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Abstract

The same nucleotide sequence can encode two protein products in different reading frames. Overlapping gene
regions are known to encode higher levels of intrinsic structural disorder (ISD) than non-overlapping genes (39%
vs. 25% in our viral dataset). Two explanations for elevated ISD have been proposed: that high ISD relieves
the increased evolutionary constraint imposed by dual-coding, and that one member per pair was recently born
de novo in a process that favors high ISD. Here we quantify the relative contributions of these two alternative
hypotheses, as well as a third hypothesis that has not previously been explored: that high ISD might be an artifact
of the genetic code. We find that the recency of de novo gene birth explains ∼ 32% of the elevation in ISD in
overlapping regions of viral genes, with the rest attributed, by a process of elimination, to relieving constraint.
While the two reading frames within a same-strand overlapping gene pair have markedly different ISD tendencies,
their effects cancel out such that the properties of the genetic code do not contribute overall to elevated ISD.
Same-strand overlapping gene birth events can occur in two different frames, favoring high ISD either in the
ancestral gene or in the novel gene; surprisingly, most de novo gene birth events contained completely within the
body of an ancestral gene favor high ISD in the ancestral gene (23 phylogenetically independent events vs. 1).
This can be explained by mutation bias favoring the frame with more start codons and fewer stop codons.

I. INTRODUCTION

Protein-coding genes sometimes overlap, i.e. the
same nucleotide sequence encodes different proteins in
different reading frames. Most of the overlapping pairs
of genes that have been characterized to date are found
in viral, bacterial and mitochondrial genomes, with
emerging research showing that they may be common
in eukaryotic genomes as well [9], [18], [25], [29].

Overlapping genes tend to encode proteins with
higher intrinsic structural disorder (ISD) than those
encoded by non-overlapping genes [28]. The term
disorder applies broadly to proteins which, at least
in the absence of a binding partner, lack a stable
secondary and tertiary structure. There are different
degrees of disorder: molten globules, partially unstruc-
tured proteins and random coils with regions of disorder
spanning from short (less than 30 residues in length)
to long. Disorder can be shown experimentally or
predicted from amino acid sequences using software
[13]. Rancurel et al. showed, using the latter approach,
that 48% of amino acids in overlapping regions exhibit
disorder, compared to only 23% in non-overlapping
regions. In this work we explore three non-mutually-

exclusive hypotheses to quantify the extent to which
each explains elevated ISD. Two have previously been
considered: that elevated ISD in overlapping genes is
a mechanism that relieves evolutionary constraint, and
that elevated ISD is a holdover from the de novo
gene birth process. We add consideration of a third,
previously-unexplored hypothesis - that elevated ISD
with dual-coding may be the result of an artifact of the
genetic code - to the mix.

The greater evolutionary constraint on overlapping
genes is usually invoked as the sole [36], [42] or at least
dominant [28] explanation for their high ISD. A mu-
tation in an overlapping region simultaneously affects
both of the two (or occasionally more) genes involved
in that overlap. Because ∼70% of mutations that occur
in the third codon position are synonymous, versus
only ∼5% and 0% of mutations in the first and second
codon positions respectively [30], a mutation that is
synonymous in one reading frame is highly likely to
be nonsynonymous in another, so to permit adaptation,
overlapping genes must be relatively tolerant of non-
synonymous changes. Any amino acid substitution that
maintains disorder has a reasonable chance of being
tolerated, in contrast to the relative fragility of a well-
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defined three-dimensional structure. This expectation is
confirmed by the higher evolutionary rates observed for
disordered proteins [4].

The second hypothesis that has previously been
proposed is that high ISD in overlapping genes is an
artifact of the process of de novo gene birth [28]. There
is no plausible path by which two non-overlapping
genes could re-encode an equivalent protein sequence
as overlapping; instead, an overlapping pair arises ei-
ther when a second gene is born de novo within an
existing gene, or when the boundaries of an existing
gene are extended to create overlap [30]. In the latter
case of “overprinting” [7], [17], [28], the extended
portion of that gene, if not the whole gene, is born de
novo [26]. One overlapping protein-coding sequence
is therefore always evolutionarily younger than the
other; we refer to these as “novel” versus “ancestral”
overlapping genes or portions of genes. Genes may
eventually lose their overlap through a process of
gene duplication followed by subfunctionalization [17],
enriching overlapping genes for relatively young genes
that have not yet been through this process. However,
gene duplication may be inaccessible to many viruses
(in particular, many RNA, ssDNA, and retroviruses),
due to intrinsic geometric constraints on maximum
nucleotide length [6], [8], [10].

