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 2 

Decision bias is traditionally conceptualized as an internal reference against which 26 

sensory evidence is compared. Here, we show that individuals are able to 27 

strategically shift this internal reference depending on current task demands by 28 

changing the rate of sensory evidence accumulation in visual cortex. Participants 29 

performed a target detection task during EEG recordings. We experimentally 30 

manipulated participants’ decision criterion for reporting target-present using different 31 

stimulus-response reward contingencies, inducing liberal and conservative biases in 32 

different conditions. Drift diffusion modeling revealed that a strategic liberal bias shift 33 

specifically biased sensory evidence accumulation towards target-present choices. 34 

In visual cortex, the liberal bias suppressed pre-stimulus 8—12 Hz (alpha) power, 35 

which in turn mediated output activity of visual cortex, as expressed in 59—100 Hz 36 

(gamma) power. These findings show that observers can intentionally control cortical 37 

excitability to strategically bias evidence accumulation towards the decision bound 38 

that maximizes reward within a given ecological context. 39 

 40 

Introduction 41 

Perceptual decisions arise not only from the evaluation of sensory evidence, but are 42 

often biased towards one or another choice alternative by environmental factors, 43 

perhaps as a result of task instructions and/or stimulus-response reward 44 

contingencies (White & Poldrack, 2014). The ability to willfully control decision bias 45 

could potentially enable the behavioral flexibility required to survive in an ever-46 

changing and uncertain environment. But despite its important role in decision 47 

making, the neural mechanisms underlying decision bias are not fully understood.  48 

The traditional account of decision bias comes from signal detection theory 49 

(SDT) (Green & Swets, 1966). In SDT, decision bias is quantified by estimating the 50 
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relative position of a decision point or ‘criterion’ in between sensory evidence 51 

distributions for noise and signal (see Figure 1A). In this framework, a more liberal 52 

decision bias arises by moving the criterion closer towards the noise distribution (see 53 

green arrow in Figure 1A). Although SDT has been very successful at quantifying 54 

decision bias, how exactly bias affects decision making and how it is reflected in 55 

neural activity remains unknown.  56 

One reason for this lack of insight may be that SDT does not have a temporal 57 

component to track how decisions are reached over time (Fetsch, Kiani, & Shadlen, 58 

2014). As an alternative to SDT, the drift diffusion model (DDM) conceptualizes 59 

perceptual decision making as the accumulation of noisy sensory evidence over time 60 

into an internal decision variable (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; 61 

Gold & Shadlen, 2007; Ratcliff & McKoon, 2008). A decision in this model is made 62 

when the decision variable crosses one of two decision bounds corresponding to the 63 

choice alternatives. After one of the bounds is reached, the corresponding decision 64 

can subsequently either be actively reported, for example by means of a button 65 

press indicating a detected signal, or it could remain without behavioral report when 66 

no signal is detected (Ratcliff, Huang-Pollock, & McKoon, 2016). Within this 67 

framework, a strategic decision bias imposed by the environment can be modelled in 68 

two different ways: either by moving the starting point of evidence accumulation 69 

closer to one of the boundaries (see green arrow in Figure 1B), or by biasing the rate 70 

of the evidence accumulation process itself towards one of the boundaries (see 71 

green arrow in Figure 1C). In both the SDT and DDM frameworks, decision bias 72 

shifts have little effect on the sensitivity of the observer when distinguishing signal 73 

from noise; they predominantly affect the relative response ratios (and in the case of 74 

DDM the speed with which one or the other decision bound is reached). There has 75 
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been some evidence to suggest that decision bias induced by shifting the criterion is 76 

best characterized by a drift bias in the DDM (Urai, de Gee, & Donner, 2018; White & 77 

Poldrack, 2014). However, the drift bias parameter has as yet not been related to a 78 

well-described neural mechanism. 79 

 80 

  81 

Figure 1 | Theoretical accounts of decision bias. A. Signal-detection-theoretic account of decision 82 

bias. Signal and noise+signal distributions are plotted as a function of the strength of internal sensory 83 

evidence. The decision point (or criterion) that determines whether to decide signal presence or 84 

absence is plotted as a vertical criterion line c, reflecting the degree of decision bias. c can be shifted 85 

left- or rightwards to denote a more liberal or conservative bias, respectively (green arrow indicates a 86 

shift towards more liberal). B, C: Drift diffusion model (DDM) account of decision bias, in which 87 

decisions are modelled in terms of a set of parameters that describe a dynamic process of sensory 88 

evidence accumulation towards one of two decision bounds. When sensory input is presented, 89 

evidence starts to accumulate (drift) over time after initialization at the starting point z. A decision is 90 

made when the accumulated evidence either crosses decision boundary a (signal presence) or 91 

decision boundary 0 (no signal). After a boundary is reached, the corresponding decision can be 92 

either actively reported by a button press (e.g. for signal-present decisions), or remain implicit, without 93 

a response (for signal-absent decisions). The DDM can capture decision bias through a shift of the 94 

starting point of the evidence accumulation process (panel B) or through a shift in bias in the rate of 95 

evidence accumulation towards the different choices (panel C). These mechanisms are dissociable 96 

through their differential effect on the shape of the reaction time (RT) distributions, as indicated by the 97 

curves above and below the graphs for target-present and target-absent decisions, respectively. 98 

Panels B. and C. are modified and reproduced with permission from Urai, de Gee, & Donner (2018). 99 
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 100 

 Regarding the neural underpinnings of decision bias, there have been a 101 

number of reports about a correlational relationship between cortical population 102 

activity measured with EEG and decision bias. For example, spontaneous trial-to-103 

trial variations in pre-stimulus oscillatory activity in the 8—12 Hz (alpha) band have 104 

been shown to correlate with decision bias and confidence (Iemi, Chaumon, Crouzet, 105 

& Busch, 2017; Limbach & Corballis, 2016; Samaha, Iemi, & Postle, 2017). Alpha 106 

oscillations, in turn, have been proposed to be involved in the gating of task-relevant 107 

sensory information (Jensen & Mazaheri, 2010), possibly encoded in high-frequency 108 

(gamma) oscillations in visual cortex (Ni et al., 2016; Popov, Kastner, & Jensen, 109 

2017). Although these reports suggest links between pre-stimulus alpha 110 

suppression, sensory information gating and decision bias, they do not uncover 111 

whether pre-stimulus alpha plays an instrumental role in decision bias and how 112 

exactly this might be achieved. For example, it is unknown whether an 113 

experimentally induced shift in decision bias is implemented in the brain by willfully 114 

adjusting pre-stimulus alpha in sensory areas.  115 

Here, we explicitly investigate these potential mechanisms by employing a 116 

task paradigm in which shifts in decision bias were experimentally induced within 117 

participants through (a) instruction and (b) asymmetries in stimulus-response reward 118 

contingencies during a visual target detection task. By applying drift diffusion 119 

modeling to the participants’ choice behavior, we show that strategically adjusting 120 

decision bias specifically affects the rate of sensory evidence accumulation towards 121 

one of the two decision bounds. Further, we demonstrate that this drift bias is 122 

achieved by flexibly up- and down-regulating pre-stimulus alpha as well as the output 123 

activity of visual cortex, as reflected in gamma power modulation. Critically, we show 124 
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that gamma activity accurately predicts the strength of the evidence accumulation 125 

bias within participants, providing a direct link between the proposed mechanism and 126 

decision bias. Together, these findings identify the neural mechanism by which 127 

intentional control of cortical excitability is applied to strategically bias perceptual 128 

decisions in order to maximize reward in a given context. 129 

 130 

Results 131 

Manipulation of decision bias affects sensory evidence accumulation 132 

In three EEG recording sessions, human participants (N = 16) viewed a continuous 133 

stream of horizontal, vertical and diagonal line textures alternating at a rate of 25 134 

textures/second. The participants’ task was to detect an orientation-defined square 135 

presented in the center of the screen and report it via a button press (Figure 2A). 136 

