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ABSTRACT 

A major goal of cancer biology is determination of the relative importance of the 

genomic alterations that confer selective advantage to cancer cells. Tumor sequence 

surveys have frequently ranked the importance of substitutions to cancer growth by P 

value or a false-discovery conversion thereof. However, P values are thresholds for belief, 

not metrics of effect. Their frequent misuse as metrics of effect has often been vociferously 

decried. Here, we estimate the effect sizes of all recurrent single nucleotide variants in 23 

cancer types, quantifying relative importance within and between driver genes. Some of the 

variants with the highest effect size, such as EGFR L858R in lung adenocarcinoma and 

BRAF V600E in primary skin cutaneous melanoma, have yielded remarkable therapeutic 

responses. Quantification of cancer effect sizes has immediate importance to the 

prioritization of clinical decision-making by tumor boards, selection and design of clinical 

trials, pharmacological targeting, and basic research prioritization.  
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STATEMENT OF SIGNIFICANCE 

We calculated the effect size for all recurrent single-nucleotide variants in 23 cancer types, 

quantifying the relative importance of the mutations driving cancer cell replication and 

survival. This quantification provides a means to prioritize basic research, inform decisions 

by tumor boards, and inform design of clinical trials. 
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INTRODUCTION 

Since the advent of whole-exome and whole-genome sequencing of tumor tissues, studies 

of somatic mutations have revealed the underlying genetic architecture of cancer (1) , producing 

ordered lists of significantly mutated genes whose ordering implies their relative importance to 

tumorigenesis and cancer development. Typically, differentiation of selected mutations from 

neutral mutations is performed by quantifying the over-representation of mutations within 

specific genes in tumor tissue relative to normal tissue, and disproportionate prevalence of 

somatic mutations in a gene has been taken as prima facie evidence of a causative role for that 

gene. Two quantifications have implicitly ordered the importance of discovered cancer “driver” 

genes: the prevalence of the mutation among tumor tissues sequenced from that tumor type (2,3) , 

the statistical significance (P value) of the disproportionality of mutation frequency (4) , or both 

(1) . Versions of these metrics have shifted from simple ranks by mutation prevalence in a tumor 

population (5–7)  to calculation of statistical significance of mutation prevalence over 

genome-wide context-specific background mutation rates (8–10) , to ratios of the prevalence of 

nonsynonymous and synonymous mutations (11) , to P  values based on a gene-specific mutation 

rate and a diversity of genomic data (12) . Although the approaches used to calculate P values 

have become more sophisticated, P values are not an appropriate metric for quantifying the vital 

role of genes or their mutations to tumorigenesis and cancer development, as P values are 

thresholds for belief (13)  and not metrics of effect (14,15) . Failure to report effect sizes is a 

persistent issues in the scientific and biomedical literature that can massively misdirect research 

and health care decision-making (16–20) . 
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While prevalence of a somatic mutation in a cancer type has important consequences for 

biomarker studies (21)  and identification of therapeutic population for a targeted therapy (22) , 

there is only a correlative—rather than causal—link between prevalence of mutation and its 

contribution to tumorigenesis and cancer development. The lack of causal linkage is easily seen 

by considering the mutated genes that, in spite of their high prevalence in tumor populations, are 

universally regarded as false positives. For example, the gene TTN is a structural protein of 

striated muscle. Because it is long, because it replicates relatively late in the synthesis phase of 

mitosis, and because it is inaccessible to transcription-mediated repair in non-muscle tissues, it 

has a high mutation rate and is frequently mutated in non-sarcoma cancer tissues. While TTN is 

an extreme example—sometimes showing up at the top of lists ordered by prevalence of genic 

mutation (11,12) —it exemplifies the problem with using mutation prevalence as a proxy for 

importance. Any consideration of whether mutated genes are contributing to tumorigenesis and 

cancer development—or of the degree to which they are contributing—must address the issue of 

their underlying mutation rate. 

The appearance of such biologically implausible genes in ranked mutation lists prompted 

the development of increasingly sophisticated statistical approaches designed to “weed out” 

false-positives via calculation of a P value that accounted for gene length and background 

mutation rate. The classical evolutionary biology approach is to use the frequency of 

synonymous site mutations in each gene as a proxy for mutation rate. As in the divergence of 

species, synonymous site mutations are presumably neutral (or nearly so) to the success of 

cancer lineages during the divergence from normal to resectable tumor. As the number of 

mutations observed in a given gene is typically much smaller in the somatic evolution of cancer 
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than is observed in the divergence between most species, use of synonymous sites within a single 

gene leads to many genes with zero synonymous mutations in most cancers, and an ineffective 

calculation of P value. Alternative approaches currently in use obtain a reasonably robust 

estimate of genic mutation rate using correlates such as gene expression levels, chromatin states, 

and replication timing, and are largely successful at excluding known false positives (12) . 

