cardiomyocytes are transcriptionally distinct from postnatal and adult heart 
cells, particularly in terms of regeneration potential (Garbern and Lee, 2013; Sahara et al., 2015). In 
the context of translational functions of stem cell-derived cardiomyocytes, it is crucial to understand 
the differences in gene expression programs that are active in differentiating cardiomyocytes and 355 
the effect they have on downstream processes. We sought to compare the expression profiles of 
single cells at five stages of in vitro cardiomyocyte differentiation with expression in post-natal to 
adult heart tissues. 
 
We identified a high correlation between prenatal and adult heart expression levels (Spearman’s 𝜌	360 
=	 0.8-0.9), and a high correlation between the differentiation days of the individual single cell 
cardiac directed differentiation samples (𝜌	=	0.7-0.9) (Figure 4e). Importantly, we show that the 
correlations between mature cardiomyocytes (day 30) and post-natal heart (𝜌	=	0.6) and healthy 
adult heart (𝜌	=	0.5-0.6) is higher than that between the adult heart tissue (age 34) and the day 0 
pluripotent iPSCs (𝜌	=	0.4) and the day 2 mesoderm cells (𝜌	=	0.4). The significant correlation 365 
between early/late in vitro differentiation of iPSCs to cardiomyocytes with post-natal and adult 
heart indicate that the transcriptomes of differentiated cardiomyocytes reliably reflect human 
cardiomyocyte gene expression however further studies are required to derive the subpopulation 
diversity of the adult heart from pluripotent stem cells. 
 370 
Integration of population-level disease genomics results with single cell cardiomyocyte lineage 
data 
A recent study of risk loci for coronary artery disease (CAD) (Howson et al 2017) highlighted 95 
candidate causal genes with functional data that are associated with arterial wall mechanisms. We 
hypothesised that the expression of CAD genes could vary across the differentiation time-course, 375 
and between the two cell fate trajectories. Using the scRNA-seq expression data for the 95 CAD 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 5, 2017. ; https://doi.org/10.1101/229336doi: bioRxiv preprint 

https://doi.org/10.1101/229336
http://creativecommons.org/licenses/by/4.0/


 11 

genes, we selected genes with the highest overall expression levels (Figure 4b), and grouped them 
as pluripotent (Day 0), mesoderm (Days 2 and 5), and cardiomyocyte (Days 15 and 30) stages. We 
found that all 95 genes have significant changes in expression across days (Figure 4c, Tables S15-
16), suggesting that any significant eQTL underlying the expression levels of these genes may have 380 
a variable effect across the cardiac developmental lineage.  
 
Genetic variants that contribute to common disease risk are known to predominantly act through 
changes in gene expression. Importantly, to date, most of this knowledge comes from analysis of 
gene expression measured from bulk tissue, containing predominately mature cells, meaning gene 385 
expression changes that occur across a cell developmental lineage are ignored. Our study presents 
the first opportunity to investigate how the expression levels of cardiovascular disease genes vary 
across the developmental lineage, and between different cell fates. We first identified 
cardiovascular disease genes using Summary Mendelian Randomization (SMR) to test for shared 
causal loci between 2,962,408 cardiovascular GWAS SNPs and 15,248,720 eQTL SNPs identified 390 
from expression levels measured using bulk RNA-seq in cardiac tissue. Our analysis yielded a total 
of 226 significant genes whose expression levels are associated with cardiovascular disease risk 
because of a shared causal variant (Table 1). For example, in Figure 4a, we provide an example of 
a gene candidate identified from the SMR analysis, with significant cardiac-related eQTLs acting in 
a causal regulatory role, IL6R, a well-studied cardiac disease-causing locus (Sarwar et al., 2012) is 395 
shown in Figure 4a.  
 
We subsequently investigated the changes in gene expression for the 226 genes across the 
cardiomyocyte differentiation time course based on: (i) membership to early and late regulatory 
modules; (ii) differential expression between cells at differentiation time points; (iii) between 400 
subpopulations for specific time points. Our results identified 15 genes whose expression levels are 
associated with cardiovascular disease and that change significantly across the cardiomyocyte 
developmental lineage (Tables S13, S14). Of these, we observed an overlap of 11 genes with the 
‘early’ network module (ATP5G1, CCDC15, DNAJB6, FLVCR2, IFI16, NFE2L3, POU5F1, 
RFC4, RTN4, SMARCB1 and SUMO2), and four with ‘late’ network module (ADRB2, GAPDH, 405 
MADD and PPTC7) (Table S14). Notably, the ‘early’ module genes included POUF51 (OCT4), 
FLVCR2, a calcium transporter, and DNAJB6, a known cardiomyopathy susceptibility gene (Ding 
et al, 2016). To more clearly describe the value of integrating SMR data, an example is provided 
using DNAJB6, which is associated with cardiovascular disease. An eQTL analysis revealed that 
the SNP rs3802096[C/T] is significantly associated with changes in the expression level of 410 
DNAJB6 (beta = -0.495, p = 1.70 x 10-74) and SMR provided evidence the expression levels were 
associated with cardiovascular disease (adjusted p = 0.0332). In our scRNA-seq data, we observed a 
2.71-fold decrease in expression between day 0 and day 30, suggesting allelic effects on expression 
will have the greatest effect early in the cardiac cell developmental lineage. Moreover, several 
genes that we identified as important in cardiac regulatory networks (POU5F1, ATP5G1, ADRB2 415 
and SMARCB1), were recapitulated in the SMR analysis, which provides evidence that the genetic 
control of cell fate choices can impact on cardiovascular disease risk. However, further studies 
using animal models coupled with manipulation of gene dosage is required to confirm a 
developmental role for these cardiovascular disease risk loci. 
 420 
Finally, we investigated changes in the expression levels across the cardiac developmental lineage 
for 406 genes with a cardiac tissue eQTL (Koopmann et al., 2014). Of these genes, 13 had 
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significant changes in their expression across the lineage, 10 in the ‘early’ and 3 in the ‘late’ 
module (Table S13). One interesting example is tropomyosin 1 (TPM1), which is regulated by the 
rs4479177 SNP in Koopmann et al. (left ventricle p = 2.8x10-6) and GTEx (left ventricle p = 425 
1.0x10-4; atrial appendage p = 1.72 x 10-3). In our single cell data, TPM1 is highly up regulated in 
D15:S2 (2.2-fold increase compared to D15:S1), which represents the most developmentally mature 
cardiomyocytes, and D30:S2 (9.2-fold increase compared to D30:S1) (Figure 4d, Table S13). 
Importantly, TPM1 is the key hub gene of the late module (Figure 3f).  
 430 
Collectively, these results demonstrate that by integrating population-level data on the genetic 
control for common diseases, with scRNA-seq for cell lineages, we are able to gain valuable 
knowledge on how the pathogenicity of a loci can vary as cells develop from pluripotent to mature 
states.  
 435 
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Discussion 
 