Trials consisted of a fixed-order sequence of textures embedded in the continuous 137 

stream (total sequence duration 1 second). A square appeared in the fifth texture of 138 

a trial in 75% of the presentations (target trials), while in 25% a homogenous 139 

diagonal texture appeared in the fifth position (nontarget trials). Although the onset of 140 

a trial within the continuous stream of textures was not explicitly cued, the similar 141 

distribution of reaction times in target and nontarget trials suggests that participants 142 

used the temporal structure of the task even when no target appeared (Figure 2—143 

figure supplement 1A). Consistent and significant EEG power modulations after trial 144 

onset (even for nontarget trials) further confirm that subjects registered trial onsets in 145 

the absence of an explicit cue, plausibly using the onset of a fixed order texture 146 

sequence as an implicit cue (Figure 2—figure supplement 1B).  147 
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In alternating nine-minute blocks of trials, we actively biased participants’ 148 

perceptual decisions by instructing them either to report as many targets as possible 149 

(“Detect as many targets as possible!”; liberal condition), or to only report high-150 

certainty targets (“Press only if you are really certain!”; conservative condition). 151 

Participants were free to respond at any time during a block whenever they detected 152 

a target. A trial was considered a target present response when a button press 153 

occurred before the fixed-order sequence ended (i.e. within 0.84 s after onset of the 154 

fifth texture containing the (non)target, see Figure 2A). We provided auditory 155 

feedback and applied monetary penalties following missed targets in the liberal 156 

condition and following false alarms in the conservative condition (Figure 2A; see 157 

Methods for details). The median number of trials for each SDT category across 158 

participants was 1206 hits, 65 false alarms, 186 misses and 355 correct rejections in 159 

the liberal condition, and 980 hits, 12 false alarms, 419 misses and 492 correct 160 

rejections in the conservative condition. 161 

Participants reliably adopted the intended decision bias shift across the two 162 

conditions, as shown by both the hit rate and the false alarm rate going down in 163 

tandem as a consequence of a more conservative bias (Figure 2B). The difference 164 

between hit rate and false alarm rate was not significantly modulated by the 165 

experimental bias manipulations (p = 0.81, two-sided permutation test, 10,000 166 

permutations, see Figure 2B). However, target detection performance computed 167 

using standard SDT d’ (perceptual sensitivity, reflecting the distance between the 168 

noise and signal distributions in Figure 1A)(Green & Swets, 1966) was slightly higher 169 

during conservative (liberal: d’ = 2.0 (s.d. 0.90), versus conservative: d’ = 2.31 (s.d. 170 

0.82), p = 0.0002, see Figure 2C, left bars). We quantified decision bias using the 171 

standard SDT criterion measure c, in which positive and negative values reflect 172 
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conservative and liberal biases, respectively (see the blue and red vertical lines in 173 

Figure 1A). This uncovered a strong experimentally induced bias shift from the 174 

conservative to the liberal condition (liberal: c = – 0.13 (s.d. 0.4), versus 175 

conservative: c = 0.73 (s.d. 0.36), p = 0.0001, see Figure 2C), as well as a 176 

conservative average bias across the two conditions (c = 0.3 (s.d. 0.31), p = 0.0013). 177 

 178 
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Figure 2 | Strategic decision bias shift towards liberal biases evidence accumulation. A. 179 

Schematic of the visual stimulus and task design. Participants viewed a continuous stream of full-180 

screen diagonally, horizontally and vertically oriented textures at a presentation rate of 40 ms (25 Hz). 181 

After random inter-trial intervals (range 0.3—2.2 s), a fixed-order sequence (duration 1 s) was 182 

presented, embedded in the stream. The fifth texture in each sequence either consisted of a single 183 

diagonal orientation (target absent), or contained an orthogonal orientation-defined square (either 45° 184 

or 135° orientation). Participants decided whether they had just seen a target, reporting detected 185 

targets by button press within 840 ms after target onset. Liberal and conservative conditions were 186 

administered in alternating nine-minute blocks by penalizing either misses or false alarms, 187 

respectively, using aversive tones and monetary deductions. Depicted square and fixation dot sizes 188 

are not to scale. B. Average detection rates (hits and false alarms) during both conditions. Miss rate is 189 

equal to 1 – hit rate since both are computed on stimulus present trials, and correct-rejection rate as 1 190 

– false alarm rate since both are computed on stimulus absent trials, together yielding the four SDT 191 

stimulus-response categories C. SDT parameters for sensitivity and criterion. D. Schematic and 192 

simplified equation of drift diffusion model accounting for reaction time distributions for actively 193 

reported target-present and implicit target-absent decisions. Decision bias in this model can be 194 

implemented by either shifting the starting point of the evidence accumulation process (Z), or by 195 

adding an evidence-independent constant (‘drift bias’, db) to the drift rate. See text and Figure 1 for 196 

details. Notation: dy, change in decision variable y per unit time dt; v·dt, mean drift (multiplied with 1 197 

for signal + noise (target) trials, and -1 for noise-only (nontarget) trials); db·dt, drift bias; and cdW, 198 

Gaussian white noise (mean = 0, variance = c2·dt). E. Difference in Bayesian Information Criterion 199 

(BIC) goodness of fit estimates for the drift bias and the starting point models. A lower delta BIC value 200 

indicates a better fit, showing superiority of the drift bias model to account for the observed results. F. 201 

Estimated model parameters for drift rate and drift bias in the drift bias model. Error bars, SEM across 202 

16 participants. ***p < 0.001; n.s., not significant. Panel D. is modified and reproduced with 203 

permission from (de Gee et al., 2017). 204 

The following source data and figure supplements are available for Figure 2:  205 

Source data 1. This csv table contains the data for Figure 2 panels B, C, E and F. 206 

Figure supplement 1. Behavioral and neurophysiological evidence that participants were sensitive to 207 

the implicit task structure. 208 
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Figure supplement 2. Signal-detection-theoretic behavioral measures during both conditions 209 

correspond closely to drift diffusion modeling parameters. 210 

Figure supplement 3. Single-participant drift diffusion model fits for the drift bias model for both 211 

conditions. 212 

Because the SDT framework is static, we further investigated how bias 213 

affected various components of the dynamic decision process by fitting different drift 214 

diffusion models (DDMs) to the behavioral data (Figure 1B, C) (Ratcliff & McKoon, 215 

2008). The DDM postulates that perceptual decisions are reached by accumulating 216 

noisy sensory evidence towards one of two decision boundaries representing the 217 

choice alternatives. Crossing one of these boundaries can either trigger an explicit 218 

behavioral report to indicate the decision (for target-present responses in our 219 

experiment), or remain implicit (i.e. without active response, for target-absent 220 

decisions in our experiment). The DDM captures the dynamic decision process by 221 

estimating parameters reflecting the rate of evidence accumulation (drift rate), the 222 

separation between the boundaries, as well as the time needed for stimulus 223 

encoding and response execution (non-decision time)(Ratcliff & McKoon, 2008). The 224 

DDM is able to estimate these parameters based on the shape of the RT 225 

distributions for actively reported (target-present) decisions along with the total 226 

number of trials in which no response occurred (i.e. implicit target-absent decisions) 227 

(Ratcliff et al., 2016).  228 

We tested two different DDMs that can potentially account for decision bias: 229 

one in which the starting point of evidence accumulation moves closer to one of the 230 

decision boundaries (‘starting point model’, Figure 1B) (Mulder, Wagenmakers, 231 