Young genes are known to have higher ISD than old
genes, with high ISD at the moment of gene birth facil-
itating the process [41], perhaps because cells tolerate
them better [37]. Domains that were more recently born
de novo also have higher ISD [3], [5], [12], [21]. High
ISD could be helpful in itself in creating novel function,
or it could be a byproduct of a hydrophilic amino acid
composition whose function is simply the avoidance of
harmful protein aggregation [14], [20]. Regardless of
the cause of high ISD in young genes, the “facilitate
birth” hypothesis makes a distinct prediction from the
constraint hypothesis, namely that the novel overlap-
ping reading frames will tend to encode higher ISD
than the ancestral overlapping reading frames. Unlike
the constraint hypothesis, only novel overlapping gene
regions, and not ancestral ones, are predicted to have
elevated ISD.

Finally, here we also consider the possibility that the
high ISD observed in overlapping genes might simply
be an artifact of the genetic code [19]. We perform for
the first time the appropriate control, by predicting what
the ISD would be if codons were read from alternative
reading frames of existing non-overlapping genes. Any
DNA sequence can be read in three reading frames on

each of the two strands, for a total of 6 reading frames.
We focus only on same-strand overlap, due to superior
availability of reliable data on same-strand overlapping
gene pairs. We classify the reading frame of each gene
in an overlapping pair relative to its counterpart; if
gene A is in the +1 frame with respect to gene B, this
means that gene B is in the +2 frame with respect to
gene A. We use the +0 frame designation just for non-
overlapping genes in their original frame. If the high
ISD of overlapping genes is primarily driven by the
intrinsic properties of the genetic code, then we expect
their ISD values to closely match those expected from
translation in the +1 vs. +2 frames of non-overlapping
genes.

Here we test the predictions of all three hypotheses,
as summarized in Figure 1, and find that both the birth-
facilitation and conflict-resolution hypotheses play a
role. The artifact hypothesis plays no appreciable role
in elevating the ISD of overlapping regions; while
reading frame (+1 vs. +2) strongly affects the ISD of
individual genes, each overlapping gene pair has one
of each, and the two cancel out such that there is no
net contribution to the high ISD found in overlapping
regions. Surprisingly, novel genes are more likely to be
born in the frame prone to lower ISD; this seems to be
a case where mutation bias in the availability of ORFs
is more important than selection favoring higher ISD.

Hypothesis ISD Prediction

Artifact of
Genetic Code

+1 Frame = +1 Controls
+2 Frame = +2 Controls

Conflict
Resolution

Overlapping* > Non-Overlapping
*Incl. Ancestral, Controlling for Frame Effects

Facilitate
Birth

Novel > Frameshifted Controls
Novel > Ancestral

Fig. 1. Three non-mutually-exclusive hypotheses about why
overlapping genes have high ISD. The column on the right de-
scribes the ISD patterns we would expect if the hypotheses were
true. Predictions of the conflict resolution hypothesis apply to all
categories of overlapping genes, including ancestral.

II. RESULTS AND DISCUSSION

A. Causes of elevated ISD

Because most verified gene overlaps in the litera-
ture, especially longer overlapping sequences, are in
viruses [24], [28], [39], we focused on viral genomes,
compiling a list of 92 verified overlapping gene pairs
from 80 viral species. The mean predicted ISD of all
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overlapping regions (0.39± 0.02) was higher than that
of the non-overlapping genes (0.25±0.01), confirming
previous findings that overlapping genes have elevated
ISD.

To test whether the elevated ISD of overlapping
genes is an artifact of the genetic code, we artificially
generated amino acid sequences from the +1 and +2
reading frames of 150 non-overlapping viral genes in
those 80 species and calculated their ISD using IUPred
re phylogenetically independent except as noted in the
footnotes. [11]. Mean ISD is higher in the +2 reading
frame (0.35±0.02) than in the +1 reading frame (0.19±
0.01). While exact ISD expectations are a function of
%GC content [1] and hence species-specific, this result
is not specific to viruses; Mus musculus yields a similar
gap between the +2 reading frame ISD of 0.573±0.002
vs. +1 reading frame ISD of 0.393± 0.002.