The development of cardiac stem cells for therapeutic or translational applications requires an 
understanding of mechanisms underlying hiPSC differentiation into committed and mature cell 440 
(sub)populations (Garbern and Lee, 2013; Sahara et al., 2015). Here, we decipher important aspects 
of this process, with particular emphasis on the proportion of transitioning cells, the composition of 
differentiated populations, and molecular mechanisms with regulatory genes and networks driving 
heterogeneity during cell fate determination. We identified differentiation trajectories underlying 
cardiac directed differentiation by Wnt modulation and quantitatively characterized the 445 
heterogeneity among subpopulations from pluripotency to lineage commitment and maturation.  
 
Clustering cells into subpopulations is a crucial step that determines downstream analysis in single-
cell workflow. Often, clustering algorithms require modelling and parameter optimisation, which 
are computationally intensive (Lin et al, 2016). Computationally fast scRNA clustering methods, 450 
such as K-means clustering and SC3 (spectral clustering) (Kiselev et al., 2017) rely on a priori 
assignment of the number of clusters, and thus are less suitable when novel, rare, or complex 
biological subpopulations exist. We developed the CORE algorithm with an unsupervised approach 
that does not require user defined-parameters, and provides statistical confidence for the optimal 
number of clusters that can be identified from a scRNA-seq dataset. CORE is computationally fast, 455 
and designed to identify complex clustering patterns including nested clusters, detect outlier cells, 
and determine a stable, optimal number of clusters. Here we show that CORE recapitulates the 
diversity of developmental cell populations involved in governing cardiac development in vivo and 
in vitro.  
 460 
Cell lineage commitment revealed by trajectory analysis is often achieved by reconstructing 
pseudotime differentiation paths from the undifferentiated (root) to differentiated branches 
(Haghverdi, 2016; Qiu et al., 2017). These approaches are able to estimate transition probability 
between cells, but not between distinct subpopulations of cells. Specifically, these methods arrange 
cells into continuous differentiation paths from a root to terminal branches, but do not estimate 465 
transition probability between cells or subpopulations that are not neighbouring in the 
differentiation trees. Our scGPS method decomposes cells into discrete subpopulations and 
estimates a transition probability between subpopulations. Thus, scGPS addresses the question of 
how to predict subpopulation transitions. Importantly, the lineage trajectories identified by scGPS 
fit with known developmental trajectories of cardiac development from pluripotency, but in all 470 
cases improves compared to transitional predictions based on known markers. As a result, we 
provide new opportunities to identify dissect lineage trajectories across transcriptionally disparate 
populations to make statistical predictions about gene expression networks underlying cell fate 
diversification.   
 475 
Using polynomial regression analysis, we identified 483 genes whose expression levels 
significantly change across the differentiation time course, and comprised two discrete gene 
regulatory modules. These modules represent subsets of genes that either display high expression 
levels during the early stages of differentiation, or decreasing expression as the cells progress 
towards maturity, such as SOX2 and NANOG; or increasing expression as cells exit pluripotent 480 
stages towards maturing cardiac cells.  
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By integrating high-resolution single-cell transcriptomic data with population-based genomics data, 
we were able to identify cardiovascular diseases genes whose expression levels vary across the 
cardiac cell developmental lineage, implicating variation in the pathogenicity of GWAS loci in cell 485 
developmental lineages. This approach is especially relevant for cardiac diseases, as it has been 
demonstrated that cardiac reprogramming and differentiation preserve patient-specific expression 
patterns (Matsa, et al., 2016). Recent single cell studies have uncovered lineage-specific gene 
regulation programs that cause abnormal congenital heart defects (Delaughter et al., 2016). Here, 
we identified tropomyosin 1 (TPM1) as highly upregulated in D15S:S2 and D30:S2 subpopulations. 490 
TPM1 is crucial for muscle contraction and is also linked to several cardiac-related diseases, 
specifically familial hypertrophic cardiomyopathy, left ventricular non-compaction and familial 
dilated cardiomyopathy.  
 
In addition to TPM1, we identified a number of important cardiac disease-related genes that play a 495 
significant role in cardiomyocyte differentiation and development. The AKR1B1 gene, which 
encodes aldose reductase was present in the ‘late’ module, and is also an eQTL regulated gene in 
adult left ventricle. In mouse models of ischaemia, there is evidence that inhibition of aldose 
reductase expression reduces ischemic injury (Ramasamy and Goldberg, 2010). Also present in the 
‘late’ module were genes whose expression has been identified as playing a causal role in 500 
cardiovascular disease, including ADBR2 and MADD. SNPs within ADBR2 are significantly 
associated with cardiac disease, including atherosclerosis (Zak et al 2008), ischemic stroke 
(Stanzione et al, 2007), myocardial infarction and CAD (Wang et al, 2015). Loci in MADD are 
associated with coronary heart disease risk and ischemic stroke (Wu et al, 2016), as well as early 
diastolic heart failure (Wu et al, 2012). Given these genes are significantly associated with 505 
cardiomyocyte lineage specification, our results suggest that aberrant cardiac gene expression 
caused by regulatory SNPs during early cell fate determination may contribute to disease states that 
manifest later in life. 
 
