
Evidence against the detectability of a1

hippocampal place code using functional2

magnetic resonance imaging3

Christopher R. Nolan1, J.M.G. Vromen1,2, Allen Cheung1, Oliver Baumann1*
4

1The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia; 2University of Oxford,5

Nuffield Department of Clinical Neurosciences, Oxford, UK6

*Email: o.baumann@uq.edu.au7

8

Abstract Individual hippocampal neurons selectively increase their firing rates in specific spatial locations.
As a population these neurons provide a decodable representation of space that is robust against changes
to sensory- and path-related cues. This neural code is sparse and distributed, theoretically rendering it un-
detectable with population recording methods such as functional magnetic resonance imaging (fMRI). Ex-
isting studies nonetheless report decoding spatial codes in the human hippocampus using such techniques.
Here we present results from a virtual navigation experiment in humans in which we eliminated visual- and
path-related confounds and statistical shortcomings present in existing studies, ensuring that any positive
decoding results would be only spatial in nature and would represent a true voxel-place code. Consistent
with theoretical arguments derived fromelectrophysiological data and contrary to existing fMRI studies, our
results show that although participants were fully oriented during the navigation task, there was no statisti-
cal evidence for a place code.

Introduction9

Acquisition of declarativememories is dependent on the hippocampus. Place cells—hippocampal principal10

cells that exhibit allocentric spatial tuning— provide a clear behavioural correlate with which to interrogate11

the neuronal dynamics of this region (O’Keefe and Dostrovsky, 1971). Initially discovered in rodents, the12

existence of place cells has since been confirmed in other species, including humans (Ekstrom et al., 2003).13

The activity across populations of such cells, as measured with single cell recordings, can be decoded to14

provide an accurate estimate of an animal’s current position (Brown et al., 1998), and the activity appears15

to reflect a cognitive map, resilient against changes in any particular internal or external cue. However, the16

sparse firing and random distribution of spatial tuning amongst the place cell population suggests that any17

such place code should be impenetrable to current mass imaging technology such as fMRI.18

A true place code should be demonstrably selective for position in a mnemonic representation of space19

rather than particular external or non-mnemonic internal cues such as unique visual patterns or egocentric20

movement. We are aware of four studies that claim to provide evidence for a voxel place code (Hassabis21

et al., 2009; Kim et al., 2017; Rodriguez, 2010; Sulpizio et al., 2014). Each experiment involved distinguishing22

between fMRI scans taken at two or more locations in a virtual arena. All four experiments failed to remove23

significant visual confounds, either in the formof salient visual landmarks during navigation to a target (Has-24

sabis et al., 2009; Kim et al., 2017; Rodriguez, 2010) or at the target (Rodriguez, 2010; Sulpizio et al., 2014), or25

as visual panoramas unique to each target location (Kim et al., 2017). We later discuss how these confounds,26

amongst others, are manifest in each experiment (see Discussion), but note here that any legitimate voxel27

codes in these experiments could be sensory-driven rather than true place codes.28

Beyond experimental design issues, detecting a voxel place code necessitates distinguishing between29

complex multivariate voxel patterns. Each of the existing four studies uses multivariate pattern analysis30

(MVPA) techniques to classify voxel patterns as characteristic of particular virtual locations. While these an-31

alytics are valid in principle, subsequent statistical inferences cannot necessarily rely on classical assump-32

tions. For example, the practice of submitting within-subject classification results to a second-level t-test to33

infer group statistics — a technique used by two of the referenced hippocampal studies — has been demon-34
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strated as invalid on information-like measures such as classification results (Allefeld et al., 2016). In par-35

ticular, the true value of information-like measures cannot be below chance, thereby restricting the null36

hypothesis to be the total absence of information. Hence even when the null is rejected, the strongest con-37

clusion possible is that there are people in whom information is found, not that the information is preva-38

lent or generalizable (Allefeld et al., 2016). Additionally, such measures violate assumptions of Gaussian or39

other symmetric null distributions (Stelzer et al., 2013; Brodersen et al., 2013). We found that in three of the40

existing studies (Hassabis et al., 2009; Rodriguez, 2010; Sulpizio et al., 2014), statistical issues marred the41

interpretation of any evidence (see Methods and Results).42

These concerns motivated us to revisit the question of whether a voxel place code is truly detectable43

with human fMRI. We had a group of healthy participants perform a virtual navigation task, while undergo-44

inghigh-resolution3T fMRI. Theenvironmentwasa circular arena containing twounmarked target locations45

(see Figure 1a). On each trial, participants were initially shown an orienting landmark and then had to track46

their position while being passively moved along a curvilinear path to one of the two target locations. Dur-47

ing navigation, the participants had to rely solely on their mental representation of the environment and48

track their position using visual self-motion cues. After arriving at one of the target locations, we probed the49

participants’ positional knowledge. We then used linear andnon-linearmultivoxel classificationmethods to50

test whether we could distinguish hippocampal fMRI signals corresponding to periods at which participants51

were present at each of the two target locations.52

Materials andmethods53

Participants54

Twenty-one healthy, adult volunteers gave their informed consent to participate in the study, which was55

approved by the Human Research Ethics Committee of The University of Queensland. The first two partic-56

ipants were only used for pilot testing, to optimise acquisition parameters. One participant was omitted57

from the data analysis because the behavioural performancewas below our a priori criterion of 90% correct58

responses. The remaining 18 participants (9 females) ranged in age from 18 to 29 years (mean, 21 years) and59

all were right-handed. Classical sample-size estimation techniques are not applicable to the classification60

analyses in the present study, however we deemed our sample size sufficient given that three of the four61

existing studies reported a positive place code effect with fewer subjects (Hassabis et al., 2009; Rodriguez,62

2010; Sulpizio et al., 2014).63

Stimuli and procedure64

The virtual environment was a circular arena surrounded by a brick wall, with a grass-textured floor and65

featureless blue sky. The arenawall was 3.0m high and its diameter was 30.4m, relative to a 1.7m observer.66

Along the wall, four landmarks (white 1.0 m ×1.0 m squares with black symbols: ‘+’, ‘%’, ‘?’, and ‘#’) were67

located equidistantly (45°, 135°, 225° and 315°). The two beacons (yellow and blue, see Figure 1a) were 3 m68

tall and 0.5 m in diameter, located at 0° and 180°, and 5 m from the centre of the arena (i.e. 10 m apart from69

each other).70

The task required participants to track their location, while being passivelymoved (4.2m/s linear speed)71

in the absence of orienting landmarks through the environment, therefore relying only on a combination72

of visual self-motion cues and their mental representation of the landmarks’ locations (see Figure 1b for de-73

tails of the task sequence). At thebeginningof each trial, participants closely facedoneof the four peripheral74

landmarks on the arena wall for one second. Subsequently, all four landmarks were made invisible (i.e. re-75

placed by white placeholders) and participants were turned around and moved for 6 s along a curvilinear76

path to one of the two unmarked target locations. Participants were led to the target location via 24 differ-77

ent curvilinear paths of equal length (see Figure 1c), so that participants could not infer the target location78

simply based on the initial landmark cue and the length of the path. After arriving at the target location,79

participants were prompted to indicate their location within 3.5 s, via a yes/no button response to either80

the question “Yellow?” or the question “Blue?”, chosen at random. This procedure ensured that the button81

response was orthogonal to the target location. The response periodwas followed by a 10.5 s rest period, in82

which only a white fixation cross on a black screen was shown (see Figure 1b). There were in total 120 trials83

(60 per target location) split up into five imaging runs, lasting ~8.5 minutes each.84

We used the Blender open-source three-dimensional content creation suite (The Blender Foundation)85
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Figure 1. Schematics of the virtual environment and task. a. First person view of the environment during the training
stage (beacons marking target locations are not visible in the main experiment). b. Sequence of events in a typical
experimental trial. c. Schematics of the path structures used in the experiment. Participants were led to the target
location via in total 24 (three paths from each landmark to each beacon) different curvilinear paths of equal length. d.
Experimental time course of each trial relative to the image acquisition sequence (1.75 s per volume).