Ratcliff, Boekel, & Forstmann, 2012), and one in which the drift rate itself is biased 232 

towards one of the boundaries (de Gee et al., 2017) (‘drift bias model’, see Figure 233 
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1C, referred to as drift criterion by Rattclif and McKoon (2008)). The drift bias 234 

parameter is determined by estimating the contribution of an evidence-independent 235 

constant added to the drift (Figure 2D). In the two respective models, we freed either 236 

the drift bias parameter (db, see Figure 2D) for the two conditions while keeping 237 

starting point (z) fixed across conditions (for the drift bias model), or vice versa (for 238 

the starting point model). Permitting only one parameter at a time to vary freely 239 

between conditions allowed us to directly compare the models without having to 240 

penalize either model for the number of free parameters. These alternative models 241 

make different predictions about the shape of the RT distributions in combination 242 

with the response ratios: a shift in starting point results in more target-present 243 

choices particularly for short RTs, whereas a shift in drift bias grows over time, 244 

resulting in more target-present choices also for longer RTs (de Gee et al., 2017; 245 

Ratcliff & McKoon, 2008; Urai et al., 2018). The RT distributions above and below 246 

the evidence accumulation graphs in Figure 1B and 1C illustrate these different 247 

effects. In both models, all of the non-bias related parameters (drift rate v, boundary 248 

separation a and non-decision time u+w, see Figure 2D) were also allowed to vary 249 

by condition.  250 

We found that the starting point model provided a worse fit to the data than 251 

the drift bias model (starting point model, Bayesian Information Criterion (BIC) = 252 

10287; drift bias model, BIC = 10279, Figure 2E, see Methods for details). 253 

Specifically, for 14 out of the 16 participants, the drift bias model provided a better fit 254 

than the starting point model, for 10 of which delta BIC > 6, indicating strong 255 

evidence in favor of the drift bias model. Finally, we compared these models to a 256 

model in which both drift bias and starting point were fixed across the conditions, 257 

while still allowing the non-bias-related parameters to vary per condition. This model 258 
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provided the lowest goodness of fit (delta BIC > 6 for both models for all 259 

participants). See Figure 2—figure supplement 3 for model fits of the drift bias model 260 

for each participant. 261 

Given the superior performance of the drift bias model, we further 262 

characterized decision making under the bias manipulation using parameter 263 

estimates from this model. Drift rate, reflecting the participants’ ability to discriminate 264 

targets and nontargets, was somewhat higher in the conservative compared to the 265 

liberal condition (liberal: v = 2.39 (s.d. 1.07), versus conservative: v = 3.06 (s.d. 266 

1.16), p = 0.0001, permutation test, Figure 2F, left bars). Almost perfect correlations 267 

across participants in both conditions between DDM drift rate and SDT d’ provided 268 

strong evidence that the drift rate parameter captures perceptual sensitivity (liberal, r 269 

= 0.97, p = 1.7e–10; conservative, r = 0.95, p = 1.4e–8, see Figure 2—figure 270 

supplement 2A).  271 

Regarding the DDM bias parameters, the condition-fixed starting point 272 

parameter in the drift bias model was smaller than half the boundary separation (i.e. 273 

closer to the target-absent boundary (z = 0.24 (s.d. 0.06), p < 0.0001, tested against 274 

0.5)), indicating an overall conservative starting point across conditions (Figure 2—275 

figure supplement 2D), in line with the overall positive SDT criterion (see Figure 2C, 276 

right panel). Strikingly, however, whereas the drift bias parameter was on average 277 

not different from zero in the conservative condition (db = –0.04 (s.d. 1.17), p = 278 

0.90), drift bias was strongly positive in the liberal condition (db = 2.08 (s.d. 1.0), p = 279 

0.0001; liberal vs conservative: p = 0.0005; Figure 2F, right bars). The overall 280 

conservative starting point combined with a condition-specific neutral drift bias 281 

explained the conservative decision bias (as quantified by SDT criterion) in the 282 

conservative condition (Figure 2C). Likewise, in the liberal condition, the overall 283 
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conservative starting point combined with a condition-specific positive drift bias 284 

(pushing the drift towards the target-present boundary) explained the neutral bias 285 

observed with SDT criterion (c around zero for liberal, see Figure 2C). 286 

Convergent with these modelling results, drift bias was strongly anti-correlated 287 

across participants with both SDT criterion (liberal, r = –0.83; conservative, r = –0.79) 288 

and reaction times (liberal, r = –0.66; conservative, r = –0.76, all p-values < 0.005, 289 

see Figure 2—figure supplement 2B and 2C). The strong correlations between drift 290 

rate and d’ on the one hand, and drift bias and c on the other, provide converging 291 

evidence that the SDT and DDM frameworks capture similar underlying 292 

mechanisms, while the DDM additionally captures the dynamic nature of perceptual 293 

decision making by linking the decision bias manipulation to the evidence 294 

accumulation process itself.  295 

Finally, the bias manipulation also affected two other parameters in the drift 296 

bias model that were not directly related to sensory evidence accumulation: 297 

boundary separation was slightly but reliably higher during the liberal compared to 298 

the conservative condition (p < 0.0001), and non-decision time (comprising time 299 

needed for sensory encoding and motor response execution) was shorter during 300 

liberal (p < 0.0001) (Figure 2—figure supplement 2D). In conclusion, a drift diffusion 301 

model of choice behavior implementing a bias in sensory evidence accumulation 302 

best explained how participants adjusted to the decision bias manipulations. In the 303 

next sections, we used spectral analysis of the concurrent EEG recordings to identify 304 

a plausible neural mechanism that implements biased sensory evidence 305 

accumulation.  306 

 307 
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Task-relevant textures induce stimulus-related responses in visual cortex 308 

Sensory evidence accumulation in a visual target detection task presumably relies 309 

on stimulus-induced signals processed in visual cortex. Such stimulus-induced 310 

signals are typically reflected in cortical population activity exhibiting a rhythmic 311 

temporal structure (Buzsáki & Draguhn, 2004). Specifically, bottom-up processing of 312 

visual information has previously been linked to increased high-frequency (> 40 Hz, 313 

i.e. gamma) electrophysiological activity over visual cortex (Bastos et al., 2015; 314 

Michalareas et al., 2016; Popov et al., 2017; van Kerkoerle et al., 2014). Figure 3A 315 

shows time-frequency representations of EEG power modulations over posterior 316 

cortex for the low- and high-frequency bands, normalized with respect to the 317 

condition-specific pre-stimulus baseline period. We observed a total of four distinct 318 

stimulus-induced power modulations after trial onset: two in the high-frequency 319 

range (> 36 Hz, Figure 3A, top panel) and two in the low-frequency range (< 36 Hz, 320 

Figure 3A, bottom panel). First, we found a spatially focal modulation in a narrow 321 

frequency range around 25 Hz reflecting the steady state visual evoked potential 322 

(SSVEP) arising from entrainment by the visual stimulation frequency of our 323 

experimental paradigm (Figure 3B, lower panel). A second modulation from 42—58 324 

Hz (Figure 3B, top panel) comprised the first harmonic of the SSVEP, as can be 325 

seen from their similar topographic distributions (Figure 3B, compare top and lower 326 

panel).  327 
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 328 

Figure 3 | Task-relevant textures induce stimulus-induced responses in visual cortex. A. Time-329 

frequency representations of high- (top) and low-frequency (bottom) EEG power modulations with 330 

respect to the condition-specific pre-stimulus period (–0.4 to 0 s). Saturated colors indicate clusters of 331 

significant modulation, cluster threshold p < 0.05, two-sided permutation test across participants, 332 

cluster-�corrected; N = 15). Solid and dotted vertical lines respectively indicate the onset of the trial 333 

and the target stimulus. B. Scalp maps showing topography of the steady-state visual evoked 334 

potential (SSVEP) power modulation around 25 Hz (bottom) and its harmonic from 42 – 58 Hz (top), 335 