In summary, we have shown that high resolution single cell RNA-seq can be used to understand the 510 
complex cell fate decisions that occur during differentiation of iPSCs into mature cardiomyocytes, 
which is crucial for regenerative medicine and bioengineering. When combined with population-
level genomic data, it can inform the function and potential pathogenicity of cell subpopulations 
during development. 
  515 
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Methods 
 
Cell culture and cardiomyocyte differentiation 
WTC CRISPRi human induced pluripotent stem cells (iPSC) were cultured on vitronectin coated 
plates in mTeSR media (Stem Cell Technologies, 05850) as previously described (Nguyen, et al., 520 
under-review). Cultured iPSCs at a density of 3.5 x 105 were differentiated into mature 
cardiomyocytes using a modified monolayer protocol described in detail in Friedman et al. (under-
review). Briefly, cells were cultured in mTeSR media in 24-well plates at 37oC, 5% CO2. After 24 
hours, cells (hereon day 0) were treated with a cocktail of 3µM CHIR-99021 (Stem Cell 
Technologies, 72054), 500µg/mL BSA (Sigma Aldrich, A9418), and 213µg/mL ascorbic acid 525 
(Sigma Aldrich, A8960) in RPMI (Life Technologies Australia, 11875119). At 72 hours, the media 
was replaced with RPMI containing 500µg/mL BSA, 213µg/mL ascorbic acid and 1µM Xav-939 
(Stem Cell Technologies, 72674). After 120 hours, the media was replaced with RPMI containing 
500µg/mL BSA and 213µg/mL ascorbic acid, and from 168 hours onwards, RPMI containing 1x 
B27 supplement plus insulin was replaced every 48 hours. 530 
 
Single cell isolation 
Five time-points were selected for the duration of a differentiation time course. For each time point, 
2 x 24-well plates of adherent cells were washed with PBS and harvested using a Versene + 0.25% 
Trypsin treatment, which was neutralized with 50% foetal bovine serum (Scientifix, FFBS-500) and 535 
50% of DMEM/F12 media (Life Technologies Australia, 11320033). Pools of cells were generated 
using 12 wells of cells from each plate, spun at 300 g for 5 minutes and resuspended in Dulbecco’s 
PBS (Gibco; Cat#14190) with 0.04% bovine serum albumin (Sigma Aldrich, B6917). A BD Influx 
instrument was used to sort single, viable cells using Propidium Iodide into Dulbecco's PBS + 0.04 
% bovine serum albumin, which were retained on ice. Sorted cells were counted and re-assessed for 540 
viability with Trypan Blue using a Countess automated counter (Invitrogen), and then resuspended 
at a concentration of 800-1000 cells/µL (8x105-1x106 cells/mL). Final cell viability estimates 
ranged between 87-95 %. 
 
Generation of single cell GEMs and sequencing libraries 545 
Single cell RNA-Seq (scRNA-Seq) was performed in duplicate across a cardiomyocyte 
differentiation time course. High-throughput droplet partitioning of viable cells with barcoded 
beads was performed using the 10X Genomics Chromium instrument (10X Genomics) and the 
Single Cell 3' Library, Gel Bead and Multiplex Kit (v1; 10X Genomics; PN-120233). The number 
of cells in each reaction was optimized to capture approximately 5,000 cells. cDNA was prepared 550 
from the resulting partitioned samples, and cDNA shearing was performed with a Covaris S2 
instrument (Covaris) set to produce a target size of 200bp as per the manufacturer’s 
recommendation (Intensity:5, Duty cycle: 10%; Cycles: 200; Time: 120s). The resulting single cell 
transcriptome libraries were pooled and sequenced on an Illumina NextSeq500, using a 150-cycle 
High Output reagent kit (NextSeq500/550 v2; Illumina, FC-404-2002) in standalone mode as 555 
follows: 98bp (Read 1), 14bp (I7 Index), 8bp (I5 Index), and 10bp (Read 2).  
 
Bioinformatics mapping of reads to original genes and cells 
Raw sequencing data (BCL) was processed directly with the cellranger pipeline v1.3.1 (mkfastq, 
count, aggr) using the default parameters, which were adjusted to provide an expected number of 560 
cells (5,000). The reads were aligned to the GRC38p7 human reference genome using the STAR 
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software (Dobin et al., 2013) included in the cellranger pipeline. Quality control for cell barcodes 
and unique molecular identifiers (UMI) was performed using default parameters in the cellranger 
count processing. The final, between samples normalised expression matrix for 10 samples 
spanning the differentiation time course was generated using the cellranger aggr function. 565 
 
Interactive web server and data accessibility 
RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI 
(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-6268. To facilitate the broad use 
of this single-cell human pluripotent single-cell dataset, we created an open, interactive R shiny 570 
server, available at http://computationalgenomics.com.au/shiny/hipsc2cm/. The server contains 
user-friendly data exploration and representation tools. Data can be interactively explored the 
expression of any gene in each cell of the 43,168 cells across five time points, and compared the 
expression of the selected genes between different subpopulations. 
 575 
Quality control 
Filtering of cells was performed after aggregating samples, ensuring subsequent analysis was not 
affected by cells that were inconsistently outside the threshold of three times the Median Absolute 
Deviation (MAD):  
 580 

𝑀𝐴𝐷 =
𝑥( − 𝑥
𝑛

+

(,-

	 

 
Where x is a vector of total mapped reads per cell, the total number of genes detected in a cell, or 
expression of mitochondrial and ribosomal genes. We filtered 87 cells with total mapped reads > 3 
x MAD, and 300 cells with total number of genes > 3 x MAD. After removing cells, we 585 
subsequently removed 15,302 genes that were detected in less than 0.1% of all remaining cells.  
 