The artifact hypothesis predicts that the +1 and +2
members of the 92 verified overlapping gene pairs will
follow suit. In agreement with this, the overlapping
regions of genes in the +2 reading frame had higher
mean ISD (0.48 ± 0.03) than those in the +1 reading
frame (0.31±0.02). While this provides strong evidence
that frame shapes ISD as an artifact of the genetic code,
average ISD across both frameshifted control groups
(0.27± 0.01) is significantly lower than the ISD of all
overlapping sequences (0.39± 0.02), showing that the
artifact hypothesis cannot fully explain elevated ISD in
the latter.

We find stronger support for the birth-facilitation
hypothesis. Of the 92 verified overlapping viral gene
pairs, we were able to classify the relative ages of
the component genes as ancestral vs. novel for 47
pairs (Table III-G). In agreement with the predictions
of the birth-facilitation process, and controlling for
frame, novel genes have higher ISD than either an-
cestral members of the same gene pairs or artificially-
frameshifted controls (Figure 2). We confirmed this
using a linear mixed model (on Box-Cox-transformed
data with λ = 0.4), with frame (+1 vs. +2) as a fixed
effect, gene type (novel vs. ancestral vs. frameshifted
controls) as a fixed effect, species (to control for %GC
content and other subtle sequence biases) as a random
effect, and homology group (to control for phylogenetic
confounding) as a random effect. Within this linear
model, the prediction unique to the birth-facilitation
hypothesis, namely that ISD in the overlapping regions
of novel genes is higher than that in ancestral genes, is
supported with p = 0.01.

Our third hypothesis regarding the elevated ISD of

Fig. 2. Results support the birth-facilitation and conflict resolution
hypotheses: novel > ancestral, and ancestral > non-genic sequences
controlled for frame. (A) Data are from the overlapping sections
of the 47 gene pairs whose ages could be classified, and from
non-overlapping genes, and frameshifted versions of these non-
overlapping genes, in the species in which the overlapping gene
pairs were found. (B) While frame significantly impacts disorder
content, it does not drive the high ISD of overlapping genes. Means
and 66% confidence intervals were calculated from the Box-Cox
transformed (with λ = 0.4) means and their standard errors, and
are shown here following back-transformation.

overlapping genes, that it loosens evolutionary con-
straint and so helps resolve conflict between paired
genes, also plays a role. In agreement with this hypoth-
esis, even ancestral overlapping sequences have higher
ISD than non-overlapping genes (second vs. fourth
cluster in Figure 2), and than frameshifted control
sequences (se overlappingecond cluster vs. yellow in
Figure 2). In our linear model with two fixed effects
and two random effects, the pairwise ancestral vs.
frameshifted control comparison is supported with p =
0.02.

In contrast, a pairwise comparison between the
non-overlapping genes and the mean of +1 and +2
frameshifted control versions of the same nucleotide
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Fig. 3. The average ISD of artificially-frameshifted controls scales
with the ISD of the non-overlapping genes that generated them.
The 150 non-overlapping genes were separated into two groups,
according to the median of the 150 original proteins. Below-median
sequences have 41% GC, while above-mean sequences have 47%
GC. Means and standard errors are shown.

sequences was not statistically significant (p = 0.85;
contrast statement applied to a linear model with fixed
effect of actual non-overlapping gene sequence vs.
+1 frameshifted version vs +2 frameshifted version
vs a randomly scrambled version, using square-root
transformed ISD values, and which non-overlapping
gene sequence was used as a random effect). Despite
the enormous effect of +1 vs. +2 reading frame, we
find no support for the artifact hypothesis in explaining
elevated ISD of overlapping regions. In each overlap-
ping gene pair, there is always exactly one gene in
each of the two reading frames, such that the large
effects of each of the two frames cancel each other out
when all overlapping genes are considered together. It is
nevertheless important to control for the large effect of
frame while testing and quantifying other hypotheses.