to create the virtual maze and to administer the task. Stimuli were presented on a PC connected to a liquid86

crystal displayprojector (1280×980 resolution) that backprojected stimuli ontoa screen locatedat thehead87

end of the scanner bed. Participants laid on their backwithin the bore of themagnet and viewed the stimuli88

via a mirror that reflected the images displayed on the screen. The distance to the screen was 90 cm (12 cm89

from eyes tomirror) and the visible part of the screen encompassed ~22.0° × 16.4° of visual angle (35.5 × 2690

cm).91

Before conducting fMRI imaging, participants were assessed and trained using a three-stage procedure92

to ensure an adequate level of task performance, which depends on familiarity with the arena layout. These93

behavioural training sessions were scheduled one to two days before the fMRI scanning session. In the first94

training stage, participants were allowed to freely navigate the virtual environment for threeminutes, using95

a joystickheld in their right hand. During this stage, all fourwall landmarks and the twobeacons thatmarked96

the target locations (yellow and blue) were visible. In the second stage of the training only the two beacons97

and one of the peripheral landmarks were visible at a time, and the participants’ task was to navigate to the98

locationofoneof theother three landmarks, indicatedbya small cue (an imageof the landmark) at the topof99

the computer screen. Each participant completed at least 24 trials of this task. The third stage of the training100

procedure was almost identical to the actual task described earlier, except the yellow and blue beacons101

marking the two target locations were visible during the first six trials, feedback was provided for 1.5 s after102

each button press (i.e. “correct”/“incorrect”), and the interval between trials was just 2 s. Each participant103

completed at least 24 trials of this task. When participants achieved a performance level of >90% correct in104

the last stageof the training theywere admitted to the fMRI session. At thebeginningof the scanning session,105

during the acquisitionof the structural images, participants performedanother iterationof the training tasks106

to refamiliarize themwith the environment.107

MRI acquisition108

Brain images were acquired on a 3T MR scanner (Trio; Siemens) fitted with a 32-channel head coil. For the109

functional data, 25 axial slices (voxel size 1.5 ×1.5 ×1.5 mm, 10% distance factor) were acquired using a gra-110

dient echo echoplanar T2*-sensitive sequence (repetition time, 1.75 s; echo time, 30.2 ms; flip angle, 73°;111

Acceleration factor (GRAPPA), 2; matrix, 128 ×128; field of view, 190 ×190 mm). In each of five runs, 294 vol-112

umes were acquired for each participant; the first four images were discarded to allow for T1 equilibration.113
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Wealso acquired a T1-weighted structuralMPRAGE scan. Tominimize headmovement, all participantswere114

stabilized with tightly packed foam padding surrounding the head.115

Data analysis116

Preprocessing117

Image preprocessing was carried out using SPM12 (Wellcome Department of Imaging Neuroscience, Univer-118

sity College London). Functional data volumeswere slice-time corrected and realigned to the first volume. A119

T2*-weighted mean image of the unsmoothed images was coregistered with the corresponding anatomical120

T1-weighted image from the same individual. The individual T1 imagewasused toderive the transformation121

parameters for the stereotaxic space using the SPM12 template (Montreal Neurological Institute template),122

which was then applied to the individual coregistered EPI images. Further, to exclude voxels with spurious123

signals, we removedall voxelswith a raw intensity of zero at any timeduring the timeseries (RH: 0.37 ± 0.20%,124

LH: 0.83 ± 0.54%, RPH: 2.0 ± 1.3%, LPH: 4.4 ± 3.1%; mean ± SD%, n = 18).125

Two alternative approaches of detrending were used to assess their potential differential effect on de-126

codingperformance. (1) Tomakeuse of global information about unwanted signals, imageswere detrended127

using a voxel-level linearmodel of the global signal (LMGS; Macey et al. (2004)) to remove high-frequency as128

well as low-frequency noise components due to scanner drift, respiration, or other possible background sig-129

nals. (2) To remove spatiotemporally confined signal drift and artefacts, runwise polynomial detrendingwas130

performed on region of interest (ROI) data (see below). By default, second order polynomial detrendingwas131

used (SPM, Wellcome Department of Imaging Neuroscience, University College London, London, UK).132

Based on existing evidence that in humans the right hippocampus should be the most likely region to133

produce a place code (Burgess et al., 2002), we used the AAL atlas (Tzourio-Mazoyer et al., 2002) and WFU134

pickatlas tool (Maldjian et al., 2003) to generate a right hippocampal (RH) ROI mask. For additional control135

analyses, wealso generatedROImasks for the lefthippocampus (LH), leftparahippocampal gyrus (LPH), and136

right parahippocampal gyrus (RPH). The masks were separately applied to the 4D timeseries using Matlab137

2015b (Mathworks, Inc.).138

Multivariate pattern classification139

We performed a ROI-based multivariate analysis (Haynes, 2015) designed to test whether fMRI activation140

patterns in the human hippocampus carry information about the participants’ position in the virtual envi-141

ronment. The fMRI BOLD signal has an inherent delay relative to stimulus onset of ~2 s until it increases142

above baseline, and ~5 s to peak response (Huettel et al., 2014). To account for this delay, we selected for143

the analysis the volumes corresponding to the period of 3.5–5.25 s after participants arrived at the target144

location (i.e. fMRI TR #7 of our 12-TR trial structure, see Figure 1d). The volume selection approach is analo-145

gous to that employed by Hassabis et al. (2009) and Rodriguez (2010).146

The goal of our multivariate analysis was to test whether we could classify the virtual location of the147

participant using the selected volumes. The classification was performed using a linear support vector ma-148

chine (Haynes, 2015), denoted here as LSVM, implemented in Matlab 2015b (Mathworks Inc.). Two data sets149

were constructed, one with correct labels (location 1 or location 2), and one with randomly shuffled labels.150

Each data set was then randomly partitioned into 10 subgroups (or folds), split evenly between its class la-151

bels (stratification). The classifier was trained on 9 folds (training data), and its performance cross-validated152

on the remaining fold (withheld test data), once for each of the 10 possible combinations of train and test153

folds. We repeated this procedure 1,000 times for each participant (i.e. 1,000 random 10-fold stratified cross154

validations), which allowed us to estimate the distribution of classification accuracy with (true class labels)155

and without (shuffled class labels) class information, as well as the distribution of classification accuracy156

associatedwith randomly partitioning the data, referred to here as partition noise. Estimating a distribution157

for partition noise is an additional step from standard application of SVM to MVPA, where typically a single158

partition of the correct label data is used. A major goal of MVPA is to determine whether novel multivoxel159

patterns canbeused to predict their true class labels, and there is noway to knowapriori howanyparticular160

choice of trial assignment among folds affects such predictive capability. Our 1,000 randompartitions of the161

data using true class information allows us to characterise this partition noise distribution.162
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Positive control and additional verification analyses163

As a direct comparison using the same data and preprocessing steps, we replicated the ROI-based SVM anal-164

ysis to classify two distinct phases within each trial, which we expected to be different at the voxel level165

(i.e. a positive control). Given that the right hippocampus is known to show task-related activity during spa-166

tial navigation tasks (Baumann et al., 2010, 2012; Baumann and Mattingley, 2013), we hypothesized that167

the hippocampus should express differential fMRI activity patterns during the navigation period of our task168

compared to the rest period. Taking the delay in the BOLD response into account, we chose fMRI image #4169

(navigation) and #12 (rest) of our 12-image trial structure for this comparison (see Figure 1d).170

In addition, to eliminate the possibility that negative results could be due to our choice of preprocessing171

methods, classifier, brain region or fMRI images (i.e. time to signal peak) we conducted several additional172

analyses to verify the null results. First, to exclude that a particular choice of signal detrending was subopti-173

mal,weperformed thesameanalysisusingbothLGMSand2ndorderpolynomialdetrending (seePreprocess-174

ing). Second, to exclude the possibility that image smoothingmay have impaired the discriminability of the175

fMRI signal we repeated the analysis using unsmoothed images (Kamitani and Sawahata, 2010). Third, we176

explored whether there was any decodable signal in the left hippocampus (LH ROI). Fourth, to test whether177

decoding of location information could be improved by averaging fMRI signals over a longer period (i.e. sev-178

eral images), we conducted analyses averaging two (i.e. image #7–#8), as well as three consecutive fMRI179

images (i.e. image #7–#9). In total, this yielded 24 classification analyses. Finally, to investigate whether180

there could be voxel place codes that are non-linearly separable, we repeated the same analyses using a181

radial basis function (Gaussian) SVM (Song et al., 2011), denoted here as RSVM.182

Multivariate searchlight analysis183

In addition to the ROI-based classification approach, we also employed so-called searchlight decoding (Krie-184

geskorte et al., 2006). In this approach, a classifier is applied to a small, typically spherical, cluster of voxels185

(i.e. the so-called searchlight). The searchlight is thenmoved to adjacent locations and the classification re-186

peated. This approach has the advantage that the dimensionality of the feature set is reduced, i.e. the mul-187

tivariate pattern consist of fewer voxels, and makes the analysis more sensitive to information contained188

in small local volumes. We followed the searchlight and detrending methods of Hassabis et al. (2009), us-189

ing spherical searchlights of 3-voxel radius (comprising a maximum of 121 voxels), on run-wise linearly de-190

trended data. LSVM was applied, using 100 random 10-fold stratified cross validations for each searchlight,191

both with and without class label information. Each label shuffle was identical amongst all searchlights to192

be compatible with subsequent population inferencing and correction for multiple comparisons (Allefeld193

et al., 2016).194

We further included left and right parahippocampal regions in the searchlight analysis in order to com-195

pute differences in proportions of searchlights exceeding a classification accuracy threshold following Has-196

sabis et al. (2009). This analysis quantifies the difference between the proportion of searchlights in the hip-197

pocampal and parahippocampal regions which exceeded the 95th percentile classification threshold com-198

puted from shuffled location labels. To determine if the difference in proportionswas greater than expected199

by chance, Hassabis et al. (2009) estimated the standard error of the difference-of-proportions using a stan-200

dard result, implicitly assuming statistical independencebetween searchlight accuracies (but seeEvaluation201

of analysis used in Hassabis et al. (2009) for further details on the problems of this assumption). Due to the202

computing load, this analysis was implemented in Python v3.5 on a 300-node cluster.203

