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Cancer growth is fueled by genomic alterations that confer selective advantage to somatic cells .
A major goal of cancer biology is determining the relative importance of these alterations. Genomic
tumor sequence surveys have frequently ranked the importance of genetic substitutions to cancer growth
by P value or a false-discovery conversion thereof **. However, P values are thresholds for belief ¢, not
metrics of effect >°. Their frequent misuse as metrics of effect has often and ineffectively been
vociferously decried >, even in cases when the only attributable mistake was omission of effect sizes

1011 Here, we draw upon an understanding of the development of cancer as an evolutionary process '>" t

0
estimate the effect size of somatic variants. We estimate the effect size of all recurrent single nucleotide
variants in 23 cancer types, ranking their relative importance within and between driver genes. Many of
the variants with the highest effect size per tumor, such as EGFR L858R in lung adenocarcinoma and
BRAF V600E in colon adenocarcinoma, are within genes deemed significantly mutated by existing
whole-gene metrics. Quantifying the effect sizes of somatic mutations underlying cancer has immediate
significance to the prioritization of clinical decision-making by tumor boards, selection and design of

clinical trials, pharmacological targeting, and basic research prioritization.
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Since the advent of whole-exome and whole-genome sequencing of tumor tissues, studies of
somatic mutations have revealed the underlying genetic architecture of cancer ', producing ordered lists
of significantly mutated genes whose ordering implies their relative importance to tumorigenesis and
cancer development. Typically, differentiation of selected mutations from neutral mutations is performed
by quantifying the over-representation of mutations within specific genes in tumor tissue relative to
normal tissue, and disproportionate prevalence of somatic mutations in a gene has been taken as prima
facie evidence of a causative role for that gene. Two quantifications have implicitly ordered the
importance of discovered cancer “driver” genes: the prevalence of the mutation among tumor tissues

15,16

sequenced from that tumor type >°, the statistical significance (P value) of the disproportionality of

mutation frequency ?, or both '*. Versions of these metrics have shifted from simple ranks by mutation

17-19

prevalence in a tumor population to calculation of statistical significance of mutation prevalence over

genome-wide context-specific background mutation rates ** >

, to ratios of the prevalence of
nonsynonymous and synonymous mutations **, to P values based on a gene-specific mutation rate and a
diversity of genomic data *. Although the approaches used to calculate P values have become more
sophisticated, neither prevalence nor P value is an appropriate metric for quantifying the vital role of
genes or their mutations to tumorigenesis and cancer development.

While prevalence of a somatic mutation in a cancer type has important consequences for biomarker
studies ** and identification of therapeutic population for a targeted therapy *, there is only a
correlative—rather than causal—link between prevalence of mutation and its contribution to
tumorigenesis and cancer development. The lack of causal linkage is easily seen by considering the
mutated genes that, in spite of their high prevalence in tumor populations, are universally regarded as
false positives. For example, the gene 77N is a structural protein of striated muscle. Because it is long,

because it replicates relatively late in the synthesis phase of mitosis, and because it is inaccessible to

transcription-mediated repair in non-muscle tissues, it has a high mutation rate and is frequently mutated
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in non-sarcoma cancer tissues. While 77N is an extreme example—sometimes showing up at the top of
lists ordered by prevalence of genic mutation '—it exemplifies the problem with using mutation
prevalence as a proxy for importance. Any consideration of whether mutated genes are contributing to
tumorigenesis and cancer development—or of the degree to which they are contributing—must address
the issue of their underlying mutation rate.

The appearance of such biologically implausible genes in ranked mutation lists prompted the
development of increasingly sophisticated statistical approaches designed to “weed out” false-positives
via calculation of a P value that accounted for gene length and background mutation rate. The classical
evolutionary biology approach is to use the frequency of synonymous site mutations in each gene as a
proxy for mutation rate. As in the divergence of species, synonymous site mutations are presumably
neutral (or nearly so) to the success of cancer lineages during the divergence from normal to resectable
tumor. As the number of mutations observed in a given gene is typically much smaller in the somatic
evolution of cancer than is observed in the divergence between most species, use of synonymous sites
within a single gene leads to many genes with zero synonymous mutations in most cancers, and an
ineffective calculation of P value. Alternative approaches currently in use obtain a reasonably robust
estimate of genic mutation rate using correlates such as gene expression levels, chromatin states, and
replication timing, and are largely successful at excluding known false positives .