The relative magnitudes of the other two causes of
high ISD in overlapping genes were quantified using
our linear model with two fixed effects and two random
effects. The degree to which birth facilitation elevates
ISD was calculated, using a contrast statement, as half
the difference between novel and ancestral genes, be-
cause exactly half of the genes are novel, and hence el-
evated above the “normal” ISD level of ancestral genes.
Birth facilitation accounts for 32.0% ± 9.7% of the
estimated total difference in ISD between overlapping
and non-overlapping genes. We attribute the remainder,
in the absence of other alternative hypotheses, to the
pressure to relieve evolutionary constraint.

Note that frameshifted versions of high-ISD proteins

have higher ISD than frameshifted versions of low-ISD
proteins (Figure 3). The ISD values of the two reading
frames are likely linked via sharing the same %GC
content, given that random sequences with higher %GC
have substantially higher ISD [1]. A facilitate-birth bias
toward high ISD thus imparts high %GC to overlapping
genes at the time of birth, and so causes overlapping
sequences to be biased toward not just high-ISD novel
genes, but also high-ISD ancestral genes. This makes
our estimate of the contribution of birth facilitation
to elevated ISD an under-estimate. After birth, during
evolution to avoid constraint, high ISD in the two
reading frames is a positively correlated trait, and thus
can more easily evolve in tandem.

B. Frame of Gene Birth

Given the strong influence of frame combined with
support for the facilitate-birth hypothesis, we hypoth-
esized that novel genes would be born more often
into the +2 frame (Figure 2A, green) because the
intrinsically higher ISD of the +2 reading frame would
facilitate high ISD in the novel gene and hence birth.
Our dataset contained 41 phylogenetically independent
overlapping pairs. Surprisingly, we found the opposite
of our prediction: 31 of the novel genes were in the
+1 frame of their ancestral counterparts, while only 10
were in the +2 frame (p = 10−3, cumulative binomial
distribution with trial success probability 0.5).

This unexpected result is stronger for “internal over-
laps”, in which one gene is completely contained within
its overlapping partner (23 +1 events vs. 1 +2 event,
p = 3×10−6), and is not found for “terminal overlaps”,
in which the 5′ end of the downstream gene overlaps
with the 3′ end of the upstream member of the pair
(9 +1 events vs. 9 +2 events). (This double-counts
a +1 event for which there were three homologous
gene pairs, two of which were internal overlaps, and
one of which was a terminal overlap.) Following [2],
we interpret the restriction of this finding to internal
overlaps as evidence that the cause of the bias applies
to complete de novo gene birth, but not to the addition
of a sequence to an existing gene.

The unexpected prevalence of +1 gene births, despite
birth facilitation favoring +2, can be explained by
mutation bias. One artifact of the genetic code is that
+1 frameshifts yield more start codons and fewer stop
codons, and hence fewer and shorter ORFs [2]. In
our control set of 150 non-overlapping viral genes, we
confirm that stop codons are more prevalent in the +2
frame (1 per 11 codons) than the +1 frame (1 per 14),
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decreasing the mean ORF length, and that start codons
are more prevalent in the +1 frame (1 per 27 codons)
than the +2 frame (1 per 111). Our results are consistent
with a major role for mutational availability in shaping
adaptive evolution [34], [35], [43].

The preponderance of novel genes in the +1 frame
further demonstrates the need to control for frame when
testing hypotheses. Ancestral genes are more frequently
in the +2 frame with elevated ISD, while the depressed
ISD of the +1 frame lowers the ISD of the novel. As
a result, when frame is not considered, ancestral and
novel overlapping sequences encode very similar levels
of disorder (0.41± 0.03 vs. 0.42± 0.04, respectively),
making it easy to miss the evidence for the facilitate-
birth hypothesis .

III. MATERIALS AND METHODS

Scripts and data tables used in this work
may be accessed at: https://github.com/
MaselLab/Willis_Masel_Overlapping_
Genes_Structural_Disorder_Explained

A. Overlapping Viral Genes

A total of 102 viral same-strand overlapping gene
pairs were collected from the literature [27], [28], [31]–
[33], [40]. Of these, ten were discarded because one
or both of the genes involved in the overlap were
not found in the ncbi databases, either because the
accession number had been removed, or because the
listed gene could not be located. This left 92 gene
pairs for analysis from 80 different species, spanning 33
viral families. Six of these pairs were ssDNA, five were
retroviruses, while the remaining 81 were RNA viruses:
7 dsRNA, 61 positive sense RNA and 13 negative sense
RNA.