Population inference using a permutation-based approach204

For population inference, we followed the nonparametric, permutation-based approach of Allefeld et al.205

(2016). Allefeld and colleagues provided strong arguments that the random-effects analysis implemented206

by the commonly used t-test fails to provide population inference in the case of classification accuracy or207

other ‘information-like’measures, because the true value of suchmeasures cannever bebelowchance level,208

rendering it effectively a fixed-effects analysis. The reason is that the mean classification accuracy will be209

above chance as soon as there is an above-chance effect in only one person in the sample. As a result, t-210

tests on accuracies will with high probability yield ‘significant’ results even though only a small minority of211

participants in the population shows above-chance classification.212

A further advantageof the approachof Allefeld et al. (2016) is the ability to estimate thepopulationpreva-213

lencewhen theprevalence null hypothesis is rejected. This enables direct quantification of the generalisabil-214

5 of 22

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 6, 2017. ; https://doi.org/10.1101/229781doi: bioRxiv preprint 

https://doi.org/10.1101/229781


EVIDENCE AGAINST THE DETECTABILITY OF A HIPPOCAMPAL PLACE CODE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING

ity of a positive finding in the population.215

Briefly, first level permutations (within-participant) were classification accuracies where class labels are216

randomly shuffled, together with one classification accuracywith correct labels. Second level permutations217

(between-participant) were random combinations of first level permutations across participants, with one218

of the second level permutations consisting of accuracies from all correct labels (to avoid p-values of zero).219

The minimum statistic was used across subjects for each comparison (e.g. searchlight or ROI), and for each220

second-level permutation. For each second-level permutation, the maximum statistic across comparisons221

was computed to correct for multiple comparisons (Allefeld et al., 2016; Nichols and Holmes, 2001). Since222

themaximumstatistic does not depend on the amount or nature of statistical dependence between compar-223

isons, it is applicable to classification accuracies of overlapping regions such as searchlights (Allefeld et al.,224

2016;Nichols andHolmes, 2001). By the same reasoning, it is also applicable tomultiple comparisons across225

different analyses of the same ROI, such as SVM classification following different preprocessing methods.226

Here, we computed the maximum statistic across all ROIs and preprocessing methods (Extended analysis227

of negative results), and also themaximum statistic across searchlights in each ROI (Multivariate searchlight228

analysis).229

Stochastic binomial model for shuffled labels230

Wedevelopeda stochastic binomialmodel of classificationaccuracybasedon thenull hypothesis, andcross-231

validation analysis parameters. Each test volume was assumed to be classified stochastically with classifi-232

cation success governed only by the null hypothesis probability 𝑝0. For k-fold cross-validation (k-fold CV),233

there are 𝑛𝑓 = 𝑁𝑇 /𝑘 binary choices for each of k folds, averaged to give the accuracy of a single partition234

set (stratified, non-overlapping hold-out sets). Assuming the training data is entirely devoid of information,235

then performance on test data must be at chance, i.e.,236

𝑋 ∼ 𝐵(𝑥; 1, 𝑝0) (1)

The sample probability of a successful prediction per fold is the number of successful predictions averaged237

over each fold, i.e.,238

𝑆 = 𝑋 = 1
𝑛𝑓

𝑖=𝑛𝑓

∑
𝑖=1

𝑋𝑖 (2)

Then the variance of the prediction success per trial is239

𝑉 (𝑆) = 𝑉
⎛
⎜
⎜
⎝

1
𝑛𝑓

𝑖=𝑛𝑓

∑
𝑖=1

𝑋𝑖
⎞
⎟
⎟
⎠

= 1
𝑛𝑓 2

⎛
⎜
⎜
⎝

𝑖=𝑛𝑓

∑
𝑖=1

𝑉 (𝑋𝑖)
⎞
⎟
⎟
⎠

= 1
𝑛𝑓 2 𝑛𝑓 𝑝0(1 − 𝑝0) = 𝑝0(1 − 𝑝0)

𝑛𝑓
(3)

assuming statistical independence between scores within a fold. For truly random partitions and large 𝑁𝑇 ,240

this seems a good approximation since volumes in close temporal proximity are rare. Thus if the training241

data is not informative, then the test data are all essentially independent.242

The SVM’s k-fold CV accuracy from each random partition is the prediction success averaged over all k243

folds. It is tempting to estimate the variance of the average prediction success as244

𝑉null (𝑆) = 𝑉null

⎛
⎜
⎜
⎝

1
𝑘

𝑖=𝑘

∑
𝑖=1
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⎞
⎟
⎟
⎠

= 1
𝑘2

𝑖=𝑘
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𝑛𝑓 𝑘 = 𝑝0(1 − 𝑝0)
𝑁𝑇

(4)

by assuming that folds are statistically independent. The problem is that although folds are predicted based245

on uninformative training data, uninformative is not the same as independent. This is because two training246

sets overlap by (𝑁𝑇 − 2𝑛𝑓 )/(𝑁𝑇 − 𝑛𝑓 ) since the data points are drawn from the same set.247

Themore general form of Equation 4 accounts for covariance terms, i.e.,248

𝑉null (𝑆) = 𝑉null
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(5)
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where the correlation coefficient249

𝜌 =
Cov (𝑆𝑖, 𝑆𝑗 )

𝑉 (𝑆) (6)

remembering that 𝑉 (𝑆𝑖) = 𝑉 (𝑆𝑗 ) = 𝑉 (𝑆). Thus the variance of the null distribution can be written as a250

function of the null hypothesis probability 𝑝0 and the CV parameters, i.e.,251

𝑉null (𝑆) = 𝑉null (𝑝0, 𝜃) (7)

where the CV parameter 𝜃 = (𝑁𝑇 , 𝑘). At present, the correlation coefficient is found empirically assuming252

each voxel’s signal is independent, normally distributed random noise. Using synthetic noise data instead253

of fMRI data guarantees there is no classifiable signal in keeping with the null hypothesis, and also enables254

predictions to be made when designing new experiments. We generated 105 noise data sets, 𝑛vox = 3053255

(for RH), 𝑁𝑇 = 120, 𝑘 = 10. Using LSVM, 𝜌 = 0.0741.256

For computational efficiency, we used a Gaussian approximation of the binomial model257

𝑓null (𝑆|𝑝0, 𝜃) = 1
√2𝜋𝑉null (𝑝0, 𝜃)

exp
(

−(𝑆 − 𝑝0)2

2𝑉null (𝑝0, 𝜃) )
(8)

Stochastic binomial model for true labels258

To model the partition noise of individuals, we cannot model the classification of individual volumes as259

Bernoulli trials. This is because the partitioning regime ensures that every volume is used once and only260

once as test data in each random partition set. Since the labels remain unchanged, there is in fact no ran-261

domness in terms of the test data, i.e.,262

𝑆 = 1
𝑘

𝑖=𝑘

∑
𝑖=1

𝑆𝑖 = 1
𝑁𝑇

𝑖=𝑁𝑇

∑
𝑖=1

𝑋𝑖 (9)

No matter how the data is partitioned, the pairing of 𝑋𝑖 and its label remains unchanged. Therefore 𝑆 is263

constant and264

𝑉 (𝑆) = 0 (10)

Theproblemhere is that although the test data is identical over eachcompletepartition set, the trainingdata265

varies. That is, for 𝑋𝑖 in two partition sets, the corresponding training data differs. This difference creates266

variability in the classification outcome. For shuffled labels, this variabilitywas irrelevant since classification267

outcomes were already assumed to be maximally independent. To account for the training set variability268

using true labels, we can reframe the problem as one where the test data is the reference, and we model269

how the training data varies with random partitions. Now the random partitions have substantial overlap270

so that only a small fraction are truly independent between partition sets. For a given test data point 𝑋𝑖, we271

can estimate the effective number of independent samples per fold, denoted as 𝑛𝑓
′. Following Equation 3,272

𝑉 (𝑆′) = 1
𝑛𝑓 2 𝑛𝑓

′𝑝1(1 − 𝑝1) (11)

where 𝑝1 denotes the mean probability of success for that data set (volumes and labels combination). Us-273

ing Equation 11 but otherwise following the same logic as the derivation of Equation 5, the variance of the274

distribution due to partition noise is estimated by:275

𝑉part (𝑆) = 𝑉part

⎛
⎜
⎜
⎝

1
𝑘

𝑖=𝑘

∑
𝑖=1

𝑆𝑖
⎞
⎟
⎟
⎠

= 1
𝑘2 𝑉

⎛
⎜
⎜
⎝

𝑖=𝑘

∑
𝑖=1

𝑆𝑖
⎞
⎟
⎟
⎠

= 1
𝑘2

⎛
⎜
⎜
⎝

𝑖=𝑘

∑
𝑖=1

𝑉 (𝑆𝑖) + ∑
𝑖≠𝑗

Cov (𝑆𝑖, 𝑆𝑗 )
⎞
⎟
⎟
⎠

= 1
𝑘2

⎛
⎜
⎜
⎝
𝑘𝑉 (𝑆′) + ∑

𝑖≠𝑗
𝜌𝑉 (𝑆′)