In genomic tumor surveys, the sample size of tumors varies among studies, posing a 

problem for comparison of P values within or between cancer types (14,15) . An even more 

serious issue with using P  values for ranking genes or mutations arises from the same source that 

obviates use of genic mutation prevalence: the confounding effect of mutation rate. Because the 

“sample size” of overall mutations in a gene is dictated by the genic mutation rate, it is much 

easier for genes with high mutation rates not only to reach high genic prevalence, but also to 

reach statistical significance despite small effect sizes. While approaches accounting for genic 

mutation rates will eliminate false positives (12) , and the P  value will serve to exclude genes like 

TTN that have no role in tumorigenesis and cancer development, the rank order by P value of 

genes that do have a role in tumorigenesis and cancer development will remain highly affected 

by mutation rate. Genes with higher mutation rate will (correctly) be more likely to achieve 

statistical significance, and thus will appear deceptively high on a ranked list whose ordering 

suggests importance in tumorigenesis and cancer development. 

Because genic mutation prevalence and P value inadequately capture importance to 

tumorigenesis and cancer development, another metric must be appropriate. To provide an 

evaluation of the relative importance of mutations in diverse cancer types to tumorigenesis and 

cancer development, we called on an understanding of the development of cancer as an 
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evolutionary process (23,24) , and adapted some straightforward insights from classical 

evolutionary theory. The cognate metric in evolutionary theory for quantifying importance to 

tumorigenesis and cancer development is the selective effect of the mutation on the cancer 

lineage. The appropriateness of this metric is fairly easy to recognize. While mutations are the 

ultimate source of variation contributing to tumorigenesis, we do not conduct genomic tumor 

sequence surveys to discover neutral mutation rates. We conduct them to determine which 

mutations spread within cancer tissues because of the effects of mutations on proliferation and 

survival. Mutation rate is a confounding phenomenon: when it is high, it also increases 

prevalence of mutations. Because silent site substitutions and other correlates of baseline 

mutation rate provide a means to independently differentiate silent mutation rate from the impact 

of natural selection within the tumor, selection intensities can be estimated, providing the effect 

sizes of each mutation. 

 

RESULTS 

We calculated cancer effect sizes by comparing the rate of observed substitutions to the 

rate that substitutions would be expected to arise in the absence of selection (25) . In accordance 

with population genetic theory, we specify that the rate neutral mutations arise and the rate that 

they fix as substitutions within tumors are equivalent, and that non-neutral mutations arise at a 

consistent rate. Thus any increase in the flux of substitutions among tumors of a particular 

context above the baseline silent rate would be the appropriate estimate of the intensity of 

selection on that mutation within the tumor population (Methods). These selection intensities 

quantify the survival and proliferative advantage conferred by variants, facilitating comparisons 
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of the relative importance of drivers among and within tumor types. For instance, even though 

lung tissues encounter similar mutagens and hence mutations arise through similar mutational 

signatures, LUAD and LUSC variants conferring the largest effect sizes are markedly different 

among the two cancers (Fig. 1). Moreover, within a tumor type, the selection intensity decouples 

the effects of mutation rate on frequency: even though KRAS G12C variants are over twice as 

prevalent as EGFR L858R variants in LUAD tumors, EGFR L858R is estimated to have a higher 

effect size, due to its much lower baseline mutation rate. Furthermore, the relative selection 

intensity among variants within a single gene reveals whether `hotspots` of somatic variation are 

purely driven by mutational processes or rather under differential (or similar) selective pressure. 

For instance, the V157F, R158L, R175G, G245C, and E298* variants in TP53 in LUSC tumors 

exhibit markedly different prevalences attributable to different trinucleotide mutation contexts, 

yet resulting in remarkably similar estimated effect sizes.  