�from 0.2 – 0.6 s after trial onset. C. 59 – 100 Hz gamma power modulation from 0.2 – 0.6 s (top) 336 

and concurrent low frequency (‘beta’) power suppression from 11 – 22 Hz (bottom); see dashed 337 

outlines �on time-frequency representations in A. White dots indicate electrodes used for the time-338 

frequency representations in A, and which were selected for further analysis.  339 

The following source data is available for Figure 3:  340 

Source data 1. MATLAB .mat file containing the data used in panel A.  341 

Figure 3 – Figure supplement 1. Liberal – conservative EEG power modulation contrast across 342 

space, time and frequency. 343 

 344 
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Third, we observed a 59—100 Hz gamma power modulation (Figure 3C, top 345 

panel), after carefully controlling for high-frequency EEG artifacts due to small 346 

fixational eye movements (microsaccades) by removing microsaccade-related 347 

activity from the data (Hassler, Trujillo-Barreto, & Gruber, 2011; Hipp & Siegel, 2013; 348 

Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008), and by suppressing non-349 

neural EEG activity through scalp current density (SCD) transformation (Melloni, 350 

Schwiedrzik, Wibral, Rodriguez, & Singer, 2009; Perrin, Pernier, Bertrand, & 351 

Echallier, 1989) (see Methods for details). Importantly, the topography of the 352 

observed gamma modulation was confined to posterior electrodes (electrodes 353 

highlighted in Figures 3B and 3C, top panels), in line with the role of gamma in 354 

bottom-up processing in visual cortex (Ni et al., 2016). Finally, we observed 355 

suppression of low-frequency beta (11—22 Hz) activity in posterior cortex, which 356 

typically occurs in parallel with enhanced stimulus-induced gamma activity (Donner 357 

& Siegel, 2011; Kloosterman et al., 2015; Meindertsma, Kloosterman, Nolte, Engel, 358 

& Donner, 2017; Werkle-Bergner et al., 2014)(Figure 3A and 3C, lower panels). 359 

Taken together, we observed several different stimulus-induced power modulations 360 

in posterior cortex. In the next section, we used the topographies of the high-361 

frequency poststimulus effects in visual cortex (Figures 3B and 3C, top panels) to 362 

identify a pre-stimulus neural mechanism that could explain the observed biased 363 

evidence accumulation resulting from the experimental decision bias manipulation.  364 

 365 

Adopting a liberal decision bias suppresses pre-stimulus alpha power 366 

Next, we tested whether our bias manipulation affected the amplitude of pre-stimulus 367 

8–12 Hz (alpha) oscillations in visual cortex. To this end, we examined the raw, low-368 

frequency spectral power in the pre-stimulus interval in which a link between 369 
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spontaneous alpha fluctuations and decision bias has previously been reported (0.8 370 

to 0.2 s before trial onset) (Iemi et al., 2017). We focused this analysis on cortical 371 

regions processing visual information by selecting the electrode pooling that showed 372 

stimulus-induced high-frequency gamma power modulation (see Figures 3B and 373 

3C). Spectral power averaged across the two conditions indeed uncovered a highly 374 

specific modulation around 10 Hz, which we confirmed to be strongest in the same 375 

electrodes that showed strong modulation in the gamma range (Figure 4A, white 376 

dots indicate electrodes showing stimulus-induced gamma modulation). Crucially, 377 

the liberal – conservative difference between conditions revealed a statistically 378 

significant cluster of suppressed frequencies precisely in the 8—12 Hz frequency 379 

range (p < 0.05, cluster-corrected for multiple comparisons), which again showed a 380 

posterior topography (Figure 4B). This small but highly consistent shift in the range in 381 

which alpha occurs during the liberal compared to the conservative condition is 382 

depicted in Figure 4C. Taken together, these findings show that a strategic liberal 383 

bias shift suppresses pre-stimulus alpha power, suggesting that alpha modulations 384 

are a hallmark of strategic bias adjustment rather than a mere correlate of 385 

spontaneous shifts in decision bias. Importantly, this finding implies that humans are 386 

able to actively control pre-stimulus alpha power in visual cortex, plausibly acting to 387 

bias sensory evidence accumulation towards the response alternative that 388 

maximizes rewards. 389 

 390 
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Figure 4 | Adopting a liberal decision bias suppresses pre-stimulus alpha power. A. Low-391 

frequency raw power spectra of pre-stimulus neural activity for both conditions based on the 392 

electrodes that show large poststimulus power modulations in Figures 3B and 3C (top panels). Inset, 393 

scalp map of raw pre-stimulus EEG alpha power (8 — 12 Hz neural activity between 0.8 and 0.2 s 394 

before trial onset), pooled over conditions. White symbols indicate visual cortical electrodes used for 395 

the raw power spectra in A. and B. B. Liberal – conservative raw power spectrum. Black horizontal 396 

bar indicates statistically significant frequency range (p < 0.05, cluster-corrected for multiple 397 

comparisons, two-sided). Error bars, SEM across participants (N = 15). Inset, corresponding liberal – 398 

conservative scalp map of the pre-stimulus raw power difference between conditions. SCD, scalp 399 

current density. C. Probability density distributions of single trial alpha power values for both 400 

conditions, averaged across participants.  401 

The following source data is available for Figure 4:  402 

Source data 1. MATLAB .mat file containing the data used in panel B.  403 

 404 

Pre-stimulus alpha power mediates cortical gamma responses 405 

How could suppression of pre-stimulus alpha activity bias the process of sensory 406 

evidence accumulation? One possibility is that alpha suppression influences 407 

evidence accumulation by modulating the susceptibility of visual cortex to sensory 408 

stimulation, a phenomenon dubbed ‘neural excitability’ (Iemi et al., 2017; Jensen & 409 

Mazaheri, 2010). We explored this possibility using a theoretical response gain 410 

model coined by Rajagovindan and Ding (2011). This model postulates that the 411 

relationship between the total synaptic input activity that a neuronal ensemble 412 

receives and the total output activity it produces is characterized by a sigmoidal 413 

function (red line in Figure 5A) – a notion that is biologically plausible (Destexhe, 414 

Rudolph, Fellous, & Sejnowski, 2001; Freeman, 1979). In this model, sensory input 415 

(i.e. due to sensory stimulation) and ongoing fluctuations in endogenously generated 416 

(i.e. not sensory-related) neural activity together comprise the synaptic input into 417 
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visual cortex. In our experiment, the sensory input into visual cortex can be assumed 418 

to be identical across trials, because the same sensory stimulus was presented in 419 

each trial (see Figure 2A). The endogenous input, in contrast, varies from trial to trial 420 

reflecting fluctuations in top-down cognitive processes such as attention, and is 421 

assumed to be reflected in alpha power. Given the combined constant sensory and 422 

variable endogenous input in each trial (see horizontal axis in Figure 5A), the 423 

strength of the output responses of visual cortex are largely determined by the trial-424 

to-trial variation caused by endogenous activity (see vertical axis in Figure 5A). 425 

Furthermore, the sigmoidal shape of the input-output function results in an effective 426 

range in the center of the function’s input side which yields the strongest stimulus-427 

induced output responses since the sigmoid curve there is steepest. Mathematically, 428 

the effect of endogenous input on stimulus-induced output responses (see marked 429 

interval in Figure 5A) can be expressed as the first order derivative or slope of the 430 

sigmoid in Figure 5A, which is referred to as the response gain by Rajagovindan and 431 