In genomic tumor surveys, the sample size of tumors varies among studies, posing a problem for
comparison of P values within or between cancer types . An even more serious issue with using P
values for ranking genes or mutations arises from the same source that obviates use of genic mutation
prevalence: the confounding effect of mutation rate. Because the “sample size” of overall mutations in a
gene is dictated by the genic mutation rate, it is much easier for genes with high mutation rates not only to
reach high genic prevalence, but also to reach statistical significance despite small effect sizes. While

approaches accounting for genic mutation rates will eliminate false positives °, and the P value will serve
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to exclude genes like 77N that have no role in tumorigenesis and cancer development, the rank order by P
value of genes that do have a role in tumorigenesis and cancer development will remain highly affected
by mutation rate. Genes with higher mutation rate will (correctly) be more likely to achieve statistical
significance, and thus will appear deceptively high on a ranked list whose ordering suggests importance in
tumorigenesis and cancer development.

Because genic mutation prevalence and P value inadequately capture importance to tumorigenesis
and cancer development, another metric must be appropriate. To provide an evaluation of the relative
importance of mutations in diverse cancer types to tumorigenesis and cancer development, we called on

an understanding of the development of cancer as an evolutionary process '>'*

, and adapted some
straightforward insights from classical evolutionary theory. The cognate metric in evolutionary theory for
quantifying importance to tumorigenesis and cancer development is the selective effect of the mutation on
the cancer lineage. The appropriateness of this metric is fairly easy to recognize. While mutations are the
ultimate source of variation contributing to tumorigenesis, we do not conduct genomic tumor sequence
surveys to discover neutral mutation rates. We conduct them to determine which mutations spread within
cancer tissues because of the effects of mutations on proliferation and survival. Mutation rate is a
confounding phenomenon: when it is high, it also increases prevalence of mutations. Because silent site
substitutions and other correlates of baseline mutation rate provide a means to independently differentiate
silent mutation rate from the impact of natural selection within the tumor, selection intensities can be
estimated, providing the effect sizes of each mutation.

We calculated cancer effect sizes by comparing the rate of observed substitutions to the rate that
substitutions would be expected to arise in the absence of selection *°. In accordance with population
genetic theory, we specify that the rate neutral mutations arise and the rate that they fix as substitutions

within tumors are equivalent %/, and that non-neutral mutations arise at a consistent rate. Thus any

increase in the flux of substitutions among tumors of a particular context above the baseline silent rate
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would be the appropriate estimate of the intensity of selection on that mutation within the tumor
population (Methods).

This calculation yielded cancer effect sizes for all fixed substitutions (Methods, Supplemental
Figure 1, Supplemental Table 1) that quantify contribution to the cancer phenotype within 23 tumor types.
Their relative rank corresponds to their relative importance within the respective tumor types. Several
common known oncogenic substitutions, such as BRAF V600E in COAD and EGFR L858R in LUAD,
and substitutions in known tumor suppressor genes, such as APC in READ and TP53 in HPV-negative
HNSCC, are highly selected, and those genes are also determined as significantly mutated by MutSigCV?>.
However, genes determined to be significantly altered in cancer by MutSigCV are well-dispersed within a
large range of site-specific cancer effect sizes (Figure 1), illustrating how discrepant O values are with
cancer effect size. Several substitutions within genes that are not determined to be significantly
over-mutated via MutSigCV are interspersed among more prevalent substitutions within genes that are
estimated to be significantly mutated, for instance Mastermind-like3 (MAML3) G1069A in READ, a
protein that binds to and stabilizes the DNA-binding complex of the Notch intracellular domain ** and
Nuclear factor (erythroid derived 2)-like 2 (NFE2L2) R34G in UCEC, a protein that is believed to play a
causative role in squamous cell lung cancer ***°. Indeed, substitutions in this gene comprise two of the top

three most selected substitutions within our analysis of lung squamous cell carcinoma (Figure 1).
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Figure 1. Cancer effect sizes of recurrent somatic substitutions in eight of the 23 cancer types analyzed. Effect
sizes greater than 1 x 10° are indicated by ticks along the tumor-type axes. The highest 50 effect sizes are labeled