B. Relative Gene Age

For 39 of the remaining 92 gene pairs available
for analysis, the identity of the older vs. younger
member of the pair had been classified in the liter-
ature [22], [28], [31], [32] via phylogenetic analysis.
There was disagreement in the literature regarding the
TGBp2/TGBp3 overlap; we followed [22] rather than
[28].

We also used the relative levels of codon bias to
classify the relative ages of members of each pair.
Because all of the overlapping genes are from viral
genomes, we can assume that they are highly expressed,
leading to a strong expectation of codon bias in general.
Novel genes are expected to have lower codon bias than
ancestral genes due to evolutionary inertia [27].

For each viral species, codon usage data [23], [44]
was used to calculate a relative synonymous codon
usage (RSCU) value for each codon [15]:

RSCUi =
Xi

1
n

∑n
i=1Xi

where Xi is the number of occurrences of codon i in
the viral genome, and 1 ≤ n ≤ 6 is the number of
synonymous codons which code for the same amino
acid as codon i. The relative adaptedness value (wi)
for each codon in a viral species was then calculated
as:

wi =
RSCUi

RSCUmax

where RSCUmax is the RSCU value for the most
frequently occurring codon corresponding to the amino
acid associated with codon i.

The codon adaptation index (CAI) was then calcu-
lated for the overlapping portion of each gene. The
CAI is defined as the geometric mean of the relative
adaptedness values:

CAI =

(
L∏
i=1

wi

) 1

L

where L is the number of codons in the overlapping
portion of the gene, excluding ATG and TGG codons.
This exclusion is because ATG and TGG are the only
codons that code for their respective amino acids and so
their relative adaptedness values are always 1, thereby
introducing no new information. To ensure sufficient
statistical power to differentiate between CAI values,
we did not analyze CAI for gene pairs with overlapping
sections less than 200 nucleotides long.

Within each overlapping pair, we provisionally clas-
sified the gene with the higher CAI value as ancestral
and the gene with lower CAI value as novel. We used
a Mann-Whitney U Test to determine the statistical
significance of the difference in CAI values for each
gene pair, and chose a p-value cutoff of 0.035 after
analyzing a receiver operating characteristic (ROC)
plot (Figure 4A). The combined effects of our length
threshold and p-value cutoff are illustrated in Figure
4B.

Of the 19 gene pairs whose ancestral vs. novel
classification was obtained both by statistically sig-
nificant CAI differences and by phylogenetics, there
was one for which the CAI classification contradicted
the phylogenetics. The exception was the p104/p130
overlap in the Providence virus. This overlap is notable
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Fig. 4. Statistical classification of relative ages. (A) The receiver operating characteristic plot for determining which member of an
overlapping gene pair has higher CAI, and is hence presumed to be ancestral. Only genes with an overlapping region of at least 200
nucleotides were included. (B) A plot of the p-values vs. the length of the overlapping regions of the 91 gene pairs for which codon usage
data were available. The vertical line shows the overlapping length cutoff of 200 nucleotides

because the ancestral member of the pair was acquired
through horizontal gene transfer, which renders codon
usage an unreliable predictor of relative gene ages [27].
We therefore used the phylogenetic classification and
disregarded the CAI results.

In total, we were able to classify ancestral vs. novel
status for 47 overlapping gene pairs (Figure 5).

C. Artificially-Frameshifted Viral Controls

150 non-overlapping control genes were compiled
from the genomes of the viruses where the 92 overlap-
ping gene pairs were found; matching for species helps
ensure that results are not affected by %GC content
or other idiosyncrasies of nucleotide composition. We
removed one or two nucleotides immediately after the
start codon and two or one nucleotides immediately
before the stop codon in order to generate +1 and +2
frameshifted controls, respectively.