This calculation yielded cancer effect sizes for all fixed substitutions (Methods, Figure S1, 

Table S1) that quantify contribution to the cancer phenotype within 23 tumor types. Their 

relative rank corresponds to their relative importance within the respective tumor types. Several 

common known oncogenic substitutions, such as BRAF V600E in SKCMP and EGFR L858R in 

LUAD (26,27) , and substitutions in known tumor suppressor genes, such as APC in READ and 

TP53 in HPV-negative HNSCC, are highly selected, and those genes are also typically 

determined as significantly mutated (e.g., by MutSigCV(12)). However, genes determined to be 

statistically significantly altered in cancer are also well-dispersed within a large range of 

site-specific cancer effect sizes (Fig. 2), illustrating how discrepant gene-specific Q values are 

with site-specific cancer effect sizes. Several substitutions within genes that are not statistically 
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significantly over-mutated are interspersed among more prevalent substitutions within genes that 

are estimated to be significantly mutated, for instance Mastermind-like3 (MAML3) G1069A in 

READ, a protein that binds to and stabilizes the DNA-binding complex of the Notch intracellular 

domain (28)  and Nuclear factor (erythroid derived 2)-like 2 (NFE2L2) R34G in UCEC, a protein 

that is believed to play a causative role in squamous cell lung cancer (29,30) . Indeed, 

substitutions in this gene comprise two of the top three most selected substitutions within our 

analysis of lung squamous cell carcinoma (Fig. 2).  

 

DISCUSSION 

Here, we have argued that frequencies of mutation and P values are not an appropriate 

metric for the importance of somatic variants in tumor growth. We derive the appropriate 

metric—the cancer effect size of mutations. This effect size, quantifying the intensity of 

selection on mutations in cancer cells in patients, conveys the replicative and survival benefit 

conferred by genetic variants, and therefore is a direct metric of the contribution of a variant to 

the cancer phenotype. Using our approach, we estimated the effect size of all recurrent SNVs in 

23 cancer types, re-evaluating their importance across SNV effect size to cancer in disparate 

tumor types projected to account for approximately 82% of all new cancer cases within the 

United States in 2017 (31) . 

Current approaches using conservative P values are particularly underpowered to detect 

genes that are of high importance to tumorigenesis and cancer development in some cancer cases 

because the site or sites conveying the relevant phenotype are mutated at low rates. For instance, 

FBXW7 R505G was estimated to have the highest selection intensity in HPV+ HNSCC,  and 
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BRAF V600E was estimated to have the fifth highest selection intensity in LGG and the tenth 

highest selection intensity in LUAD, but both of these genes were classified as not significantly 

mutated at the gene-level within these three cancer types. Mutations within these two 

well-known oncogenes were estimated to confer large effect sizes, and these genes were 

determined to be significantly mutated in other cancer types, yet their importance in patients who 

have these rarer somatic variants within HPV+ HNSCC, LGG, and LUAD has been poorly 

illuminated by gene-wide analyses of statistically significant mutation burden across patients. 

Thus, calculating the cancer effect size at the level single nucleotide variants identifies drivers 

that have low prevalence but large effect in different tumor types. 

Identification of these low-prevalence high-effect drivers is increasingly important as 

precision targeting of therapeutics becomes increasingly integrated into clinical trial design. 

Targeted therapies are often developed for, and necessarily tested in, a single tumor type with the 

targeted variant at high frequency. However, the same variant often exists at lower prevalence in 

other tumor types. Quantifications of the cancer effect size can guide the selection and design of 

clinical trials to target small populations that can benefit from targeted therapeutics developed 

for other cancer types. Targets for therapies that were originally developed for variants at high 

prevalence in one tumor type are expected to be effective when treating the same variant in a 

secondary tumor type if the variant has a similarly high selection intensity in the second tumor 

type, even if it is at low prevalence in the newly considered tumor type. 

The effect sizes of somatic mutations in cancer should play key roles in clinical 

decision-making, providing crucial insight into the relative upper limits of the efficacy of 

precision-targeted treatments. When a therapy abrogates novel oncogenic function primarily by 
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disabling a gain-of-function mutation, the upper limit of the efficacy of the precision-targeted 

treatment will be dictated by the selection intensity that somatic variant imparted to the cancer 

cell lineage. Therefore, while incorporating other knowledge regarding the pharmacokinetics, 

efficacy, and side effects, and the evolution of resistance to therapies, precision treatments can be 

selected in clinical decision-making on tumor boards to target mutations with the greatest cancer 

effect size. That is, the effectiveness of a targeted therapy is expected to scale with the selection 

intensity of the target for any therapy that specifically inhibits the selective advantage conferred 

by the mutant allele. Similarly, cancer effect size can be used in the same manner to prioritize 

targeted development of new therapeutics, indicating the upper limit of effect for a perfect 

therapeutic ameliorating an oncogenic mutation. 