⎞
⎟
⎟
⎠

= 1
𝑘2 (𝑘 + 𝜌(𝑘 − 1)𝑘) 𝑉 (𝑆′)

= 𝑝1(1 − 𝑝1)
𝑁𝑇

(1 + 𝜌(𝑘 − 1))
𝑛𝑓

′

𝑛𝑓

(12)

Now the factor 𝑛𝑓
′/𝑛𝑓 is the fraction of data that is independent. Since the problem is reframed as one276

of variability in training data, the fraction is equivalently expressed as the fraction of training data that is277
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independent, given a test data point 𝑋𝑖. For large 𝑘 and random partitioning, few of the remaining 𝑛𝑓 −278

1 points in a fold with shared 𝑋𝑖 would be the same across partition sets. As a first order approximation,279

assume that all 𝑛𝑓 − 1 points are different, so that the fraction of distinct, and hence independent, data280

points in each training set is281

𝑛𝑓
′

𝑛𝑓
≈

𝑛𝑓 − 1
𝑁𝑇 − 𝑛𝑓

(13)

Substituting Equation 13 into Equation 12 we get:282

𝑉part (𝑆) = 𝑉part (𝑝1, 𝜃) ≈ 𝑝1(1 − 𝑝1)
𝑁𝑇

(1 + 𝜌(𝑘 − 1))
𝑛𝑓 − 1

𝑁𝑇 − 𝑛𝑓
(14)

where the CV parameter 𝜃 = (𝑁𝑇 , 𝑘). For computational efficiency, we used a Gaussian approximation of283

the binomial model:284

𝑓part (𝑆|𝑝1, 𝜃) = 1
√2𝜋𝑉part (𝑝1, 𝜃)

exp
(

−(𝑆 − 𝑝1)2

2𝑉part (𝑝1, 𝜃) )
(15)

Bayes Factor analysis285

We defined a Bayes factor contrasting an alternative hypothesis with the null hypothesis:286

BF 10 =
∫𝑝1

𝑓part (𝑆|𝑝1, 𝜃)𝑓1(𝑝1)𝑑𝑝1

𝑓null (𝑆|𝑝0, 𝜃)
= Pr (𝑆|𝐻1, 𝜃)

Pr (𝑆|𝐻0, 𝜃)
(16)

where the commonly used subscript 10 denotes the alternative hypothesis is in the numerator and the null287

is in the denominator. Using the model for an individual’s true classification (unshuffled labels), we can288

compute the likelihood for the null hypothesis and the likelihood for the alternative averaged over a prior289

distribution𝑓1. The typical prior distribution used is themost uninformative distribution that still converges290

for the Bayes factor calculation. For open intervals, that is usually the Cauchy distribution. In our case,291

classification rates cannot exceed 1, so the least-informative distribution is uniform between 0.5 (null) and292

1, i.e.,293

𝐻0 ∶ 𝑝0 = 0.5
𝐻1 ∶ 𝑝1 ∈ (0.5, 1]

(17)

The uniform prior assumes that perfect classification success is equally likely a priori as just above chance.294

Althoughusing the least informativeprior potentially reducesunintendedbias in theanalysis, it also runs the295

risk of raising the threshold for finding evidence for thealternative, thereby seemingly favour thenull. To test296

this possibility, two other prior distributions were also used for the alternative hypothesis, namely, a linear297

and quadratic distribution both maximal at 𝑝 = 0.5 and decreasing to zero at 𝑝 = 1. These distributions298

weight any alternative hypothesis p near 1 as less likely than the uniform prior.299

For 0.5 < 𝑝1 ≤ 1, the three prior probability density functions of 𝑝1 used were300

𝑓1(𝑝1) =
⎧⎪
⎨
⎪⎩

2 Uniform

8(1 − 𝑝1) Linear

24(1 − 𝑝1)2 Quadratic

⎫⎪
⎬
⎪⎭

(18)

The density functions of Equation 18 were substituted one at a time into Equation 16, and combined with301

Equation 8 and Equation 15 to estimate the Bayes factor Equation 16. Note that for computing Bayes factor302

for location classification, 𝜃 = (120, 10), and for task classification, 𝜃 = (240, 10).303

Assuming that a priori, the null hypothesis and weighted alternative hypothesis are equally likely, i.e.,304

Pr (𝐻1) = Pr (𝐻0), then the Bayes factor is305

BF 10 =
∫𝑝1

𝑓part (𝑆𝑛𝑓 |𝑝1, 𝜃)𝑓1(𝑝1)𝑑𝑝1

𝑓null (𝑆𝑛𝑓 |𝑝0, 𝜃)
=

Pr (𝐻1|𝑆𝑛𝑓 , 𝜃)Pr (𝐻1)

Pr (𝐻0|𝑆𝑛𝑓 , 𝜃)Pr (𝐻0)
=

Pr (𝐻1|𝑆𝑛𝑓 , 𝜃)

Pr (𝐻0|𝑆𝑛𝑓 , 𝜃)
= 𝐿(𝐻1)

𝐿(𝐻0) (19)

which is the relative likelihood of the alternative hypothesis to the null hypothesis, given the data and CV306

parameters. Consequently a large BFmeansmore evidence for𝐻1, and a small BFmeansmore evidence for307

𝐻0, as defined by 𝑓part , 𝑓1 and 𝑓null .308
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Results309

Behavioural performance310

We set a stringent a priori performance criterion of 90% accuracy, to ensure that the participants were ori-311

ented during the task. This was necessary to minimize the possibility that failure to decode location from312

fMRI data could be due to poorly oriented participants.313

The 18 participants included in the fMRI analysis had an average performance accuracy of 98.25 ± 0.56%314

(mean ± SEM). Remarkably, 50% of the participants did not commit a single error in 120 trials. Furthermore,315

the accuracies for target location 1 (mean ± SEM, 97.5 ± 0.8%) and target location 2 (98.9 ± 0.4%) were indis-316

tinguishable (p = 0.07, w9 = 38, Wilcoxon signed rank test), as were response times (mean ± SEM, 0.72 ± 0.03 s317

for target location 1, 0.75 ± 0.03 s for target location 2; p = 0.09, w18 = 124, z = 1.7, Wilcoxon signed rank test).318

Multivariate ROI analysis319

Despite behavioural data demonstrating that participants were spatially oriented during the task, themulti-320

voxel classifier could not predict location based on right hippocampal fMRI data. Figure 2a depicts a typical321

participant’s results for the classification of location, using our default method (i.e. LMGS detrending, 3 mm322

Gaussian smoothing, LSVM). As expected, the accuracy following random label-shuffles was distributed ar-323

ound the theoretical chance level of 0.5, since the shuffle process removes true location information. If mul-324

tivoxel patterns were predictive of location in the virtual arena, then accuracies of the unshuffled data sets325

should be at or beyond the positive extreme of the shuffled distribution. Instead, unshuffled distributions326

were centred within the shuffled null distribution in all participants, arguing against the presence of loca-327

tion information at the voxel level. Notably, the variability in the unshuffled distribution can only be due328

to random partitioning itself since the set of unshuffled labels is unique. Thus if only a single partition is329

used, which is standard practice currently, it is unclear to which part of the partition distribution it might330

correspond (Figure 3a, red distribution). Therefore, to account for partitioning noise, statistical inferencing331

using cross-validation methods should be based on a sample of random partitions, or at least incorporate332

an estimate of partition noise variance. Using the default method, the partition noise variance in our data333

was 24 ± 2% (mean ± SD, n = 18) of the corresponding null distribution variance. For normally distributed334

independent random variables, if the true null variance is 24% larger than assumed, there would be 7.8%335

false positives at p < 0.05, and 2.1% at p < 0.01 (2-tailed false positive % = 100 × erfc(erf−1(1 − 𝑝)/√1.24) ),336

potentially inflating false positive conclusions by 1.5- to 2-fold.337

For completeness, we submitted individual classification results from the 18participants to a groupanal-338

ysis according to Allefeld et al. (2016). The prevalence null hypothesis states that the proportion of partici-339

pants in the population having an above-chance location classification is zero. Figure 2b shows the group340

results for our default analysis where the group p > 0.1 for all random partitions, consistent with the null341

hypothesis that there is zero prevalence of location information in the population. Importantly, there was342

no evidence here that the conclusion may be affected by the instance of random partition of data used for343

cross-validation.344

Extended analysis of negative results345

To investigatewhether negative results could be due to our choice of preprocessingmethod, classifier, brain346

region or fMRI images (i.e. time period) we conducted several additional analyses to verify their validity. Fig-347

ure 3 shows results for location classification across 24 different analysis approaches, including an alterna-348

tive preprocessing method (second order runwise polynomial detrending), varying the number of consecu-349

tive images used for analysis, including left hippocampus, and including RSVM in addition to LSVM. Using350

LSVM, the median corrected group level p-value for the location classification under the prevalence null hy-351

pothesis exceeded 0.05 in all cases (Figure 3, left). In fact, even the lower limit of the 95%confidence interval352

of the p-value (arising from partition noise) exceeded 0.05. The same was true using RSVM (Figure 3, right).353

Our results also discount the possibility of a very weak but genuine voxel code that is by some means lost354

through the correction for multiple comparisons, since the median uncorrected p-value was never close to355

0.05 (all p > 0.3). Therefore, no evidence for a classifiable voxel code for location was found, despite >98%356

meanbehavioural orientation accuracy. Notably, therewas no evidence that any particular choice of prepro-357

cessingmethod, classifier, ROI or timingmade a significant improvement to location classification accuracy.358
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Figure 2. Results from right hippocampus for location classification. a. A typical individual participant’s distribution of
classification accuracies (10-fold stratified cross-validation results) for location in the virtual arena, over 1,000 random
label-shuffles (black) and 1,000 random partitions of true labels (red). b. Population inference results for location
classification following Allefeld et al. (2016) show no evidence of a place code (18 participants, one p-value computed for
each of the 1,000 random partitions).