Names of genes that have more than one mutation within or between tumors are uniquely

within each tumor.

colored. Genes deemed significantly burdened with mutation * are depicted by a red circle next to mutation labels,

and the prevalence of each substitution is represented by the size of this circle. LUAD: Lung adenocarcinoma;

LUSC: Lung squamous cell carcinoma. UCEC: Uterine corpus endometrial carcinoma; LGG: Brain Lower Grade
Glioma; HNSC: Head and neck squamous cell carcinoma, broken into HPV positive and HPV negative tumor

samples (methods); COAD: Colon adenocarcinoma; READ: Rectum adenocarcinoma. NCSNV refers to a

non-coding single nucleotide variant outside an exon (e.g. 5° or 3° UTRs). HPV+ and HPV— HNSCC have been

demonstrated to have significantly different genetic architectures *', thus they are presented separately.
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Current approaches using conservative P values are particularly underpowered to detect genes that
are of high importance to tumorigenesis and cancer development in some cancer cases because the site or
sites conveying the relevant phenotype are mutated at low rates. For instance, FBXW?7 R505G was
estimated to have the highest selection intensity in HPV+ HNSCC, and BRAF V600E was estimated to
have the fifth highest selection intensity in LGG, but both of these genes were classified as not
significantly mutated by MutSigCV within these two cancer types. Mutations within these two
well-known oncogenes were estimated to confer large effect sizes, and these genes were determined to be
significantly mutated in other cancer types, yet their degree of influence within HPV+ HNSCC and LGG
is obscured in cancer-wide significance analyses. The relative effect sizes of cancer mutations can inform
nearly every aspect of basic research related to oncology and should play key roles in clinical
decision-making. They should be integrated into clinical decision-making in tumor boards, where they
would provide crucial insight into the relative upper limits of the efficacy of precision-targeted treatments.
They should guide the selection of clinical trials to target small populations that can benefit from targeted
therapeutics developed for other cancer types. They should guide targeted development of new
therapeutics, indicating the upper limit of effect for a perfect therapeutic ameliorating an oncogenic
mutation. Lastly, they should guide the selection of important areas of basic research that have potential
to lead to therapies and cures for cancer. It does not escape our notice that here we only calculate the
effect size of single nucleotide variants. Importantly, effect sizes of other mutational processes, such as
copy number alterations or epigenetic modifications, could be similarly calculated once estimates of

intrinsic mutation rate in the absence of selection are identifiable for these processes.
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METHODS:
Data acquisition and processing:

All data were obtained either from The Cancer Genome Atlas (TCGA) projects downloaded from
the National Cancer Institute’s Genomic Data Commons **, or from projects part of the Yale-Gilead
collaboration (Supplemental Table 2). All TCGA data used in this analysis were from GDC version
gdc-1.0.0 and relevant UUID are found in Supplemental Table 3.