Normalisation 
We normalised the expression data on three levels: between days, between samples, and between 
cells. To account for variation in total read depth per sample, we used a subsampling process based 590 
on the sample index, cell barcodes, and UMIs to randomly sample from a binomial distribution to 
the level of individual reads. This approach maintains the distribution of reads mapped per gene, per 
cell and per sample, and equalizes the total read-depth between samples. This method has been 
shown to be less biased than other global-scaling methods, which use information from the final 
mapped expression matrix only - i.e. total reads mapped per sample and distributions of expression 595 
levels in a sample (Zheng et al. 2016). For each sample (i) the subsampling rate (Ratei) was 
determined as:  
 

𝑅𝑎𝑡𝑒( = 𝑚𝑖𝑛 𝑀𝑀𝑅4 ×	𝑁(	×
𝑅𝐹(
𝑇𝑀𝑅(

 

 600 
Where MMRj is the ratio of expected total reads divided by the expected mean reads per cell of all 
samples, with the minimum MMRj from all samples merged if fitted; Ni  is the number of cells in 
sample i; RFi is the fraction of mapped reads in sample i to the total number of mapped reads; and 
TMRi is the total number of mapped reads that share the same sample index.  
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 605 
For each gene in each cell, from the total set of reads that were mapped to the gene, a subset was 

randomly drawn from the binomial distribution, at the rate Ratei, 
𝑅𝑒𝑎𝑑𝑠;
𝑅𝑎𝑡𝑒(

. This process is more 

robust than standard-scaling approaches because it takes into account the unique read information 
associated to mapped genes and cells. Following resampling, the MMRs for the 10 samples were 
scaled, while the expression data distribution for genes in all cells of the sample was maintained. 610 
 
After between sample normalisation, a deconvolution and pooling approach was performed to 
normalise read depth between cells. This method overcomes the inflation of zero count measures in 
the expression matrix of scRNA-seq data (otherwise known as dropout rate), by sequentially 
pooling 40, 60, 80 and 100 cells. The expression values of a gene across cells are summed to 615 
estimate a size factor for each pool. Pool size factors are then deconstructed into the size factors of 
individual cells.  To estimate the scaling size factor for each cell, a deconvolution method (Lun et 
al., 2016) was applied for summation of gene expression in groups of cells. This summation 
approach reduces the number of stochastic zero expression of genes that are lowly expressed 
(higher dropout rates), or genes that are turned on/off in different subpopulations of cells. 620 
 

𝐸 𝑉(> = 	 𝜆(@ 𝜃4	×	𝑡4B-
CDEF

 

 
Where 𝑆> is a pool of cells, 𝑉(> is the sum of adjusted expression value (𝑧(4 = 	𝜃4	×	𝜆(@ where 𝜆(@ is 
the expected transcript count and 𝜃4 is the cell specific bias) across all cells in pool 𝑉> for gene i, 625 
𝜃4	×	𝑡4B- is the cell-specific scale factor for cell j (where 𝑡4 is the constant adjustment factor for cell 
j). 
 
The estimated size factor of a gene in a pool 𝑆>, termed as 𝐸(𝑅(>), we calculate the ratio between 
the estimated 𝑉(>and the average 𝑍(4 across all cells in the population, such that  630 
 

𝐸 𝑉(> ≈ 	 𝜆(@ 𝜃4	×	𝑡4B-	×
CDEF

	𝐶B- 

 
, with C defined as   
 635 

𝐶 = 𝑁B-	×	 𝜃4	×	𝑡4B-
4NOP

 

 
where N is the number of cells, 𝑆@ represents all cells and is a constant for the whole population and 
thus can be set to unity or ignored. The cell pools were sampled using a sliding window of cells 
ranked by library size for each cell. Four sliding windows with 20, 40, 60, and 80 cells were 640 
independently applied and results were combined to generate a linear system that can be 
decomposed by QR decomposition to estimate 𝜃4	×	𝑡4B- size factor for each of the cell. The final 
normalized counts are calculated by taking the raw counts divided by cell-specific normalized size 
factors. 
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 645 
Dimensionality reduction 
Normalized data were subjected to dimensionality reduction prior to clustering. Dimension 
reduction enables coordinates of a single cell to be represented in a two or three-dimensional space, 
allowing the relative location of single cell to be shown. We applied multiple independent 
approaches for representing and organizing cells in low dimensional spaces, including linear 650 
orthogonal transformation PCA (Principal Component Analysis), MDS (Multidimensional Scaling 
Principal Coordinate Analysis), non-linear methods (t-SNE and Monocle), and an imputation 
approach for circumventing the zero-inflation characteristic of a scRNA dataset (CIDR, as 
described in Lin et al., 2017). PCA and MDS are similar approaches that apply orthogonal 
transformation to the initial Euclidean distance matrix derived from the full expression matrix 655 
containing all genes and cells.  
 
Data visualisation in low dimensional space  
We used Diffusion maps and t-SNEs for visualising gene expression and differentiation trajectory, 
but not for clustering or for inferring the final trajectories. We calculated the coordinates of each 660 
cell in t-SNE two (or three) dimensional map. Initially, ℝR were calculated based on a non-linear 
transformation of similarity between two cells derived from the initial simple Euclidean distance 
𝑑(𝐶(, 𝐶4) into t-SNE similarity matrix. The original pairwise similarity between two cells 𝐶( and 
𝐶4	in the original multidimensional space (ℝT , G is the number of genes) was calculated as the joint 

probabilities 𝑝(4 = 	
VW|Y	Z	VY|W

R[
	, where N is the number of cells, and where the conditional probability 665 

of cell 𝐶4 given cell 𝐶( was calculated as:  
 