Multivariate searchlight analysis359

One possibility for a negative result may have been the “curse of dimensionality” because the data dimen-360

sionality (e.g. 3053 voxels in right hippocampus) is substantially higher than the number of data points avail-361

able for classification (e.g. 60 visits to each location per participant). In fact, for both RSVM and LSVM, we362

found less than 1 classification error out of 120 when no data was withheld during training (averaged over363

participants, ROIs and preprocessing methods), showing that the problem was indeed of generalization to364

untrained data, rather than the separability of training data per se.365

By restricting each classification problem to a small subregion of the ROI, searchlight analysis substan-366

tially reduces thedatadimensionality, andhas thepotential topartiallymitigate thedimensionalityproblem.367

Following Hassabis et al. (2009), we applied LSVM to spherical searchlights centred on each voxel in right368

and left hippocampus, and right and left parahippocampal gyrus (seeMethods for details). This analysis pro-369

duced 100 (cross-validation) accuracy values for each voxel of each ROI of each participant, using shuffled370

labels. Additionally, we produced an equivalent set of results from100 randompartitions of unshuffled data371

(for each voxel of each ROI of each participant).372

Nextwe looked for evidence of a place code in any individual participants’ results using a nonparametric373

permutation analysis method (Nichols and Holmes, 2001). This approach avoids the need to make a priori374

assumptions about the data (which is implicit if statistical parametric maps are used). Beginning with the375

searchlight classification accuracy results, over each ROI, the maximum classification accuracy was found376

for each shuffled data set, and for each randompartition of the unshuffled data set. We then found the num-377

ber of random partitions (out of 100) for which the maximum statistic of the unshuffled searchlight results378

exceeded the 95% threshold of the shuffled searchlight results. If there is no signal, approximately five parti-379

tions should exceed the 95% threshold by chance. Across all ROIs, themean number of partitions above the380

95% threshold did not exceed 5/100 (mean ± SEM / 100, RH = 3.2 ± 0.7, LH = 2.5 ± 0.8, RPH = 3.7 ± 0.7, LPH = 4.1381

± 1.1), showing no evidence of above-chance classification for location. We then asked whether it was pos-382

sible that there could be a weak place signal which for some reason did not reach the arbitrary threshold of383

95% of the shuffled data’s maximum statistic. We tested this possibility by counting the number of shuffled384

maximum statistics that each random partition’s unshuffled maximum statistic exceeded. The presence of385

a positive bias (>50%)may still suggest a weak but genuine place signal. Instead, no positive bias was found386

in any ROI (mean ± SEM, RH = 45 ± 3%, LH = 41 ± 3%, RPH = 44 ± 3%, LPH = 44 ± 3%).387

In addition to the individual analysis, wealsoperformedagrouppermutation test followingAllefeld et al.388

(2016). Permutation-based information prevalence inference using theminimum statistic was used to deter-389

mine if there is statistical evidence for a location code in the population (see Table 1). We started with the390

same searchlight classification accuracy results as above. In contrast to individual analysis, the minimum391
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Figure 3. Overview of group significance results for different analysis approaches for the location classification
following Allefeld et al. (2016), showing median as well as interquartile range. Abbreviations: glob. = Linear Model of the
Global Signal detrending, H = hippocampus, L = left, R = right, LSVM = linear support vector machine, poly. = polynomial
detrending (2nd order), RSVM = support vector machine with radial basis function (Gaussian) kernel, s = smoothed
(Gaussian kernel, radius = 3 mm). Numerals (i.e. 1, 2, and 4) indicate number of consecutive images used for
classification analysis.

statistic was first found for all searchlights across participants, in each ROI. We used 10,000 second-level per-392

mutations, each of which was a random sample of one shuffled data set from each participant (one permu-393

tation was the unshuffled data). Theminimum accuracy was found across participants, for each searchlight394

of each permutation.395

For each voxel, the uncorrected p-valuewas the fraction of permutation values of theminimumaccuracy396

that was larger than or equal to the unshuffled data. Hence if the unshuffled accuracy is very high, very few397

of the permutation values will exceed it (low p-value). Since one permutation was the unshuffled data, the398

minimum p-value was 10−4. Even without correction for multiple comparisons, we found p < 0.05 in fewer399

than 4% of voxels in each ROI.400

To correct for multiple comparisons (multiple searchlights), the maximum statistic (across searchlights)401

of the minimum accuracy (across participants) was computed. The p-value of the spatially extended global402

null hypothesis was the fraction of permutations in which themaximum statistic was larger than or equal to403

the unshuffled data. Across all random partitions, on average < 1 voxel reached p < 0.05 in each ROI (Table404

1). Taken together, both uncorrected and corrected group results argue against the presence of location405

information in the searchlight accuracy values.406

There remain a number of possible reasons that a place signal may not have been detected using the407

ROI-based and searchlight based multivariate classification methods described. One possibility is that the408
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Table 1. Group permutation test results showing the number of voxels for which p < 0.05 in each ROI, averaged across 18
participants.

ROI Mean ± SD no. voxels
p < 0.05, uncorrected

Mean ± SD no. voxels with
p < 0.05, corrected

Total no. voxels (common
to all participants)

RH 74 ± 14 0.01 ± 0.10 2533
LH 91 ± 17 0.01 ± 0.10 2505
RPH 73 ± 14 0.01 ± 0.10 2157
LPH 59 ± 14 0.02 ± 0.14 1720

signal-to-noise ratio is too small to allow signal detection given the size of the training sets used for the409

classifier, or the number of participants tested in the case of group results. However, a number of studies410

have been reported that seemingly showed a voxel-level place signal using even fewer training points per411

participant, and fewer participants overall (Hassabis et al., 2009; Kim et al., 2017; Rodriguez, 2010; Sulpizio412

et al., 2014). Another possibility is that the analysis itself may be suboptimal for detecting this type of signal.413

To test this second possibility, we applied the difference-of-proportions analysis of Hassabis et al. (2009) to414

our searchlight accuracy values.415

First, 10-fold stratified cross-validation results were pooled across all voxels in each ROI over 100 replica-416

tions where location labels were randomly shuffled. This represents a null distribution of searchlight-based417

classification accuracy values, devoidof location information. For eachROI, thenumber of unshuffled voxels418

whose classification accuracy exceeded the 95th percentile of the pooled distribution was found (Hassabis419

et al., 2009). The difference in the proportions of suprathreshold voxels was computed between all ROI pairs.420

According to Hassabis et al. (2009), finding a single proportion from each ROI avoids the problem of multi-421

ple comparisons acrossmany searchlights within each ROI. We therefore replicated the analysis of Hassabis422

et al. (2009) immediately below, but show later that the implicit assumption of independence between se-423

archlights is flawed.424

Surprisingly, approximately half of all ROI contrasts resulted in p < 0.05 (Table 2). This suggests that the425

proportions of suprathreshold voxels differed between ROIs more thanmight be expected by chance. If the426

analysis is valid, this result may well imply that amultivariate voxel pattern exists in some (yet unexplained)427

location-andROI-dependentmanner. However, byvirtueof including100 randompartitions,wecouldapply428

the same method to contrast two instances of the same ROI (diagonal cells of top-right section of Table 2).429

Clearly, a valid test shouldnotdetect a significantdifferencebetween the suprathresholdproportionsarising430

from two randompartitions of identical unshuffleddata from the sameROI. Yet even for the sameROI, about431

half of all contrasts had p < 0.05. This suggests the false positive rate is at least an order ofmagnitude higher432

than it ought to be. On more careful inspection of the statistical methods used by Hassabis and colleagues,433

it becomes evident that the major reason is an underestimation of the test statistic’s standard error.434

Evaluation of analysis used in Hassabis et al. (2009)435

Hassabis et al. (2009) compared the proportions of suprathreshold voxels identified through their standard436

searchlight analysis, from different ROI pairs. They then employed a commonly used formula (Daniel and437

Terrell, 1994) to estimate the standard error of the difference between two proportions, namely,438

ŜE 𝑝 = √𝑝 (1 − 𝑝) (
1
𝑛1

+ 1
𝑛2 ) (20)

where the pooled proportion p is estimated by439

̂𝑝 = 𝑛1𝑝1 + 𝑛2𝑝2
𝑛1 + 𝑛2

(21)

where n1 and n2 are the numbers of voxels in the two regions being contrasted, and p1 and p2 are the pro-440

portions of suprathreshold voxels in those regions. Using the estimated standard error from Equation 20, a441