D. Artificially-Frameshifted mus musculus Controls

A second set of frameshifted controls was
generated from 22,778 protein-coding genes
from the Mus musculus genome acquired from
http://uswest.ensembl.org. 136 genes
were excluded because they contained at least one
N (unknown nucleotide) in their sequence, and an

additional 49 genes were excluded because their length
was not a multiple of three, leaving 22,593 genes.
In order to ensure independent datapoints, one gene
was selected at random from each of the 10,664 gene
families annotated by [41], for frameshifting as above.

E. Homology Groups

Treating each gene as an independent datapoint is a
form of pseudoreplication, because homologous genes
can share properties via a common ancestor rather than
via independent evolution. This problem of phyloge-
netic confounding can be corrected for by using gene
family as a random effect term in a linear model [41],
and by counting each gene birth event only once.

We constructed a pHMMer
(http://hmmer.org/) database including all
overlapping regions, non-overlapping genes and
artificially-frameshifted controls. After an all-
against-all search, sequences that were identified as
homologous, using an expectation value threshold of
10−4, were provisionally assigned the same homology
group ID. These provisional groups were used to
determine which gene birth events were unique.
Two pairs were considered to come from the same
gene birth event when both the ancestral and the
overlapping sequence were classified as homologous.
We also used published phylogenetic analysis to
classify the TGBp2/TGBp3 overlap as two birth events
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Fig. 5. A breakdown of the curated list of 92 confirmed overlap-
ping gene pairs for which sequence data were available and how
the relative ages of the genes were classified. Each gene pair is
counted within only one of the subtotals shown.

(one occurring Virgaviridae, the other occurring in
Alpha- and Betaflexiviridae) [22].

Some homologous pairs had such dissimilar protein
sequences that ISD values were essentially indepen-
dent. We therefore manually analyzed sequence simi-
larity within each homology group using the Geneious
[16] aligner with free end gaps, using Blosum62 as the
cost matrix. The percent similarity using the Blosum62
matrix with similarity threshold 1 was then used as the
criterion for whether a protein sequence would remain
in its homology group for the ISD analysis. We used
≥ 50% protein sequence similarity as the threshold to
assign a link between a pair, and then used single-link
clustering to assign protein sequences to 561 distinct
homology groups.

F. ISD Prediction

We used IUPred [11] to calculate ISD values for each
sequence. Following [41], before running IUPred, we
excised all cysteines from each amino acid sequence,
because of the uncertainty about their disulphide bond
status and hence entropy [38]. Whether cysteine forms
a disulphide bond depends on whether it is in an
oxidizing or reducing environment. IUPred implicitly,
through the selection of its training data set, assumes
most cysteines are in disulphide bonds, which may
or may not be accurate for our set of viral proteins.

Because cysteines have large effects on ISD (in either
direction) depending on disulphid status and hence
introduce large inaccuracies, cysteines were dropped
from consideration altogether.

IUPred assigns a score between 0 and 1 to each
amino acid. To calculate the ISD of an overlapping
region, IUPred was run on the complete protein (mi-
nus its cysteines), then the average score was taken
across only the pertinent subset of amino acids. These
sequence-level ISD values were transformed using a
Box-Cox transform. The optimal value of λ for the
combined ancestral, novel and artificially-frameshifted
control group data was 0.41, which we rounded to 0.4.

G. Statistical models

Linear mixed models were generated using the lmer
and gls functions contained in the nlme and lme4 R
packages. In our main model, frame, gene designation
(ancestral vs novel vs non-genic control), species, and
homology group terms were retained in the model with
p = 5 × 10−20, 1 × 10−6, 9 × 10−19, and 2 × 10−3

respectively. To determine the statistical significance of
each effect, we used the anova function in R to compare
nested models.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2017. ; https://doi.org/10.1101/229690doi: bioRxiv preprint 

https://doi.org/10.1101/229690
http://creativecommons.org/licenses/by-nc-nd/4.0/


Accession
Number

Organism Ancestral
Gene

Novel
Gene

Overlap
Length
(n+)