𝑝4|( =
𝑒𝑥𝑝

−𝑑 𝐶(, 𝐶4
R

2𝜎(R

Σ>_( 	𝑒𝑥𝑝
−𝑑 𝐶(, 𝐶> R

2𝜎(R
 

 
In which the σi is the optimal bandwidth of the Gaussian kernel for cell 𝐶( such that the perplexity 670 
of the probability distribution for this cell in the low dimensional space equals a predefined constant 
perplexity. Thus, cells in the denser part of the data space have smaller σi.  In the low-dimensional 
t-SNE space, the pairwise similarity between two cells qij is estimated in a gradient descent 
optimization process to minimize the Kullback-Leiber divergence of the distribution from Q 
(original space) to P (low-dimensional t-SNE space) in the following equation: 675 
 

𝐾𝐿(𝑃 ∥ 𝑄) = 	 𝑝(4(_4 log VYW
hYW

  

 
where qij is the similarity score in the new space, calculated as 
 680 

𝑞(4	 =
1 + 𝑦( −	𝑦4
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Thus, in the low dimensional space, the low similarity value between two cells suggests higher 
distance (i.e. cells are further away). The diffusion approach applies a diffusion distance matrix, 
which is an approximation of Euclidean distance matrix from a Gaussian sampling process to 685 
estimate a Gaussian center for each cell and a length scale that the cell can randomly diffuse 
(Haghverdi, et al., 2015). Pairwise transition probability between two cells 𝐶(and 𝐶4 can be 
calculated as the interference of the two wave functions 𝑌oY(𝑥´()   and  𝑌oW(𝑥 4́). A N x N transition 
probability matrix can be calculated for all pairs of cells.  
   690 
Clustering at an Optimal REsolution (CORE) 
We devised a novel unsupervised clustering method, which incorporates an approach to statistically 
identify the most stable resolution of clusters to identify distinct subpopulations of cells. We first 
construct an unsupervised dendrogram using the Euclidean distance matrix between cells, which is 
calculated using the normalised gene expression matrix (n cells x p genes). The Euclidean distance 695 
between two cells i and j can be represented as: 
 

𝐶;,( − 𝐶;,4
R

V

;,-

 

 
where 𝐶;,(  is the expression of the gene g in the cell 𝐶(. Branching points in the dendrogram 700 
represent increasing smaller clusters of cells, with each branching point based on hierarchical 
clustering using the Ward method to minimise the within and between cluster variance (Murtagh 
and Legendre, 2014), calculated as the Euclidean distance to the centroid cell: 
 

𝑆𝑆𝐸q = 	 𝑎( −	𝑎 ´(𝑎( −	𝑎)
+r

(,-

 705 

 
where 𝑎 is the centroid cell of the cluster A, defined as the cell with the lowest sum of squares of all 
pairwise Euclidean distance within the cluster. The between cluster variance for the joint clusters 
{A, B} is calculated similarly. The hierarchical clustering begins with n clusters of size one. The 
two clusters with the minimal increase in the distance 𝑆𝑆𝐸qs − (𝑆𝑆𝐸q + 𝑆𝑆𝐸s) are merged. The 710 
decision to merge the subsequent cluster (C) to the {A, B} requires C to satisfy the minimal value 
of two clusters, estimated by the Lance Williams algorithm (Lance and Williams, 1967):  
 

𝑑o qs = 	
(𝑛q + 𝑛o)

𝑛q + 𝑛s + 𝑛o
	𝑑oq +	

(𝑛s + 𝑛o)
𝑛q + 𝑛s + 𝑛o

	𝑑os −	
(𝑛o)

𝑛q + 𝑛s + 𝑛o
	𝑑qs 

 715 
We subsequently apply a Dynamic Tree cut approach (Langfelder, et al., 2008) to merge clusters, 
based on the topology (shape) of the dendrogram. The Dynamic Tree cut is a top-down algorithm to 
firstly identify the largest clusters (based on a static height cut-off) and iteratively finds sub-clusters 
by analysing the fluctuation in the joining heights of the branches. The splitting is recursive until a 
stable number of clusters are identified. From the dendrogram, height for each branch is extracted 720 
into an ordered length vector 𝐻 = (ℎ-, ℎR, … , ℎ+). The cluster merging process given a calibration 
height input l is based on the sign transition of the heights relative to l. The differences between 
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each branch height and the calibration l,  𝐻 = ℎ- − 𝑙, ℎR − 𝑙, … , ℎ = ℎ+ − 𝑙 , define turning 
points, where the ℎ for consecutive branches in the ordered H turning signs to higher or lower than 
l. The Dynamic Tree cut applies three calibration heights:  lm (the mean calibration height ℎ ), lu (the 725 
upper calibration height, -

R
(ℎ + max ℎ( ), and ld (the lower calibration height, -

R
(ℎ + min ℎ( ). At 

each iteration, the three calibrations heights lm, lu and ld are recalculated from H, thus making the 
procedure dynamic.  
 
The Dynamic Tree cut will result in different numbers of clusters depending on the height threshold 730 
(denoted as Wi described below) specified for merging branches. Furthermore, the dynamic merging 
process does not take into accounts the individual members (single cells) in each merged clusters. 
To solve the limitations we developed an approach to find an optimal clustering resolution (height 
threshold). The lower the height thresholds represent a higher resolution resulting in more clusters, 
while a larger height threshold leads to lower resolution, but fewer and more stable clusters. Our 735 
algorithm loops through the dendrogram, applying the Dynamic Tree cut, and comparing results 
between two consecutive steps during optimisation of the clustering based on the adjusted Rand 
index. The Rand index (Rand, W., 1971) measures the similarity between two clustering results 
based on the pairwise shared membership of any two cells. The Rand index is based on the 
assumptions that every cell within a cluster has equal weight in defining a cluster, two categories of 740 
membership (belonging or not belonging to a cluster) are equally important, and every cell is 
discretely assigned to one cluster. The adjusted Rand index implements a model for random 
assignment of points into cluster (Hubert and Arabie, 1985). The adjusted Rand index for two 
clustering results 𝐶 and 𝐶´, containing 𝐾 and 𝐾´ clusters, are calculated by the equation below:  
 745 