All TCGA data were first converted to hgl9 coordinates using the 1iftOver function of the
rtracklayer R package®. To obtain consistency between gene symbols used in MutSigCV and in
mutation data, symbols in the MutSigCV default covariates files were mapped to HUGO symbols.
Non-HUGO symbols were mapped using substitutions from the NCBI Gene database using unambiguous
'synonym' matches; unambiguous "previous symbol' matches; and manual lookups. CDS coordinates for
each gene were obtained from UCSC's hg19 annotation database. The MutSigCV covariates files, and
gene annotation files used in our analyses can be found at

https://github.com/Townsend-Lab-Yale/SNV _selection_intensity. Nucleotide variants one or two
positions apart in the same tumor sample were removed from the analysis to ensure that we analyzed only
single nucleotide variants. Head and neck squamous cell tumors were designated as HPV positive if they
contained greater than 100 HPV RNA viral transcript reads per hundred million (RPHM) ** and were
designated positive in clinical data obtained from The Broad GDAC Firehose *°, and tumors were
designated HPV negative if they contained less than 100 HPV RNA viral transcript RPHM and were
designated negative in clinical data obtained from The Broad GDAC Firehose.

Calculating mutation rate and selection intensity:

We define the selection intensity of a single nucleotide variant as the ratio of the flux of fixed
mutations to the expected flux of fixed mutations in the absence of selection. We estimate the expected

rate of fixed mutations in the absence of selection by using MutSigCV to calculate the silent mutation rate
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for each gene. We use the median gene expression from cell lines derived from each analyzed tissue type
(Supplemental Table 3) as the MutSigCV expression covariate for that tissue type. We then normalized
this gene-level rate at every site for every mutation across each gene given the specific trinucleotide
mutation profile of the tissue, such that the average rate of mutations among all trinucleotide
combinations in each gene is equal to the average rate calculated by MutSigCV. The trinucleotide profile
of a tissue is calculated as the average of trinucleotide COSMIC signatures among non-recurrent
mutations calculated by the deconstructSigs R package *® for all tumors with over 50 single
nucleotide variants.

Formally, we define the rate of non-neutral substitutions, A, as Nu % u(s), where N is the
effective population size of the tumor, p is the mutation rate of a substitution, and u(s) is the probability
the mutation fixes within the population, which is a function of the selection coefficient of the mutation, s.

The probability that a silent mutation fixes is the inverse of the population size within which it fixes, and

A Nuxu(s)
B Npxg 2

thus rate of non-neutral substitutions, divided by the rate of neutral substitutions, is

N xu(s), the selection intensity and effect size of the mutation. The term selection intensity is used as a

direct parallel to the classic derivation of “scaled selection coefficient” or “selection intensity” in the
population genetics literature ***°. Because a tumor sequence is a single snapshot in time, we can only
detect one substitution event per site per tumor. To correct for this issue of detection, we define the rate of

substitution, A, as the Poisson rate of occurrence of one or more observed fixation events, i.e. the value of
A that maximizes (e %) "o x (1 —e 77‘) "1, where n, is the number of tumors without any substitution

at that site and n, is the number of tumors with the specified substitution at that site. We define

substitutions as single nucleotide variants that are observed in tumors from more than one patient
(recurrent) within our dataset, and we calculate the selection intensity of the recurrently mutated

substitutions to minimize the probability of analyzing passenger mutations.

10


https://paperpile.com/c/aQ3ixu/zRFY
https://paperpile.com/c/aQ3ixu/PYehP+IwAdU+uBYgR+SM1AQ
https://doi.org/10.1101/229724
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/229724; this version posted December 6, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

Scripts used to perform this analysis are available online at

https://github.com/Townsend-Lab-Yale/SNV _selection_intensity
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Supplemental figure 1 legend: Selection intensities of recurrent somatic substitutions in 23 cancers.
BLCA: Bladder Urothelial Carcinoma; BRCA: Breast invasive carcinoma; Cervical squamous cell
carcinoma and endocervical adenocarcinoma; COAD: Colon adenocarcinoma; ESCA: Esophageal
carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma, broken
into HPV+ and HPV- tumor samples using criteria described within the Methods section; KIRC: Kidney
renal clear cell carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; LIHC:
Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma;
OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PRAD: Prostate
adenocarcinoma; READ: Rectum adenocarcinoma; SKCM: Skin Curaneous Melanoma, broken into
primary skin tumors and metastatic skin tumors; STAD: Stomach adenocarcinoma; THCA: Thyroid
carcinoma; UCEC: Uterine corpus endometrial carcinoma.
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