Ding (2011). This derivative is plotted in Figure 5B (red line) across levels of pre-432 

stimulus alpha power, predicting an inverted-U shaped relationship between alpha 433 

and response gain in visual cortex.  434 

Regarding our experimental conditions, the model not only predicts that the 435 

suppression of pre-stimulus alpha observed in the liberal condition reflects a shift in 436 

the operational range of alpha (see Figure 4C), but also that it increases the 437 

maximum output of visual cortex (a shift from the red to the blue line in figure 5A). 438 

Thus, as the operational range of alpha shifts leftwards from conservative to liberal, 439 

the upper asymptote in Figure 5A moves upwards such that the total maximum 440 

output activity increases. This in turn affects the inverted-U-shaped relationship 441 
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between alpha and gain in visual cortex (blue line in Figure 5B), leading to a steeper 442 

response curve in the liberal condition resembling a Gaussian (bell-shaped) function.  443 

 444 

Figure 5 | Pre-stimulus alpha power mediates cortical gamma responses. A. Theoretical 445 

response gain model describing the transformation of stimulus-induced and endogenous input activity 446 

(denoted by Sx and SN respectively) to the total output activity (denoted by O(Sx + SN)) in visual cortex 447 

by a sigmoidal function. Different operational alpha ranges are associated with input-output functions 448 

with different slopes due to corresponding changes in the total output. B. Alpha-mediated output 449 

responses (solid lines) are formalized as the first derivative (slope) of the sigmoidal functions (dotted 450 

lines), resulting in inverted-U (Gaussian) shaped relationships between alpha and gamma, involving 451 

stronger response gain in the liberal than in the conservative condition C. Corresponding empirical 452 

data showing gamma modulation (same percent signal change units as in Figure 3) as a function of 453 

alpha bin. The location on the x-axis of each alpha bin was taken as the median alpha of the trials 454 

assigned to each bin and averaged across subjects. D-F. Model prediction tests. D. Raw pre-stimulus 455 

alpha power for both conditions, averaged across subjects. E. Post-stimulus gamma power 456 
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modulation for both conditions averaged across the two middle alpha bins (5 and 6) in panel C. F. 457 

Liberal – conservative difference between the response gain curves shown in panel C, centered on 458 

alpha bin. Error bars, within-subject SEM across participants (N = 14). 459 

 460 

The following source data is available for Figure 5:  461 

Source data 1. SPSS .sav file containing the data used in panels C, E, and F.  462 

 463 

To investigate sensory response gain across different alpha levels in our data, 464 

we used the post-stimulus gamma activity (see Figure 3) as a proxy for alpha-465 

mediated output gain in visual cortex (Bastos et al., 2015; Michalareas et al., 2016; 466 

Ni et al., 2016; Popov et al., 2017; van Kerkoerle et al., 2014). We exploited the large 467 

number of trials per participant per condition (range 543 to 1391 trials) by sorting 468 

each participant’s trials into ten equal-sized bins ranging from weak to strong alpha, 469 

separately for the two conditions. We then calculated the average gamma power 470 

modulation within each alpha bin and finally plotted the participant-averaged gamma 471 

across alpha bins in Figure 5C (see Methods for details). This indeed revealed an 472 

inverted-U shaped relationship between alpha and gamma, with a steeper curve for 473 

the liberal condition. 474 

To assess the model’s ability to explain the data, we statistically tested three 475 

predictions derived from the model. First, the model predicts overall lower average 476 

pre-stimulus alpha power for liberal than for conservative due to the shift in the 477 

operational range of alpha. This was confirmed in Figure 5D (p = 0.01, permutation 478 

test, see also Figures 4B and 4C). Second, the model predicts a stronger gamma 479 

response for liberal than for conservative around the peak of the gain curve (the 480 

center of the effective alpha range, see Figure 5B), which we indeed observed (p = 481 

0.024, permutation test on the average of the middle two alpha bins)(Figure 5E). 482 
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Finally, the model predicts that the difference between the gain curves (when they 483 

are aligned over their effective ranges on the x-axis using alpha bin number, as 484 

shown in Figure 5 – figure supplement 1A, also resembles a Gaussian curve (Figure 485 

5 – figure supplement 1B). Consistent with this prediction, we observed an 486 

interaction effect between condition (liberal, conservative) and bin number (1-10) 487 

using a standard Gaussian contrast in a 2-way repeated measures ANOVA (F(1,13) 488 

= 4.6, p = 0.051, partial η2 = 0.26). Figure 5F illustrates this finding by showing the 489 

difference between the two curves in Figure 5C as a function of alpha bin number 490 

(see Figure 5 – figure supplement 1C for the curves of both conditions as a function 491 

of alpha bin number). Subsequent separate tests for each condition indeed 492 

confirmed a significant U-shaped relationship between alpha and gamma in the 493 

liberal condition with a large effect size (F(1,13) = 7.7, p = 0.016, partial η2 = 0.37), 494 

but no significant effect in the conservative condition with only a small effect size 495 

(F(1,13) = 1.7, p = 0.22, partial η2 = 0.12, one-way repeated measures ANOVA’s 496 

with factor alpha bin, Gaussian contrast). 497 

Taken together, these findings suggest that the alpha suppression observed 498 

in the liberal compared to the conservative condition boosted stimulus-induced 499 

activity in the liberal condition, which in turn might have indiscriminately biased 500 

sensory evidence accumulation towards the target-present decision boundary. In the 501 

next section, we investigate a direct link between drift bias and stimulus-induced 502 

activity as measured through gamma. 503 

 504 

Visual cortical gamma activity predicts strength of evidence accumulation bias 505 
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The findings presented so far suggest that behaviorally, a liberal decision bias shifts 506 

evidence accumulation towards target-present responses (drift bias in the DDM), 507 

while neurally it suppresses pre-stimulus alpha while enhancing poststimulus gamma 508 

responses. In a final analysis, we asked whether alpha-binned gamma modulation is 509 

directly related to a stronger drift bias. To this end, we again applied the drift bias 510 

DDM to the behavioral data of each participant, but now freed the drift bias 511 

parameter not only for the two conditions, but also for the ten alpha bins for which we 512 

calculated gamma modulation (see Figure 5C). We directly tested the 513 

correspondence between DDM drift bias and gamma modulation using repeated 514 

measures correlation (Bakdash and Marusich, (2017), which takes all repeated 515 

observations across participants into account while controlling for non-independence 516 

of observations collected within each participant (see Methods for details). Gamma 517 

modulation was indeed correlated with drift bias in both conditions (liberal, r(125) = 518 

0.49, p = 5e-09; conservative, r(125) = 0.38, p = 9e-06). We tested the robustness of 519 

these correlations by excluding the data points that contributed most to the 520 

correlations (as determined with Cook’s distance) and obtained qualitatively similar 521 

results, indicating these correlations were not driven by outliers (Figure 6, see 522 

Methods for details). As a final control, we also performed this analysis for the 523 

SSVEP (23-27 Hz) power modulation (see Figure 3B, bottom) and found a similar 524 

inverted-U shaped relationship between alpha and the SSVEP for both conditions 525 

(Figure 6 – figure supplement 1A), but no correlation with drift bias (Figure 6 – figure 526 

supplement 1B). This suggests that the SSVEP is similarly coupled to alpha as the 527 

stimulus-induced gamma, but is unaffected by the experimental conditions and not 528 

predictive of decision bias shifts. Taken together, these results suggest that gamma 529 

modulation underlies biased sensory evidence accumulation. 530 
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 531 

 532 

Figure 6 | Alpha-binned gamma modulation correlates with evidence accumulation bias. 533 

Repeated measure correlation between gamma modulation and drift bias for the two conditions. Each 534 

circle represents a participant’s gamma modulation within one alpha bin. Drift bias and gamma 535 

modulation scalars were residualized by removing the average within each participant and condition, 536 

thereby removing the specific range in which the participants values operated. Crosses indicate data 537 

points that were most influential for the correlation, identified using Cook’s distance. Correlations 538 

remained qualitatively unchanged when these data points were excluded (liberal, r(120) = 0.43, p = 539 