𝐴𝑅 𝐶, 𝐶´ =
	}

>,-
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where 𝑛> and 𝑛´>are the cell numbers in clusters 𝐶} and 𝐶´}´ of the two clustering results 𝐶 and 𝐶´. 
𝑛>>´ = 	 𝐶> ∩ 𝐶>´  is the number of cells in the intersection of clusters 𝐶} and 𝐶´}´. 
 750 
Using these methods we select for the optimal cluster resolution by implementing the following 
algorithm:  
 

1. Apply cutreeDynamic 40 times to merge branches in 40 different height windows (defined 
the dendrogram area to be merged) from bottom (𝑊- = [0.025, 1]) to the top (𝑊- = [1, 1]).  755 

 
2. Compute pairwise adjusted Rand index (𝐴𝑅() for every 2 consecutive windows (𝑊(	and 

𝑊(Z-	for integers 𝑖	𝜖	[1, 39]) 
 
3. Compute stability index 𝑆 spanning the 40 iterations. 𝑆 is the set of count values 𝐶� for 760 

unique Rand index values 𝐴𝑅( that remain the same between consecutive 𝑊(.  
 
4. Determine the most stable clustering result 𝐶�, where s is selected by the following criteria:  

𝐴𝑅O = max(𝑆) and max(S) is different to 𝐴𝑅- or 𝐴𝑅�@ 
s = 1 or 40 if 𝐴𝑅- or 𝐴𝑅�@  = max(S) and  𝐶�/40 >0.5 765 
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 (i.e. stable in more than 50% of all iterations) 
 
 
Cell cycle analysis  
To assess whether the clustering assignments were influenced by the differences in cell cycle 770 
phases, we applied a machine-learning model to predict cell cycle phases (Scialdone et al., 2015; 
Lun et al., 2016). The model uses scRNA gene expression data, and a reference training set (prior-
knowledge) of relative expression of “marker pairs”, in which the sign of each pair changes 
between cell cycle phases (Scialdone et al., 2015). We used a gene training set (containing ordered 
gene list for above 20,000 genes) from Leng et al. (2015). Scores for each of the three phases G1, 775 
G2M and S were estimated based on the proportion of the training pairs with sign changes in each 
phase relative to the other phases.  
 
Differential expression analysis 
We performed differential expression analysis between subpopulations of cells identified 780 
independently for each time-point to address two scenarios: 1. The differences in gene expression 
between cells in one subpopulation compared to all remaining cells in a given time-point; 2. 
Differences between cells in one subpopulation and cells in a subpopulation in the subsequent time-
point. Normalized gene expression level, were transformed from log2 value to read counts, and 
used as input into DESeq (Anders and Huber, 2010), with the following modifications. One 785 
pseudocount was added to the normalised expression values, before rounding, to generate a mapped 
read count matrix without Zero expression values. Due to the low expression values (relative to 1 as 
the added pseudocount), the fold-change values were readjusted post differential expression 
analysis by subtracting to 1. The p-values were adjusted by the Bonferroni correction (p-values 
multiplied by the total number tests), and significant genes are those with p-adjusted values lower 790 
than 0.05.  
 
Prediction of differentiation trajectory using a novel machine learning approach 
We developed an unsupervised, machine learning approach for identifying differentiation trajectory 
and and cell fate. The method, which we term scGPS, includes two main steps. First, we construct 795 
and train the model using variable selection. For cells in a subpopulation, we select their p 
differentially expressed genes and apply a LASSO (Least Absolute Shrinkage and Selection 
Operators) regression to identify gene predictors. The p genes can be considered as markers for the 
subpopulation, distinguishing them from remaining cells. We classified the dataset into two classes, 
including n cells in a subpopulation of interest (class 1), and remaining cells that do not belong to 800 
class 1 (class 2). The n/2 cells are removed from the original dataset, so that they represent 50% of 
the total cells for each of the two classes. Let cell-subtypes be a qualitative response variable y and 
assigns y into a class k, we estimate for each of the n/2 cells belonging to one of the k classes. We 
construct a response matrix Y with element 𝑌(> = 𝐼 𝑌( = 𝑘 , 𝑘 ∈ (0,1) are two classes (belong or 
not belong to the subpopulation). Let p equal the number of gene predictors. Denote the conditional 805 
class probability of a cell 𝐶( belonging to a class k (0 or 1 belong or not belong to) given the gene 
expression profile 𝑥( of p genes 𝑥( = (𝑥(-, 𝑥(R, … , 𝑥(V) as: Pr 𝑦 = 𝑘	 𝑥(). We then fit a generalized 
linear model (binomial distribution) with the response variable as a vector containing two classes, 
and the predictor as the matrix n by p of the expression levels for the class 1 cells Effects of the 
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genes are estimated by a penalized maximum likelihood procedure. The conditional class 810 
probabilities of cell Ci belonging to class k is the linear combination of selected genes: 
 

ln 𝑃𝑟 𝑦 = 1 𝑋 = 𝑥 = 	𝛽@ +	𝛽-𝑥- + 𝛽R𝑥R + ⋯+ 𝛽V𝑥V = 	𝛽@ + 𝑥𝛽´ 
 
where 𝛽4 is a coefficient for gene j (𝛽4 = 0 if the gene j is not a predictor of the class).  The 815 
coefficient vector 𝛽 = (𝛽@, 𝛽-, 𝛽R, … , 𝛽V) are calculated by maximum likelihood estimation. The 
predicted probability of a cell 𝐶( being in a subpopulation 1 or 0 is estimated by replacing 𝛽 and 
gene expression values to the regression equation (3). For each subpopulation, the resulting model 
with the optimal set of non-zero coefficient genes is a Bayes optimal classifier. The model removed 
insignificant genes j that do not contribute to the model fit by shrinking their coefficients to 0 820 
following:  
 

𝑎𝑟𝑔𝑚𝑖𝑛(
1
𝑁 𝑙(𝑦(, 𝛽@ +	 𝛽4𝑥(4) + 𝜆 𝛽4

V

4,-

V

4,-

+

(,-

) 

 
where 𝑥( = (𝑥(-, 𝑥(R, … , 𝑥(V) is a vector of expression values of p genes in cell 𝐶(; 𝑦( is the cell 825 
subpopulation of the cell 𝐶(; 𝑙(𝑦(, 𝛽0 +	 𝛽4𝑥(4)

V
4,-  is the negative log-likelihood for 𝐶(; and 𝜆 is a 

tuning parameter that controls the shrinkage penalty of the coefficients. For each training cell 
subpopulation, an optimal 𝜆 and a set of gene predictors can be determined by a 10-fold cross-
validation procedure to select the 𝜆 that produced the minimum classification errors. The LASSO 
procedure optimizes the combination set of coefficients for all predictors in a way that the residual 830 
sum of squares is smallest for a given 𝜆 value [38]. 
 