Z-statistic was found which was then used to estimate the probability of a Type I error.442

Using the estimated standard error from Equation 20 is incorrect here because the implicit assumption443

that independent Bernoulli-type outcomes contributed to the proportions being compared is violated. The444
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Table 2. Percentage of ROI contrasts with p < 0.05 (top-right) difference-of-proportions method, 10,000 contrast pairs
per participant, 18 participants (bottom-left) using shuffled data to estimate standard error of suprathreshold
proportions, 10,000 contrast pairs per participant, 18 participants.

proportion of suprathreshold voxels depends on the number of searchlights whose classification rates ex-445

ceeded some threshold. However, each searchlight consists of a subpopulation of voxels, with substantial446

overlap with neighbouring searchlights. Therefore, the information in searchlights cannot be considered as447

independent. Indeed if one searchlight shows high classification accuracy, neighbouring searchlights that448

consist of many of the same voxels are also likely to show similar classification rates. In addition to the449

overlap of voxels between searchlights, neighbouring voxels themselves are known to show correlated ac-450

tivity due to physiology (e.g., shared blood flow) and preprocessing (e.g. low-pass filtering) (Poldrack et al.,451

2011). Empirically, we found a clear positive correlation between the classification accuracies of neighbour-452

ing voxels in right hippocampus (r = 0.72), right parahippocampal gyrus (r = 0.74), left hippocampus (r = 0.74),453

and left parahippocampal gyrus (r = 0.74). Neighbouring voxels were those centred nomore than one voxel454

width away (i.e.maximumof eight neighbours) andwithin the sameROImask. Correlationswere computed455

between the mean accuracies of neighbouring voxels and the accuracies of the actual voxels themselves.456

The assumption of independence between voxels therefore neglects the positive correlation between457

voxels, which leads to underestimation of the standard error of the difference in supra-threshold propor-458

tions. This in turn leads to underestimation of the probability of a Type I error. To test if the underestimation459

of the standard error of the difference-of-proportions was the major reason for the high percentage of ROI460

contrasts with p < 0.05 (Table 2), we re-estimated the standard error directly using the shuffled searchlight461

data. Using the same thresholding method as before, we computed 100 different supra-threshold propor-462

tions for each ROI (corresponding to all the shuffled data). Hence, for each ROI contrast, there were 100463

difference-of-proportion values from shuffled data, used to estimate the mean and standard error of the464

null difference-of-proportions for that ROI contrast. For the same ROI pair (e.g. RH vs. RH), the standard er-465

ror was estimated as the RMS of the other ROI pairs involving that ROI (e.g. RH vs. LH, RH vs. RPH, RH vs.466

LPH). As before, a Z-statistic was calculated, and a two-tailed p-value estimated using a normal approxima-467

tion. Using this simple estimate of the standard error of the difference of suprathreshold proportions, the468

mean percentage of ROI contrasts with p < 0.05 dropped to less than 5% (Table 2, bottom-left). These results469

show that by using amore direct estimate of the standard error of difference-of-proportions, the percentage470

of contrasts with p < 0.05 is nomore than expected by chance, arguing against an ROI-specific place code.471

Simulating faulty searchlight analysis using independent noise472

It is unclear how much of the correlation of searchlight accuracies is a result of searchlight overlaps per se,473

and howmuch is a result of other factors such as shared blood flow or low-pass filteringwhich produces cor-474

relations in BOLD signal. It may be that overlaps between neighbouring searchlights contribute minimally475

to the underestimation of the standard error. If so, the problem should not exist if the underlying voxel data476

is truly independent. To investigate this possibility, we repeated the Hassabis analysis on pure noise. We477

generated 100 independent synthetic data sets by using Gaussian noise of the same mean, standard devia-478

tion and spatial distribution as voxels in our human fMRI ROIs, assuming statistical independence between479

all voxels. Analysis parameters were the same as for fMRI data. Note that the synthetic data sets were gen-480

uinely independent rather than merely using label shuffles as is the case for fMRI data. Since there was no481

true signal, we systematically excludedonedata set at a time to simulate ‘unshuffled’ data (which shouldnot482

be classifiable). By pooling the voxels from the remaining 99 data sets, we set the 95th percentile threshold483

for classification accuracy as before. The number of voxels exceeding threshold in each of 100 ‘unshuffled’484
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Table 3. Percentage of ROI contrasts with p < 0.05 (pure noise example, difference-of-proportions method, 10,000
contrast pairs).

% RH LH RPH LPH

RH 63 61 61 59
LH 61 59 59 56
RPH 61 59 59 58
LPH 59 56 58 55

data sets were used along with pooled proportions, and the standard error of pooled proportions to calcu-485

late Z-statistics. Using Gaussian approximation, we estimated 2-tailed p-values of the Z-statistics. For each486

ROI contrast, all 10,000 possible pairs of data sets were used (100 random partitions from each ROI).487

If searchlight overlaps per se do not make a significant contribution to the correlation in searchlight ac-488

curacies, then there should be approximately 5% false positives (by setting p < 0.05) in the synthetic data.489

Instead, using the Hassabismethod, there weremore than 50% false positives in all ROI contrasts, including490

same-ROI contrasts (Figure 4 and Table 3), demonstrating that searchlight overlaps alone inflate false posi-491

tive rates by an order of magnitude. Therefore, the searchlight method itself introduces enough correlation492

between otherwise independent voxels to violate the assumption of independence required to use uncor-493

rected estimates of the difference-of-proportions. Taken together, our theoretical and experimental results494

demonstrate that the implicit assumption of independence in searchlight analyses by using uncorrected es-495

timates of standard error of difference-of-proportions substantially increases false positives, and must be496

avoided.497

Positive control analyses498

Since no evidence of a voxel-level place code could be found using a variety of approaches, we investigated499

the possibility that there was some unforeseen flaw in the image acquisition or analysis protocols. Using500

the same data, we determined whether two distinct phases in each trial, namely navigation vs. rest, could501

be classified (see Methods). Using our default method (i.e. LSVM, 3 mm smoothing, LMGS detrending) the502

two phases were clearly separable at a typical individual level (Figure 5a) and at the group level (Figure 5b).503

These analyses validate our image acquisition and data analysis protocols, and stand in contrast to our un-504

classifiable location results (Figure 2).505

Figure 6 shows results for the positive control classification across 24 different analysis approaches. The506

median corrected group level p-value for the prevalence null hypothesis was less than 0.05 for all navigation507

vs. rest period classifications, across all ROIs, as well as smoothing and detrending methods, using LSVM508

(see Figure 6, left). The samewas true of RSVM using polynomial detrending (see Figure 6, right). Note, how-509

ever, that some 95% confidence intervals for the p-values included 0.05, showing that the choice of data510

partition can significantly affect classification generalization success. Nonetheless, for LSVM even the 97.5th511

percentilep-valuewasbelowor close to0.05 forboth leftand righthippocampus, using2nd orderpolynomial512

detrending. Thus at the group level, it is clear that voxel patterns are informative for rest vs. navigation pe-513

riods of a task. Furthermore, we can exclude the possibility that only a small proportion of participants had514

classifiable voxel codes, which biased group results, since for all partitions where the null hypothesis was515

rejected, we can estimate the 95% confidence interval of the proportion of participants with a classifiable516

voxel code (Allefeld et al., 2016). For the smoothed right hippocampal data, LSVM resulted in null hypothesis517

rejection in 999/1000 randompartitions. Of those, 0.62 to 1.00 of all participants are estimated tohave a clas-518

sifiable voxel code for rest vs. navigation (95%CI,median of partition shuffles). Taken together, these results519

suggest that hippocampal voxel patterns can be used to predict rest vs. navigation periods at above-chance520

level, in the majority of participants. Importantly, there is a clear difference between the classification per-521

formance for location 1 vs. location 2, and rest vs. navigation, using the same participants, experimental522

design, fMRI acquisition parameters, and analysis method.523

Evidence for the null hypothesis524

After careful analysis, we did not find any evidence to reject the null hypothesis that there is no voxel place525

code. However, finding no evidence to reject the null hypothesis is different to finding evidence to directly526
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Figure 4. Frequency distribution of suprathreshold voxels in synthetic noise data sets corresponding to each individual
ROI (black line, n = 100, see text for details). Using the samemean and assuming independent searchlight accuracies, a
Gaussian approximation of the expected frequency of suprathreshold voxels (red line) shows substantial
underestimation of the spread of suprathreshold voxel counts, causing an inflation of false positives, i.e. either higher or
lower classification accuracies than expected by using the faulty null.

support it. Therefore, we considered whether the null hypothesis itself can be used tomake testable predic-527

tions about the fMRI data. We used the default smoothed and globally detrended data from RH to test the528

predictions.529

Astraightforwardpredictionof thenull hypothesis is that location labelsdonotmatter andareeffectively530

random when considering a population of participants. Thus for a sufficiently large sample size, the distri-531

bution of accuracies arising from true labels should be similar to the distribution due to shuffled labels. This532

was in fact the case for location classification (Figure 7a, red vs. black lines), where even distribution peaks533

arising from the discrete nature of scores were well matched. This directly supports the null hypothesis534

since true location labels were equivalent to shuffled labels, and were therefore uninformative. In contrast,535

if there is a genuine signal, then the two distributions should be distinct since the pooled distribution using536

true labels should no longer be equivalent to shuffled labels. This was in fact the case for task classification537