The relative effect sizes of cancer mutations can inform nearly every aspect of basic 

research related to oncology, including which genes and pathways deserve greater attention in 

basic research. While network interactions, epigenetic and tumor microenvironment interactions, 

and aspects of cellular differentiation and cellular plasticity mean that quantification of the 

selective effect of mutations does not provide an upper bound on the importance of a gene or 

pathway in the molecular biology of cancer, its quantification does provide a lower bound, as the 

potential role of genes with a somatic variant can be no lower than the selection intensity the 

variant imparts. It does not escape our notice that here we only calculate the effect size of single 

nucleotide variants. Importantly, effect sizes of other mutational processes, such as copy number 

alterations or epigenetic modifications, could be similarly calculated once estimates of intrinsic 

mutation rate in the absence of selection are identifiable for these processes. 
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METHODS:  

Data acquisition and processing:  

Data were either obtained either from The Cancer Genome Atlas (TCGA) projects 

downloaded from the National Cancer Institute’s Genomic Data Commons (32) , or derived from 

whole exome sequencing of tumors as part of collaboration with Gilead Sciences (Table S2). All 

TCGA data used in this analysis were from GDC version gdc-1.0.0 and relevant UUID are found 

in Table S3. 

All TCGA data were first converted to hg19 coordinates using the liftOver function of the 

rtracklayer R package(33) . To obtain consistency between gene symbols used in MutSigCV 

and in mutation data, symbols in the MutSigCV default covariates files were mapped to HUGO 

symbols. Non-HUGO symbols were mapped using substitutions from the NCBI Gene database 

using unambiguous 'synonym' matches; unambiguous 'previous symbol' matches; and manual 

lookups. CDS coordinates for each gene were obtained from UCSC's hg19 annotation database. 

The MutSigCV covariates files, and gene annotation files used in our analyses can be found at 

https://github.com/Townsend-Lab-Yale/SNV_selection_intensity.  Nucleotide variants one or 

two positions apart in the same tumor sample were removed from the analysis to ensure that we 

analyzed only single nucleotide variants. Head and neck squamous cell tumors were designated 

as HPV positive if they both contained greater than 100 HPV RNA viral transcript reads per 

hundred million (RPHM) (34)  and were designated positive in clinical data obtained from The 

Broad GDAC Firehose  (35) , and tumors were designated HPV negative if they contained less 

than 100 HPV RNA viral transcript RPHM and were designated negative in clinical data 

obtained from The Broad GDAC Firehose. 
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Calculating mutation rate and selection intensity:  

We define the selection intensity of a single nucleotide variant as the ratio of the flux of 

fixed mutations to the expected flux of fixed mutations in the absence of selection. We estimate 

the expected rate of fixed mutations in the absence of selection by using MutSigCV to calculate 

the silent mutation rate for each gene. We use the median gene expression from cell lines derived 

from each analyzed tissue type (Table S3) as the MutSigCV expression covariate for that tissue 

type. We then normalized this gene-level rate at every site for every mutation across each gene 

given the specific trinucleotide mutation profile of the tissue, such that the average rate of 

mutations among all trinucleotide combinations in each gene is equal to the average rate 

calculated by MutSigCV. The trinucleotide profile of a tissue is calculated as the average of 

trinucleotide COSMIC signatures among non-recurrent mutations calculated by the 

deconstructSigs R package (36)  for all tumors with over 50 single nucleotide variants.  

Formally, we define the rate of non-neutral substitutions,  as , where N  is,λ μ u(s)N ×   

the effective population size of the tumor,  is the mutation rate of a substitution, and is theμ (s)u  

probability the mutation fixes within the population, which is a function of the selection 

coefficient of the mutation, s. The probability that a silent mutation fixes is the inverse of the 

population size within which it fixes (37) , and thus rate of non-neutral substitutions, divided by 

the rate of neutral substitutions, is or , the selection intensity and effect,λ
μ = Nμ × 1

 N

Nμ × u(s) (s)N × u  

size of the mutation. The term selection intensity is used as a direct parallel to the classic 

derivation of “scaled selection coefficient” or “selection intensity” in the population genetics 

literature (38–41) . Because a tumor sequence is a single snapshot in time, we can only detect one 

substitution event per site per tumor. To correct for this issue of detection, we define the rate of 
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substitution, , as the Poisson rate of occurrence of one or more observed fixation events, i.e.λ  

the value of  that maximizes , where  is the number of tumorsλ  e ( −λ)  n0 × 1  ( − e −λ)  n1 n0  

without any substitution in that gene and  is the number of tumors with the specifiedn1  

substitution at that site. We define  as the number of tumors without any substitutions in thatn0  

gene, instead of in that gene at that specific site, because doing so accounts for the reduced or 

eliminated selective pressure on additional mutation for that gene when other sites are already 

mutated. We define substitutions as single nucleotide variants that are observed in tumors from 

more than one patient (recurrent) within our dataset, and we calculate the selection intensity of 

the recurrently mutated substitutions to minimize the probability of analyzing passenger 

mutations.  