The final step is to estimate the prediction accuracy using 100 bootstrap results for each prediction. 
The optimal LASSO model with the highest prediction accuracy and the deviance explained is 
selected from the bootstrap replicates. The logistic regression model containing the optimal set of 835 
LASSO selected genes and corresponding coefficients are applied for prediction of the percent of 
cells in a targeted (data not in the training set) subpopulation.   
 
Identifying significance changes in gene expression across the cardiomyocyte differential lineage 
We applied a polynomial linear model framework to identify genes whose expression levels 840 
changed over the actual differentiation time post induction. We fit the expression levels of each 
gene across five time-points into a cubic regression model. Prior to the modelling step, the 
expression data in mapped reads per gene, was transformed into Z-score such that each gene had the 
mean expression across all cells equal 0 and standard deviation equal 1. We transformed the 
categorical variable representing one of the five time-points to a quantitative scale, with equal 845 
weights for each time-point. Changes in the expression levels across the differential time course 
were tested using the following function:  
 

𝐸 = 	𝛽�@ + 	𝐷	×	𝛽�- + 𝐷R	×	𝛽�R +	𝐷�	×	𝛽�� + ℇ 
 850 
Where E is the matrix of expression value for 17,718 genes across all 43,168 cells assigned into five 
time-points D = (1, 2, 3, 4, 5) and 𝛽�@, 𝛽�-, 𝛽�R and 𝛽�� are vectors of coefficients for each gene in 
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the cubic models respectively. For each model, p-values, regression coefficients, coefficient of 
determination (R-squared) and adjusted R-squared (adjusted for the number of predictors used in 
the model) were calculated. The adjusted R-squared values were used to assess the proportion of 855 
gene expression variance explained by the cubic terms. Significant (p < 0.05/17,718) genes were 
further analyzed by applying weighted co-regulation network analysis (WGCNA) to identify 
submodules of co-regulated genes with significant association to time. Genes in each submodule 
were analyzed for enrichment of transcription factor motif by iRegulon and Reactome pathways.  
 860 
Identifying cardiovascular disease risk variants acting though changes in cardiac tissue gene 
expression 
To identify genes that have a pathogenic role in cardiovascular disease, we integrated population 
scale GWAS and eQTL data from cardiac tissue and used a Summary Mendelian Randomization 
(SMR) method to identify shared causal loci. GWAS summary statistics for 4 analyses from the 865 
Cardiogram study (Cardiogram, CardiogramPlusC4D, C4D CAD Discovery and MICAD) 
(Schunkert et al (2011), Coronary Artery Disease (C4D) Genetics Consortium (2011), Webb et al 
(2017)) were combined to yield a total of 2,962,408 (2,447,611 unique) SNPs with MAF >= 0.01. 
Expression Quantitative Trait Loci (eQTL) data was obtained for human cardiac tissue-specific via 
the Genotype-Tissue Expression (GTEx) project for Left Ventricle (LV) and Atrial Appendage 870 
(AA), and Left Ventricle from Koopmann et al (2014), and individual-level genotypes and 
peripheral blood eQTL data of 2,765 individuals were obtained from the CAGE study (Lloyd-Jones 
et al, 2017).  SMR software (Zhu et al. 2016) version 0.67 was used to prioritise genetic variants 
with highly significant causal effects. Full details of the Summary Mendelian Randomization 
(SMR) method can be found in the Zhu et al. (2016). However, we used SMR to jointly analyze 875 
cardiovascular disease GWAS and cardiac tissue eQTL summary statistics to test if there is a shared 
causal variant at the locus for both the disease and gene expression. SMR uses SNPs (Z) to test 
whether an exposure (X) has a causal effect on an outcome (Y), where Y is cardiovascular disease 
and X an eQTL (VanderWeele TJ Epidemiology 2014; Boef Int J Epidemiology 2015). SMR 
estimates the effect of X on Y (bXY) as bXY = bZY/bZX, where bZY is the effect size of Z on Y 880 
and bZX is the effect size of Z on X (Zhu et al., 2016). To test the hypothesis that the GWAS hits 
for cardiovascular disease and cardiac tissue eQTL (X) have the same causal loci, SMR estimates 
the SNP effect (bZY) from GWAS summary data, and the SNP effect on gene expression (bZX) 
from summary data of eQTLs. SMR tests for the following models; causality (Z à X à Y), 
pleiotropy (Z àX and Z àY), and linkage (Z1 à X, Z2 à Y, and Z1 and Z2 are in LD).  The 885 
model of linkage is excluded using the heterogeneity in dependent instruments (HEIDI) test, which 
considers the pattern of associations using all the SNPs that are significantly associated with eQTLs 
in the cis-region. The HEIDI test takes into account non-independence of cis-eQTLs due to LD 
(using individual-level data from a reference sample to estimate LD between the cis-SNPs). Genes 
that show evidence of heterogeneity (e.g. p_HEIDI <0.05) are rejected. The null hypothesis is that 890 
there is a single causal variant affecting and cardiovascular disease risk and gene expression 
(pleiotropy or causality). The alternative hypothesis is that gene expression and cardiovascular 
disease risk are affected by two distinct causal variants. The genes that had a causal variant with a 
highly significant p_SMR value and p_HEIDI > 0.05 were retained.  
 895 
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Figures legends 1095 
 