(Figure 7b, red vs. black lines), where thepooleddistribution for true labels showedahighermeanand larger538

variance than for shuffled labels. These differences demonstrate that the true labels were not equivalent to539

shuffled labels, and therefore task information was present at the voxel level.540

Next we asked whether it is possible to derive an approximate form of the pooled distribution for loca-541

tion classification using true labels (Figure 7a, red line), using only the null hypothesis and experimental542

parameters. If so, this would show the null hypothesis is a sufficient model to account for the accuracy543

results, adding further evidence to support the null hypothesis for location classification. To do this we544

developed a simple stochastic binomial model of accuracy based on the null hypothesis (see Stochastic bi-545

nomial model for shuffled labels). Our model was developed assuming statistical independence between546

data pointswhich implies no label information. Hence ourmodel shouldmatch data if there is no label infor-547

mation. Our stochasticmodel provided a goodmatch for location classification distributionwith either true548

or shuffled labels (Figure 7a), suggesting that the null hypothesis provides a good quantitative account of549

location classification data. The stochasticmodel also predicts that the variance should be inversely related550

to the number of data points used for classification per participant. For task classification, there were twice551

as many volumes used for classification (two tasks per navigation sequence), and the pooled distribution552

for task classification using shuffled labels had a correspondingly smaller variance (Figure 7b).553

To more directly contrast the evidence for the null versus alternative hypothesis, we computed Bayes554

factors for each participant’s accuracy results, using likelihoods estimated using models developed from555

the hypotheses. Therefore, in addition to the null model above, we needed a model of accuracy scores of556

individualswith true labels for the alternative hypothesis (that there is genuine information). Following simi-557

lar arguments as above, we developed a simple stochastic binomialmodel of accuracy based on fixed labels558
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Figure 5. Results from right hippocampus for the control classification. a. A typical individual participant’s distribution
of classification accuracies (10-fold stratified cross-validation results) for task type (active vs. passive), over 1,000
random label-shuffles (black) and 1,000 random partitions (red) of true labels. b. Population inference results for control
classification following Allefeld et al. (2016) (18 participants, one p-value computed for each of the 1,000 random
partitions).

and random partitions (see Stochastic binomial model for true labels, Figure 7c & Figure 7d). The model559

depended on the point accuracy score of classification as input, and predicted the corresponding accuracy560

density function. In this way, any prior distribution of accuracies can be used as the alternative hypothesis.561

To ensure that we did not inadvertently choose an alternative hypothesis which somehowbiased outcomes,562

we tested three different prior distributions of accuracies reflecting varying prior beliefs about true accura-563

cies (see Bayes Factor analysis).564

There was a consistent pattern showing either no evidence (neutral) or evidence supporting (moderate,565

strong to extreme) of the null hypothesis for location classification (Table 4, location). In contrast, there566

was a consistent, but very different pattern showing either no evidence (neutral) or evidence supporting567

(moderate, strong to extreme) the alternative hypothesis for task classification (Table 4, task). Notably, the568

same pattern of results persisted across all three prior alternative hypotheses tested.569

Taken together, the convergence of distributional, model and Bayes factor results directly and consis-570

tently support the null hypothesis for location classification, and support the alternative hypothesis for task571

classification. These results complement the nonparametric population inference analyses to argue against572

any evidence for a voxel place code.573

Table 4. Median Bayes factor (from 1,000 random partitions), out of a total of 18 participants, assumes shuffled labels
variance for H0. Abbreviations: SH0 = Strong to extreme evidence for H0 (BF < 1/10), MH0 = Moderate evidence for H0
(1/10 ≤ BF < 1/3), N = Neutral (1/3 ≤ BF ≤ 3), MH1 = Moderate evidence for H1 (3 < BF ≤ 10), SH1 = Strong to extreme
evidence for H1 (10 < BF ). BF category thresholds are based on Dienes (2014); Jarosz and Wiley (2014); Jeffreys (2000);
Ly et al. (2016); Raftery (1995).

Classification Prior p distribu-
tion for H1

SH0 MH0 N MH1 SH1

Location
Uniform 8 7 3 0 0
Linear 5 4 9 0 0
Quadratic 5 3 10 0 0

Task
Uniform 0 1 6 2 9
Linear 0 0 6 2 10
Quadratic 0 0 3 5 10
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Figure 6. Overview of group significance results for different analysis approaches for the control (i.e. task type)
classification following Allefeld et al. (2016), showing median as well as interquartile range. Abbreviations: glob. = Linear
Model of the Global Signal detrending, H = hippocampus, L = left, R = right, LSVM = linear support vector machine, poly. =
polynomial detrending (2nd order), RSVM = support vector machine with radial basis function (Gaussian) kernel, s =
smoothed (Gaussian kernel, radius = 3 mm).

Discussion574

The goal of the present study was to reinvestigate whether human hippocampal place codes are detectable575

using fMRI. We employed a virtual environment that eliminated visual and path related confounds during576

the signal-decodingperiod to ensure that anypositive findingwouldbe indicativeof apureplace code rather577

than a view code or a conjunctive view-trajectory code. We also employed a variety of signal processing and578

classification approaches, as well as a positive control analysis to evaluate carefully the possibility of the579

nonexistence of a purely spatial multivoxel place code.580

Our experiment showed that,while participantswere fully orientedduring thenavigation task, therewas581

no statistical evidence for a place code, i.e. we could not reliably distinguish the two target locations using582

multivoxel-pattern classification algorithms. Additionally, we found robust and consistent evidence to di-583

rectly support the null hypothesis for location classification data, using Bayes factor analysis and amodel of584

SVMclassification results derived from thehull hypothesis. These findings are in linewith conclusionsdrawn585

from electrophysiological rodent data, which suggest that given the sparseness and distributed nature of586

place codes in the hippocampus, it would be implausible for them to be detectable using fMRI (O’Keefe587

et al., 1998; Redish and Ekstrom, 2012). Our findings are at odds with four prior imaging studies that re-588

portedly have detected multivoxel place codes in the hippocampus (Hassabis et al., 2009; Kim et al., 2017;589

Rodriguez, 2010; Sulpizio et al., 2014). Since we employed a range of different image preprocessing and590

analysis approaches, it seems unlikely that our particular choice of analysis strategy could account for the591

discrepant results. Moreover, our control analysis showed that we were able to detect task-related changes592

in hippocampal activity, discounting the possibility that differences in image acquisition protocol or poten-593

tially image quality could be the reason prohibiting a positive finding.594

In light of our results, it is important to carefully identify plausible reasons for thepositive fMRI findingsof595

published studies (Hassabis et al., 2009; Kimet al., 2017; Rodriguez, 2010; Sulpizio et al., 2014). We identified596

a number of shortcomings in the experimental tasks and analysis strategies of the four fMRI studies that597

could explain why each study seemingly detected a multivoxel place code in the hippocampus.598

Statistical issues599

Invalid assumptions of statistical independence600

Hassabis et al. (2009) made the implicit assumption of statistical independence between searchlight ac-601

curacies that is violated in fMRI data (see Evaluation of analysis used in Hassabis et al. (2009) for details).602

17 of 22

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 6, 2017. ; https://doi.org/10.1101/229781doi: bioRxiv preprint 

https://doi.org/10.1101/229781


EVIDENCE AGAINST THE DETECTABILITY OF A HIPPOCAMPAL PLACE CODE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING

0 0.25 0.5 0.75 1

Accuracy

0

50

100

150

M
ea

n 
fr

eq
ue

nc
y

0 0.25 0.5 0.75 1

Accuracy

0

50

100

150

M
ea

n 
fr

eq
ue

nc
y

0 0.25 0.5 0.75 1

Accuracy

0

100

200

300

F
re

qu
en

cy

0 0.25 0.5 0.75 1

Accuracy

0

100

200

300

F
re

qu
en

cy

a b

c d

Figure 7. Comparison of noise model and LSVM accuracy distributions from RH. a. The frequency distribution of
accuracy results is shown for location classification, averaged across all 18 participants, with shuffled (black) and true
(red) location labels. A Gaussian approximation is shown (cyan) using a mean of 0.5 and variance estimated by a
stochastic model assuming no label information. b. As per a but for task classification. c. The frequency distribution of
accuracy results is shown for location classification from a typical participant from a using true location labels (red). A
Gaussian approximation is shown (cyan) using the mean of the individual’s sample, and variance estimated by a
stochastic model assuming partition noise only. d. As per c but for task classification.