8e-07; conservative, r(121) = 0.32, p = 0.0003) Error bars, 95% confidence intervals after averaging 540 

across participants. 541 

The following source data and figure supplements are available for Figure 6:  542 

Source data 1. MATLAB .mat file containing the data used. 543 

Figure supplement 1. Alpha-binned post-stimulus SSVEP modulation. 544 

 545 

Discussion 546 

Traditionally, bias has been conceptualized in SDT as a criterion threshold that is 547 

positioned at an arbitrary location between noise and signal-embedded-in-noise 548 

distributions of sensory evidence strengths. The ability to strategically shift decision 549 

bias in order to flexibly adapt to stimulus-response reward contingencies in the 550 

environment presumably increases chances of survival, but to date such strategic 551 
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bias shifts as well as their neural underpinnings have not been demonstrated. Here, 552 

we used a DDM drift bias model to show that an experimentally induced bias shift 553 

affects the process of sensory evidence accumulation itself, rather than shifting a 554 

threshold entity as SDT implies. Moreover, we reveal the neural signature of drift 555 

bias by showing that a liberal decision bias increases alpha suppression (neural 556 

excitability) of visual cortex, and enhancing gamma activity by increasing response 557 

gain. 558 

Although previous studies have shown correlations between suppression of 559 

pre-stimulus alpha (8—12 Hz) power and a liberal decision bias during spontaneous 560 

fluctuations in alpha activity (Iemi et al., 2017; Limbach & Corballis, 2016), these 561 

studies have not established the effect of experimentally induced bias shifts within 562 

person. In the current study, by experimentally manipulating stimulus-response 563 

reward contingencies we show for the first time that pre-stimulus alpha can be 564 

actively modulated by a participant to achieve changes in decision bias. Further, we 565 

show that alpha suppression in turn modulates gamma activity, in part by increasing 566 

the gain of cortical responses. Critically, gamma activity accurately predicted the 567 

strength of the drift bias parameter in the DDM drift bias model, thereby linking our 568 

behavioral and neural findings directly. Together, these findings show for the first 569 

time that humans are able to actively implement decision biases by flexibly adapting 570 

neural excitability to strategically shift sensory evidence accumulation towards one of 571 

two decision bounds. 572 

Based on our results, we propose that decision biases are implemented by 573 

flexibly adjusting neural excitability in visual cortex. Figure 7 summarizes this 574 

proposed mechanism graphically by visualizing a hypothetical transition in neural 575 

excitability following a strategic liberal bias shift, as reflected in visual cortical alpha 576 
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suppression (left panel). This increased excitability translates into stronger gamma-577 

band responses following stimulus onset (right panel, top). These increased gamma 578 

responses finally bias evidence accumulation towards the target-present decision 579 

boundary during a liberal state, resulting in more target-present responses, whereas 580 

target-absent responses are decimated (blue RT distributions; right panel, bottom). 581 

Our experimental manipulation of decision bias in different blocks of trials suggests 582 

that decision makers are able to control this biased evidence accumulation 583 

mechanism willfully by adjusting excitability, as reflected in alpha. 584 

 585 

Figure 7 | Illustrative graphical depiction of the excitability state transition from conservative 586 

to liberal, and subsequent biased evidence accumulation under a liberal bias. The left panel 587 

shows the transition from a conservative to a liberal condition block. The experimental induction of a 588 

liberal decision bias causes alpha suppression in visual cortex, which increases neural excitability. 589 

The right top panel shows increased gamma gain for incoming sensory evidence under conditions of 590 

high excitability. The right bottom panel shows how increased gamma-gain causes a bias in the drift 591 

rate, resulting in more ‘target present’ responses than in the conservative state. 592 

 593 

A neural mechanism that could underlie bias-related alpha suppression may 594 

be under control of the catecholaminergic neuromodulatory systems, consisting of 595 
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the noradrenaline-releasing locus coeruleus (LC) and dopamine systems (Aston-596 

Jones & Cohen, 2005). These systems are able to modulate the level of arousal and 597 

neural gain, and show tight links with pupil responses (de Gee et al., 2017; de Gee, 598 

Knapen, & Donner, 2014; Joshi, Li, Kalwani, & Gold, 2015; McGinley, David, & 599 

McCormick, 2015). Accordingly, pre-stimulus alpha power suppression has also 600 

recently been linked to pupil dilation (Meindertsma et al., 2017). From this 601 

perspective, our results reconcile previous studies showing relationships between a 602 

liberal bias, suppression of spontaneous alpha power and increased pupil size. 603 

Consistent with this, a recent monkey study observed increased neural activity 604 

during a liberal bias in the superior colliculus (Crapse, Lau, & Basso, 2018), a mid-605 

brain structure tightly interconnected with the LC (Joshi et al., 2015). Taken together, 606 

a more liberal within-person bias (following experimental instruction and/or reward) 607 

might activate neuromodulatory systems that subsequently increase cortical 608 

excitability and enhance sensory responses for both stimulus and ‘noise’ signals in 609 

visual cortex, thereby increasing a person’s propensity for target-present responses 610 

(Iemi et al., 2017). 611 

We note that although the gain model is consistent with our data as well as 612 

the data on which the model was conceived (see Rajagovindan & Ding, 2011), we do 613 

not provide a plausible mechanism that could bring about the steepening in the U-614 

curved function observed in Figures 5C and 5F. Although Rajagovindan and Ding 615 

report a simulation in their paper suggesting that increased excitability could indeed 616 

cause increased gain, this shift could in principle either be caused by the alpha 617 

suppression itself, by the same signal that causes alpha suppression, or it could 618 

originate from an additional top-down signal from frontal brain regions. To investigate 619 

this latter possibility, we performed a control analysis contrasting the conditions 620 
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simultaneously across space, time and frequency to test whether any frontal brain 621 

region shows differences between conditions (see Figure 3 – figure supplement 1). 622 

We did not find any such regions, even when using a less stringent test by omitting 623 

the required correction for multiple comparisons. Thus, how exactly the gain 624 

enhancement comes about remains an open question that should be addressed in 625 

future research. 626 

Whereas we report a unique link between alpha-mediated gamma modulation 627 

and decision bias through the gain model, several previous studies have reported a 628 

link between alpha and objective performance instead of bias, particularly in the 629 

phase of alpha oscillations (Busch, Dubois, & VanRullen, 2009; Mathewson, Gratton, 630 

Fabiani, Beck, & Ro, 2009). Our findings can be reconciled with those by considering 631 

that detection sensitivity in many previous studies was often quantified in terms of 632 

raw stimulus detection rates, which do not dissociate objective sensitivity from 633 

response bias (see Figure 2B) (Green & Swets, 1966). Indeed, our findings are in 634 

line with recently reported links between decision bias and spontaneous fluctuations 635 

in excitability (Iemi et al., 2017; Iemi & Busch, 2017; Limbach & Corballis, 2016), 636 

suggesting an active role of neural excitability in decision bias.  637 

Further, one could ask whether the observed change in cortical excitability 638 

may reflect a change in target detection sensitivity (drift rate) rather than an 639 

intentional bias shift. This is unlikely because that would predict effects opposite to 640 

those we observed. We found increased excitability in the liberal condition compared 641 

to the conservative condition; if this were related to improved detection performance, 642 

one would predict higher sensitivity in the liberal condition, while we rather found 643 

higher sensitivity in the conservative condition (compare drift rate to drift bias in both 644 

conditions in Fig. 2C). This finding convincingly ties cortical excitability in our 645 
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paradigm to decision bias, as opposed to detection sensitivity. Convergently, other 646 

studies also report a link between pre-stimulus low-frequency EEG activity and 647 

subjective perception, but not objective task performance (Benwell et al., 2017; Iemi 648 