Figure 1. The single cell transcriptomes recapitulate transcriptional heterogeneity at the five 
cardiac differentiation stages. 
(a) The study design consisting of differentiation procedure, to single-cell sequencing, and analysis. 
During the 30-day differentiation process, 44,020 cells were sampled at five differentiation stages: 1100 
day 0 (pluripotent cells), day 2 (mesoderm), day 5 (cardiac progenitor), day 15 (committed 
cardiomyocytes) and day 30 (definitive cardiomyocytes). 
(b) Single-cell data displayed in two-dimensional space by different dimensionality reduction 
methods, including non-linear embedding with t-SNE, and imputed principal components with 
CIDR. 1105 
(c) A novel clustering analysis pipeline (Clustering at Optimal REsolution - CORE) to find stable 
subpopulations. Results are shown for each of the five time-points separately from day 0 to day 30 
(right to left). The scRNA data for each day was filtered, normalised, and clustered independently 
by CORE. The clustering transition can be observed from high resolutions (right) into larger 
clusters at lower resolutions (left). The horizontal plots show the stability of clustering results. The 1110 
t-SNE plots at the bottom panel display the distribution of cells with cluster colors labelled by the 
results from the CORE method. Figure S4 contains detailed clustering results for each time point. 
(d) The expression of 139 core pluripotency and cardiac differentiation markers. The colors 
represent scaled mean expression of the genes (shown by rows) for each of the five time-points. 
(e) Expression pattern of known markers for each stage from day 0 to day 30.  1115 
 
 
Figure 2. Decomposing the differentiation pathways and subpopulations from hiPSC to 
mature cardiomyocytes. 
(a) Differentiation trajectories from day 0 to day 30, predicted by the scGPS. Each of the 15 distinct 1120 
subpopulations identified by CORE are presented as a circle, with the area proportional to the 
number of cells, and colors demote sequencing time points.  The arrow widths are proportional to 
the transition scores (0 - 100%, Table S7). The bifurcation event from progenitor cells on day 5 to 
two branches on day 15 and day 30 is identified by the transition scores. 
(b) Cell trajectory based on diffusion pseudotime. The pseudo trajectory starts from day 0 and 1125 
follows the temporal order to days 2, 5, 15 and 30. 
(c) Within time-point transition between subpopulations. Differentiation pseudotime was calculated 
by Monocle2 (top panel) and by Diffusion (bottom panels) for cells in days 0, 2, 5, 15, and 30 (right 
to left). Two cells that are at the similar stage/state are at closer proximity in the trajectory. The 
density on the axes show how subpopulations intersect. The same figures with pseudotime scale are 1130 
shown in the supplementary Figure S12. 
(d) Monocle2 analysis of the transition between two continuous days, including: day 0 to 2, day 2 to 
5, day 5 to 15 and day 15 to 30.  
 
 1135 
Figure 3. Dynamic changes in gene expression across the differentiation lineage.  
(a) Gene co-regulation analysis of the 483 genes whose expression levels significantly (p <   
2.8x10-6) change across the lineage. We identified two co-regulated modules, which we have 
denoted as early (higher expression on days 0, 2 and 5) and late (higher expression on days 15 and 
30). 1140 
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(b) The module membership and correlation differentiation time shows little overlap in the 
modules. Genes with both a high module membership and correlation are suggestive of being key 
genes within the module networks. Genes with a significant association to cardiovascular diseases 
from the SMR analysis are shown as black points.  
(c) and (d) show the standardised expression of each gene in real time-scale (from day 0 to 30). The 1145 
black lines are the mean trend lines, showing the decreasing (early) or increasing (late) gene 
expression during the differentiation time-course. 
(e) Transcription factor network analysis for the co-regulated late module. We identified FOXC2 as 
the key gene, both in the number of connections and in the correlation to the differentiation time-
course. TPM1 has high module membership and correlation to differentiation time, and also has 1150 
cardiac tissue eQTLs (Koopman et al., 2015). 
 
 
Figure 4. Cardiac disease genes identified from integrating single-cell data with large-scale 
population genetic data. 1155 
(a) Combining GWAS and eQTL data revealed IL6R as a potential causal gene of cardiac disease. 
(b) 95 coronary artery disease (CAD) related genes (CAD genes) identified from GWAS were 
highly expressed at specific differentiation stages. 
(c) Expression of 21 CAD genes with significantly altered expression patterns between time-points. 
Genes were grouped as highly expressed during early, intermediate and late differentiation. 1160 
(d) Fate specific (shown by two differentiation trajectories) expression levels of TPM1, whose 
expression levels are significantly associated with an increase in cardiovascular disease risk.  
(e) Correlation of scRNA-seq expression levels (from pluripotent to differentiated cells) with bulk 
RNA-seq expression levels in ENCODE heart foetal and adult tissues.   
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Table 1. Results from the Summary Mendelian Randomisation (SMR) analysis of cardiac 1165 
disease GWAS and eQTL data. 
 Genes eQTL SNPs 

(MAF >=0.01) 
GWAS SNPs 
(MAF >=0.01) 

SNPs retained from 
ref. genotype 

Total SMR 
Genes 

Sig. SMR 
Genes 

Unique SMR 
Genes 

Unique SMR 
SNPs 

Left Ventricle 
(GTEx) 

21,709 6,992,633 2,962,408 2,170,851 1907 53 53 52 

Atrial Appendage 
(GTEx) 

22,688 6,837,657 2,962,408 2,166,412 1607 40 40 39 

Left Ventricle 
(Koopmann) 

429 5628 2,962,408 3333 118 4 2 2 

Peripheral Blood 
(CAGE) 

25,422 1,412,802 2,962,408 393,097 7212 175 159 161 
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