More detailed inspection of the suprathreshold counts from the original experiment (Hassabis, 2009, sec.603

3.6.3 Sub-region dissociation) reveals that numerous suprathreshold proportions were in fact less than 5%604

despite using a 95th percentile threshold. For example, for their pairwise location comparison for subject605

2, the hippocampal suprathreshold count was 118/4032 searchlights (= 2.9%), the parahippocampal gyrus606

suprathreshold count was 70/3822 searchlights (= 1.8%), and the reported p-value was 0.002 for this con-607

trast despite so few searchlights reaching the shuffled data’s threshold. Importantly, all p-values reported608

were replicable using the faultymethod outlined earlier. Across 16 contrasts reported, 22/32 suprathreshold609

proportionswere less than 5%. Therefore, these original results showedno evidence that location classifica-610

tion was possible in either ROI, and in hindsight should have raised alarms about the subsequent statistical611

methodology.612

Paired t-test on accuracies613

Rodriguez (2010) and Sulpizio et al. (2014) relied on a paired t-test for group analysis of decoding perfor-614

mance. As discussed in the Methods, when applied to classification accuracies, such a test will with high615

probability yield ‘significant’ results even though only a small minority of participants in the population616

shows above-chance classification (Allefeld et al., 2016).617

Classifier confounds618

Rodriguez (2010) included both the encoding and test phases of each trial in the dataset as independent619

trials. The classifier may have identified the general relatedness of the two phases being part of the same620

trial, rather than the spatial location per se. Many factors unrelated to location in the virtual arena could621

have contributed to two consecutive phases of a trial being similar, including simply being close in time.622

Similarly, Sulpizio et al. (2014) included several identical images in the training and test sets (i.e. three623

instances per unique view were used for training the classifier and one for testing it in their leave-one-out624

cross validation procedure). This alone could lead to successful overall classification.625

Finally, Kim et al. (2017) provided few details regarding the path structures used in the navigation task.626

It is only mentioned that pseudorandom trajectories were used and that 76% of all trials involved the inner627
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eight (out of 64) locations used for the fMRI analysis. It is not clear from the description in which order the628

locationswere visited. The nature of the trajectories could, however, have a significant effect on similarity of629

the fMRI signals associated with each location, either due to different levels of autocorrelation, or related to630

different levels of locational awareness thatmight be confoundedwith certain path characteristics. In short,631

without careful quantification of the path structure it is difficult to exclude the possibility that it might have632

contributed to the statistical discriminability of the fMRI signal associated with different locations.633

Experimental design issues634

A true place code should be demonstrably selective for position in a mnemonic representation of space635

rather than particular visual cues. Unlike rodent place cells, however, earlier monkey work showed that pri-636

mate hippocampal cells signal locations or objects being looked at, independently of current self-location637

(e.g. Robertson et al., 1998; Rolls, 1999; Rolls et al., 1997). These results show that mammalian hippocam-638

pal spatial codes are not necessarily place-specific, and in some cases may be intrinsically interwoven with639

visual inputs. Furthermore, electrophysiological recordings from the human hippocampus suggest that the640

majority of activeneuronsarenot spatially-selective, butmay instead respond to various typesof visual stim-641

uli (Kreiman et al., 2000). Unfortunately, all four studies that claim to provide evidence for a voxel place code642

(Hassabis etal., 2009;Kimetal., 2017;Rodriguez, 2010; Sulpizioetal., 2014) failed to removesignificant visual643

confounds, which implies that even a legitimate voxel code in these experiments could be sensory-driven644

rather than be a true place code.645

Visually distinct landmarks646

Reliable and unique visual landmarks pose a particular problem. In the most obvious scenario, such a cue647

might be visible in a period used for classification, a possibility in the study by Rodriguez (2010) (depending648

on the field of view). Even in the case that the cue is not visible at the classification point, however, visual649

traces or visual memory could account for positive classification. Participants in the Rodriguez (2010) ex-650

periment took direct paths to the goals (time limited, active navigation task), therefore the egocentric view651

direction of the landmark during navigation varied systematically with the goal location. Similarly, the vir-652

tual environments usedbyHassabis et al. (2009) consistedof visually distinct landmarks onor adjacent to all653

walls, visible en route to target locations. The virtual environment outlined by Kim et al. (2017) contained a654

salient local landmark (a green door, whose visibility depended on the direction of travel and visual obstruc-655

tions). The authors stated that the door was “occasionally” visible, but failed to demonstrate that neither656

those times nor visual appearance of the door were correlated with impending arrival location. In all three657

of these cases, above-chance decoding could be due to differences in visual information during navigation658

rather than pure spatial location.659

Visual panoramas660

Unique landmarks are a specific case of the more general problem of unique panoramas: any unique clas-661

sifiable code may be due to the particular combination of visual cues rather than the more abstract notion662

of place. Such a confound was present in the experiment by Sulpizio et al. (2014), which required that static663

visual scenes completely determine location and orientation. Similarly, Kim et al. (2017) compared parallel664

locations in their rectangular environment, which would undoubtedly provide different panoramas — in-665

dependent of the allocentric direction — due to different wall distance configurations. This problem could666

have been avoided by keeping the lattice edges rotationally symmetric but comparing only diagonally oppo-667

site rather than parallel corners, as these are visually equivalent (2-fold rotational symmetry; Cheung, 2014;668

Cheung et al., 2008; Stürzl et al., 2008)).669

Optic flow670

In the study by Kim et al. (2017), there was a connection bias between the locations in the 3D environment671

employed (i.e. not every location was connected to every location, and connections were not always sym-672

metric) that caused the optic flows to differ depending on which test location was immediately upcoming.673

Earlier animal studieshave shown that thehippocampus is sensitive to visual aspects of linear and rotational674

motion (O’Mara et al., 1994), and that it receives information from the accessory optic system (Wylie et al.,675

1999), which is a visual pathway dedicated to the analysis of optic flow. Hence, a classifier may be able to676

detect differences in preceding ground optic flow, which in turn correlated with test location.677
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Correcting visual confounds678

In an attempt to alleviate concerns regarding the visual cues, Kim et al. (2017) used a simple visual texture679

model (Renninger and Malik, 2004) that provided a single visual similarity value for each trial (i.e. images680

captured at every half a second during the five second journey period for each location were averaged and681

entered into the texture model). The authors showed that even if these visual similarity measures were682

included in the analysis, location could still be inferred from the anterior hippocampal voxel patterns, and683

took this as a confirmation for the existence of a pure place code. It is, however, questionable whether the684

visual texturemodelwas suited toaccount for thedifferences invisual scenesencounteredduringnavigation.685

For example, having a long wall to the right and a short wall to the front defines a distinct location to having686

a longwall to the left and a short wall to the front. Yet visual textures and other low level visual featuresmay687

be virtually identical. The onlyway to ensure that differences in visual information during navigation cannot688

affect voxel patterns is to eliminate them entirely from the task design.689

Conclusions690

All existing studies which assert to have found evidence for a hippocampal place code using functional mag-691

netic resonance imaging can be challenged based on either statistical or task-related concerns and provide692

no robust convincingevidenceof amultivoxelplacecode inhumans. Further evidenceagainst thedetectabil-693

ity of a hippocampal place code using functionalmagnetic resonance imaging comes from a published pilot694

study (n = 3) by Op de Beeck et al. (2013) which employed a virtual navigation paradigm with the aim of de-695

coding location information from fMRI activation patterns, but also found no statistical evidence for a place696

code in the hippocampus. Theywere, however, able to statistically infer spatial location from voxel patterns697

in the visual cortex, giving further weight to our concerns regarding visual confounds in the aforementioned698

studies. Moreover, a number of recent studies have shown that patients with hippocampal damage have699

difficulties in complex visual discrimination task, suggesting a role of the hippocampus in visual perception700

(Hartley et al., 2007; Lee et al., 2005a,b, 2006, 2007). In contrast, activity of bona fide place cells identified in701

rodents has been shown repeatedly to be view-independent and persists even without visual information702

(Quirk et al., 1990; Rochefort et al., 2011; Save et al., 1998, 2000). Hippocampal place cells of bats have also703

been shown to persist without visual input (Ulanovsky and Moss, 2007). Similarly, pure place cells identi-704

fied in the hippocampus of epilepsy patients were also view-independent (Ekstrom et al., 2003). In line with705

place cell properties common to phylogenetically diverse mammalian species, claiming the existence of a706

multivoxel place code necessitates exclusion of direct visual contributions to activity differences.707

In summary, we have conducted a detailed assessment of the claim that place codes are detectable us-708

ing fMRI in human hippocampus. Our combined experimental and theoretical results provide rigorous and709

consistent evidence against this claim. Additionally, we identified several serious shortcomings in published710

imaging studies claiming evidence in favour of a hippocampalmultivoxel place code. We also note that elec-711

trophysiological data suggest that hippocampal place codes are both sparse and anatomically distributed,712

so that imaging techniques such as fMRI should not, at least at present, be capable of detecting location-713

specific place cell activity. Taking all evidence in combination, claims of the existence of a purely spatial714

voxel code of location should therefore be treated with appropriate scepticism. We assert that any future715

imaging study claiming evidence in favour of a multivoxel place code should rigorously eliminate potential716

confounds due to visual features, path trajectories and semantic associations that could lead to decodable717

differences between spatial locations. In addition, it will be crucial to employ appropriate and robust statis-718

tical tools to avoid false positives that are a particular concern for high dimensional data.719
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