Novel
Frame

NC 001401 Adeno-Associated Virus 2 VP2 AAP 615 +1

NC 004285 Aedes Albopictus Densovirus NS1 NS2 1119 +1

NC 001467 African Cassava Mosaic Virus AL1 AC4 423 +1

NC 009896 Akabane Virus1 N NSs 276 +1

NC 001749 Apple Stem Grooving Virus MP Polyprotein 963 +1

NC 001719 Arctic Ground Squirrel Hepatitis Virus2 P L 1284 +1

NC 003481 Barley Stripe Mosaic Virus3,4,5 TGBp2 TGBp3 191 +1

NC 003680 Barley Yellow Dwarf Virus6,7 P5 MP 465 +1

NC 005041 Blattella Germanica Densovirus NS-1 ORF4 789 +1

NC 001927 Bunyamwera Virus1 N NSs 306 +1

NC 001658 Cassava Common Mosaic Virus4,5 TGBp2 TGBp3 152 +1

NC 001427 Chicken Anemia Virus VP2 Apoptin 366 +1

NC 003688 Cucurbit Aphid-Born Yellowing Virus6,7,8 CP P5 572 +1

NC 005899 Dendrolimus Punctatus Tetravirus6 p71 p17 381 +1

NC 016561 Hepatitis B2 P L 1128 +1

NC 003608 Hibiscus Chlorotic Ringspot Virus6 Coat p25 675 +1

NC 003608 Hibiscus Chlorotic Ringspot Virus Replicase p23 630 +1

NC 004730 Indian Peanut Clump Virus P14 P17 158 +1

KR732417 Influenza A Virus H5N1 PB1 PB1-F2 273 +1

NC 009025 Israel Acute Paralysis Virus Of Bees ORF2 ORFx 285 +1

NC 003627 Maize Chlorotic Mottle Virus Coat p31 451 +1

NC 001498 Measles Virus9 P C 561 +1

NC 005339 Mossman Virus9 P C 459 +1

NC 008311 Murine Norovirus VP1 VF1 642 +1

NC 001633 Mushroom Bacilliform Virus ORF1 Vpg-protease 533 +1

NC 001718 Porcine Parvovirus Capsid SAT 207 +1

NC 001747 Potato Leafroll Virus P0 P1 661 +1

NC 003725 Potato Mop-Top Virus3,4 TGBp2 TGBp2 146 +1

NC 003768 Rice Dwarf Virus Pns12 OP-ORF 276 +1

NC 003771 Rice Ragged Stunt Virus P4b Replicase 981 +1

NC 004718 SARS Coronavirus Nucleocapsid Protein I 297 +1

NC 003809 Spinach Latent Virus Replicase 2b 308 +1

NC 003448 Striped Jack Nervous Necrosis Virus Protein A B2 228 +1

NC 001366 Theiler’s Virus L L* 471 +1

NC 002199 Tupaia Paramyxovirus9 P C 462 +1

NC 003743 Turnip Yellows Virus6,7,8 CP ORF5 528 +1

NC 001409 Apple Chlorotic Leaf Spot Virus CP MP 317 +2

NC 001719 Arctic Ground Squirrel Hepatitis Virus P Capsid Precursor 158 +2

NC 001719 Arctic Ground Squirrel Hepatitis Virus P X 256 +2

NC 003532 Cymbidium Ringspot Virus MP p19 519 +2

NC 003093 Indian Citrus Ringspot Virus CP NABP 301 +2

NC 004178 Infectious Bursal Disease Virus10 VP2 VP5 404 +2

NC 001915 Infectious Pancreatic Necrosis Virus10 VP2 VP5 395 +2

NC 001990 Nudaurelia Capensis Beta Virus6 CP Replicase 1832 +2

NC 014126 Providence Virus p104 p130 2681 +2

NC 004366 Tobacco Bushy Top Virus MP RNP 698 +2

NC 004063 Turnip Yellows Mosaic Virus Replicase MP 1880 +2

1N/NSs overlaps share ≥50% sequence similarity
2P/L overlap predicted homologous in HMMer run
3TGBp2 genes share ≥50% protein sequence similarity
4TGBp2 genes predicted homologous (Morozov and Solovyev, 2003)
5TGBp3 genes predicted homologous (Morozov and Solovyev, 2003)

6Ancestral genes predicted homologous in HMMer run
7Novel genes predicted homologous in HMMer run
8Novel genes predicted homologous in HMMer run
9Novel genes predicted homologous in HMMer run

10Ancestral VP2 genes share ≥50% protein sequence similarity
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