Scripts used to perform this analysis are available online at 

https://github.com/Townsend-Lab-Yale/SNV_selection_intensity  
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TABLES 

 

Tables S1, S2, and S3 available as a supplement to the manuscript.  
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TABLE LEGENDS 

 

Table S1: Tab delimited text file containing the selection intensity of all recurrent single 

nucleotide variants in our analysis. Informative columns also include the amino acid position of 

the variant (AA_pos), the amino acid reference (AA_Ref), the amino acid change (AA_Change), 

and prevalence of the variant among tumors (freq), the silent substitution rate of the variant (mu), 

and the MutSigCV P  and Q  values for that gene (MutSigCV_p and MutSigCV_q). When the 

variant is outside of an exon, the position is given in terms of the nucleotide position on the 

chromosome (Nucleotide_position), and the reference is the nucleotide reference (Nuc_Ref) and 

the change is the nucleotide change (Nuc_Change).  

 

Table S2: Exome sequencing data from the Yale-Gilead collaboration displayed in accordance 

with Mutation Annotation Format (MAF) Specifications (42)  in a tab-delimited text file. 

 

Table S3: Metadata on the TCGA data used in this analysis in a tab-delimited text file. Includes 

NCI UUID for all files, and the gene expression tissue files used for each tumor type.  
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FIGURE LEGENDS 

Figure 1: The 25 single-nucleotide variants with the highest selection intensity in LUAD and 

LUSC tumors, ranked by selection intensity, which corresponds to the length of the bars to the 

right of the variant names. Length of bars to the left of variant names corresponds to mutation 

rate, and mutation rate ( 10–6) is listed at the top of the bars. Prevalence of variants among 675×  

LUAD and 600 LUSC tumors are listed to the left of the variants. Red variant labels refer to 

genes deemed significantly mutated by MutSigCV (Q < 0.1) and variants occurring in genes 

present twice in the top 25 have uniquely colored bars. Asterisks denote nonsense mutations.  

 

Figure 2: Cancer effect sizes of recurrent somatic substitutions in eight of the 23 cancer types 

analyzed. Effect sizes greater than 1 × 103 are indicated by ticks along the tumor-type axes. The 

highest 50 effect sizes are labeled within each tumor. Names of genes that have more than one 

mutation within or between tumors are uniquely colored. Genes deemed significantly burdened 

with mutation (12)  are depicted by a red circle next to mutation labels, and the prevalence of 

each substitution is represented by the size of this circle. LUAD: Lung adenocarcinoma; LUSC: 

Lung squamous cell carcinoma. UCEC: Uterine corpus endometrial carcinoma; LGG: Brain 

Lower Grade Glioma; HNSC: Head and neck squamous cell carcinoma, broken into HPV 

positive and HPV negative tumor samples (methods); SKCMP: Skin cutaneous melanoma 

(primary); READ: Rectum adenocarcinoma. NCSNV refers to a non-coding single nucleotide 

variant outside an exon (e.g. 5’ or 3’ UTRs). HPV+ and HPV – HNSCC have been demonstrated 

to have significantly different genetic architectures (43) ; thus, they are presented separately. 108 
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LUAD, 108 LUSC, 23 UCEC, and 47 SKCMP tumors from the Yale-Gilead collaboration are 

included in the plot. 

 

Figure S1: Selection intensities of recurrent somatic substitutions in 23 cancers. BLCA: Bladder 

Urothelial Carcinoma; BRCA: Breast invasive carcinoma; Cervical squamous cell carcinoma 

and endocervical adenocarcinoma; COAD: Colon adenocarcinoma; ESCA: Esophageal 

carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma, 

broken into HPV + and HPV ﹣  tumor samples using criteria described within the Methods section; 

KIRC: Kidney renal clear cell carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain 

Lower Grade Glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; 

LUSC: Lung squamous cell carcinoma; OV: Ovarian serous cystadenocarcinoma; PAAD: 

Pancreatic adenocarcinoma; PRAD: Prostate adenocarcinoma; READ: Rectum 

adenocarcinoma; SKCM: Skin Curaneous Melanoma, broken into primary skin tumors and 

metastatic skin tumors; STAD: Stomach adenocarcinoma; THCA: Thyroid carcinoma; UCEC: 

Uterine corpus endometrial carcinoma. 108 LUAD, 108 LUSC, 23 UCEC, 47 SKCMP, 156 

SKCMM, 22 THCA, 41 LIHC, 56 CESC, and 50 PAAD tumors from the Yale-Gilead 

collaboration are included in the plot. 
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