& Busch, 2017).  649 

In summary, our results suggest that stimulus-induced responses are boosted 650 

during a liberal decision bias due to increased cortical excitability, in line with recent 651 

work linking alpha power suppression to response gain (Peterson & Voytek, 2017). 652 

Future studies can now establish whether this same mechanism is at play in other 653 

subjective aspects of decision-making, such as confidence and meta-cognition 654 

(Fleming, Putten, & Daw, 2018; Samaha et al., 2017) as well as in a dynamically 655 

changing environment (Norton, Fleming, Daw, & Landy, 2017). Explicit manipulation 656 

of cortical response gain during a bias manipulation (by pharmacological 657 

manipulation of the noradrenergic LC-NE system; (Servan-Schreiber, Printz, & 658 

Cohen, 1990)) or by enhancing occipital alpha power using transcranial brain 659 

stimulation (Zaehle, Rach, & Herrmann, 2010) could further establish the underlying 660 

neural mechanisms involved in decision bias.  661 

In the end, although one may be unaware, every decision we make is 662 

influenced by biases that operate on one’s noisy evidence accumulation process. 663 

Understanding how these biases affect our decisions is crucial to enable us to 664 

control or invoke them adaptively (Pleskac, Cesario, & Johnson, 2017). Pinpointing 665 

the neural mechanisms underlying bias in the current elementary perceptual task 666 

may pave the way for understanding how more abstract and high-level decisions are 667 

modulated by decision bias (Tversky & Kahneman, 1974). 668 

 669 
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Figure 6 – Figure supplement 1.  690 

 691 

Figure supplement legends 692 

Figure 2—figure supplement 1 | Behavioral and neurophysiological evidence that participants were 693 

sensitive to the implicit task structure. A. Participant-average RT distributions for hits and false alarms 694 

in both conditions. The presence of similar RT distributions for false alarms and hits indicates that 695 

participants were sensitive to trial onset despite the fact that trial onsets were only implicitly signaled. 696 

Error bars, SEM. B. Time-frequency representations of low-frequency EEG power modulations with 697 

respect to the pre-stimulus period (–0.4 – 0 s), pooled across the two conditions. Significant low-698 

frequency modulation occurred even for nontarget trials without overt response (correct rejections), 699 

indicating that participants detected the onset of a trial even when neither a target was presented nor 700 

a response was given. Saturated colors indicate clusters of significant modulation, cluster threshold p 701 

< 0.05, two-sided permutation test across participants, cluster-�corrected; N = 15). Solid and dotted 702 

vertical lines respectively indicate the onset of the trial and the target stimulus. M, power modulation. 703 

 704 

Figure 2—figure supplement 2 | Signal-detection-theoretic (SDT) behavioral measures during 705 

both conditions correspond closely to drift diffusion modeling (DDM) parameters. A. Across-706 

participant Pearson correlation between d’ and drift rate for the two conditions. Each dot represents a 707 

participant. B. As A. but for correlation between criterion and DDM drift bias. The correlation is 708 

negative due to a lower criterion reflecting a stronger liberal bias. C. Left panel, mean reaction times 709 

(RT) for hits and false alarms for the two conditions. Middle and right panels, As A. but for correlation 710 

between RT for hits and drift bias. D. Parameter estimates in the drift bias DDM not related to 711 

evidence accumulation (drift rate). ***p < 0.001; n.s., not significant.  712 

 713 

Figure 2—figure supplement 3 | Single-participant drift diffusion model fits for the drift bias 714 

model for both conditions. Pink bars, number of implicit target-absent choices; Green bars, RT 715 

distribution quantiles for target-present choices; dotted lines, model fits for the drift bias model. 716 

 717 

Figure 3 – figure supplement 1 | Liberal – conservative contrast of EEG power modulations 718 

across space, time and frequency. The two conditions were contrasted across space-time-719 

frequency bins using paired t-tests performed at each bin. Single bins were subsequently thresholded 720 

at p < 0.05 and clusters of contiguous bins were determined. Cluster significance was assessed using 721 

a cluster-based permutation procedure (1000 permutations). For visualization purposes, we 722 

integrated (using the matlab trapz function) power modulation in the time-frequency representations 723 

(TFR’s, left panels) across the highlighted electrodes in the topographies (right panels). For the 724 

topographies, modulation was integrated across the saturated time-frequency bins in the TFR’s. 725 

Saturated colors indicate bins that are part of clusters. p-values above the topographies indicate 726 
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cluster significance level tested across participants; N = 14). A. We found one significant cluster of 727 

positive sign (p = 0.005) located in the most occipital electrodes (I1, I2, and Iz, extending towards 728 

parietal regions) spanning the complete high-frequency range (> 20 Hz), reflecting enhanced broad-729 

band gamma activity in the liberal condition. Note that our selected electrode pooling (see Figure 2) 730 

did not include these electrodes. B. Further, we observed one marginally significant negative cluster 731 

(p = 0.11) comprising the pre-stimulus alpha-suppression in the liberal condition (as reported in the 732 

manuscript) that was connected across time with alpha-beta band activity over motor cortex around 733 

the time of report (~0.5 s). Note that all participants responded with their right hand, yielding stronger 734 

left-lateralized motor-related activity. C. Finally, we observed a transient positive cluster around 10 Hz 735 

from 0.4 s post-trial onset with a spatial topography similar to the cluster in A, which was not 736 

significant (p = 0.35). This cluster possibly reflects either a stronger event-related potential, or 737 

stronger transient enhancement of theta oscillations (4–8 Hz) in the liberal condition around the time 738 

of the response. Topographies in all panels appear quite similar due to the strong modulation of the 739 

cluster depicted in panel A. However, the cortical locations of clusters in each panel are indicated by 740 

the thick black dots that indicate electrodes that are part of the cluster. Taken together, we observe no 741 

strong evidence for a frontal cluster that could potentially underlie the steepened inverse-U shape 742 

during the liberal condition observed in visual cortex. 743 

 744 

Figure 5 – figure supplement 1 | Gain model predictions and corresponding empirical data 745 

plotted as a function of pre-stimulus alpha bin number. A. Model predictions for both conditions. 746 

The gain curve for the liberal condition is steeper than for the conservative condition. Binning trials 747 

based on alpha within each condition directly maps the peaks of the gain curves onto each other. B. 748 

Model prediction for liberal – conservative as a function of alpha bin number. The difference gain 749 

curve between the two conditions is again an inverted-U shaped function. C. Corresponding empirical 750 

data. The plot is identical to Figure 5C, except that the bin number is plotted instead of the actual 751 

alpha power for each condition.  752 

 753 

Figure 6 – figure supplement 1 | Alpha-binned post-stimulus SSVEP modulation. A. Inverted-U 754 

shaped relationship between alpha and SSVEP modulation, computed as the percent signal change 755 

23 – 27 Hz power modulation with respect to the pre-stimulus baseline. B. Correlations between 756 

SSVEP modulation and drift bias for both conditions. These non-significant correlations are overall 757 

weaker than for gamma (see Figure 6). 758 

 759 

References 760 

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-761 
norepinephrine function: adaptive gain and optimal performance. Annual Review 762 
of Neuroscience, 28(1), 403–450. 763 
http://doi.org/10.1146/annurev.neuro.28.061604.135709 764 

Bakdash, J. Z., & Marusich, L. R. (2017). Repeated Measures Correlation. Frontiers 765 
in Psychology, 8, 491. http://doi.org/10.3389/fpsyg.2017.00456 766 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 33

Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J.-M., Oostenveld, R., Dowdall, 767 
J. R., et al. (2015). Visual Areas Exert Feedforward and Feedback Influences 768 
through Distinct Frequency Channels. Neuron, 85(2), 390–401. 769 
http://doi.org/10.1016/j.neuron.2014.12.018 770 

Benwell, C. S. Y., Tagliabue, C. F., Veniero, D., Cecere, R., Savazzi, S., & Thut, G. 771 
(2017). Pre-stimulus EEG power predicts conscious awareness but not objective 772 
visual performance. eNeuro, 4(6), ENEURO.0182–17.2017. 773 
http://doi.org/10.1523/ENEURO.0182-17.2017 774 

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics 775 
of optimal decision making: A formal analysis of models of performance in two-776 
alternative forced-choice tasks. Psychological Review, 113(4), 700–765. 777 
http://doi.org/10.1037/0033-295X.113.4.700 778 

Busch, N. A., Dubois, J., & VanRullen, R. (2009). The Phase of Ongoing EEG 779 
Oscillations Predicts Visual Perception. Journal of Neuroscience, 29(24), 7869–780 
7876. http://doi.org/10.1523/JNEUROSCI.0113-09.2009 781 

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. 782 
Science (New York, NY), 304(5679), 1926–1929. 783 
http://doi.org/10.1126/science.1099745 784 

Crapse, T. B., Lau, H., & Basso, M. A. (2018). A Role for the Superior Colliculus in 785 
Decision Criteria. Neuron, 97(1), 181–194.e6. 786 
http://doi.org/10.1016/j.neuron.2017.12.006 787 

de Gee, J. W., Colizoli, O., Kloosterman, N. A., Knapen, T., Nieuwenhuis, S., & 788 
Donner, T. H. (2017). Dynamic modulation of decision biases by brainstem 789 
arousal systems. eLife, 6, 309. http://doi.org/10.7554/eLife.23232 790 

de Gee, J. W., Knapen, T., & Donner, T. H. (2014). Decision-related pupil dilation 791 
reflects upcoming choice and individual bias. Proceedings of the National 792 
Academy of Sciences of the United States of America, 111(5), E618–25. 793 
http://doi.org/10.1073/pnas.1317557111 794 

Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating 795 
synaptic conductances recreate in vivo-like activity in neocortical neurons. 796 
Neuroscience, 107(1), 13–24. http://doi.org/10.1016/S0306-4522(01)00344-X 797 

Donner, T. H., & Siegel, M. (2011). A framework for local cortical oscillation patterns. 798 
Trends in Cognitive Sciences, 15(5), 191–199. 799 
http://doi.org/10.1016/j.tics.2011.03.007 800 

Efron, B., & Tibshirani, R. (1998). The problem of regions. The Annals of Statistics, 801 
26(5), 1687–1718. http://doi.org/10.1214/aos/1024691353 802 

Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. F. (2007). Masking disrupts 803 
reentrant processing in human visual cortex. Journal of Cognitive Neuroscience, 804 
19(9), 1488–1497. 805 
http://doi.org/10.1162/jocn.2007.19.9.1488&url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx&r806 
ft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Masking 807 

Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. F. (2008). The spatiotemporal 808 
profile of cortical processing leading up to visual perception. Journal of Vision, 809 
8(1), 12–12. http://doi.org/10.1167/8.1.12 810 

Fetsch, C. R., Kiani, R., & Shadlen, M. N. (2014). Predicting the Accuracy of a 811 
Decision: A Neural Mechanism of Confidence. Cold Spring Harbor Symposia on 812 
Quantitative Biology, 79, 185–197. http://doi.org/10.1101/sqb.2014.79.024893 813 

Fleming, S. M., Putten, E. J., & Daw, N. D. (2018). Neural mediators of changes of 814 
mind about perceptual decisions. Nature Neuroscience, 21(4), 617–624. 815 
http://doi.org/10.1038/s41593-018-0104-6 816 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 34

Freeman, W. J. (1979). Nonlinear gain mediating cortical stimulus-response 817 
relations. Biological Cybernetics, 33(4), 237–247. 818 
http://doi.org/10.1007/BF00337412 819 

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual 820 
Review of Neuroscience, 30, 535–574. 821 
http://doi.org/10.1146/annurev.neuro.29.051605.113038 822 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. 823 
Society, 1, 521. 824 

Hassler, U., Trujillo-Barreto, N., & Gruber, T. (2011). Induced gamma band 825 
responses in human EEG after the control of miniature saccadic artifacts. 826 
NeuroImage, 57(4), 1411–1421. http://doi.org/10.1016/j.neuroimage.2011.05.062 827 

Hipp, J. F., & Siegel, M. (2013). Dissociating neuronal gamma-band activity from 828 
cranial and ocular muscle activity in EEG. Frontiers in Human Neuroscience, 7, 829 
338. http://doi.org/10.3389/fnhum.2013.00338 830 

Iemi, L., & Busch, N. A. (2017). Moment-to-moment fluctuations in neuronal 831 
excitability bias subjective perception rather than decision-making. bioRxiv, 832 
151324. http://doi.org/10.1101/151324 833 

Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous Neural 834 
Oscillations Bias Perception by Modulating Baseline Excitability. The Journal of 835 
Neuroscience : the Official Journal of the Society for Neuroscience, 37(4), 807–836 
819. http://doi.org/10.1523/JNEUROSCI.1432-16.2017 837 

Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory 838 
alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186. 839 
http://doi.org/10.3389/fnhum.2010.00186 840 

Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2015). Relationships between Pupil 841 
Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate 842 
Cortex. Neuron, 0(0), 221–234. http://doi.org/10.1016/j.neuron.2015.11.028 843 

Kiani, R., Hanks, T. D., & Shadlen, M. N. (2008). Bounded Integration in Parietal 844 
Cortex Underlies Decisions Even When Viewing Duration Is Dictated by the 845 
Environment. Journal of Neuroscience, 28(12), 3017–3029. 846 
http://doi.org/10.1523/JNEUROSCI.4761-07.2008 847 

Kloosterman, N. A., de Gee, J. W., Werkle-Bergner, M., Lindenberger, U., Garrett, D. 848 
D., & Fahrenfort, J. J. (2018). Data from: Humans strategically shift decision bias 849 
by flexibly adjusting sensory evidence accumulation in visual cortex. 850 
http://doi.org/https://doi.org/10.6084/m9.figshare.6142940 851 

Kloosterman, N. A., Meindertsma, T., Hillebrand, A., van Dijk, B. W., Lamme, V. A. 852 
F., & Donner, T. H. (2015). Top-down modulation in human visual cortex predicts 853 
the stability of a perceptual illusion. Journal of Neurophysiology, 113(4), 1063–854 
1076. http://doi.org/10.1152/jn.00338.2014 855 

Lamme, V. A. (1995). The neurophysiology of figure-ground segregation in primary 856 
visual cortex. Journal of Neuroscience, 15(2), 1605–1615. 857 
http://doi.org/10.1523/JNEUROSCI.15-02-01605.1995 858 

Lamme, V. A. F., Zipser, K., & Spekreijse, H. (2006). Masking Interrupts Figure-859 
Ground Signals in V1. Dx.Doi.org, 14(7), 1044–1053. 860 
http://doi.org/10.1162/089892902320474490 861 

Limbach, K., & Corballis, P. M. (2016). Pre-stimulus alpha power influences 862 
response criterion in a detection task. Psychophysiology, 53(8), 1154–1164. 863 
http://doi.org/10.1111/psyp.12666 864 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 35

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and 865 
MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. 866 
http://doi.org/10.1016/j.jneumeth.2007.03.024 867 

Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To See or 868 
Not to See: Pre-stimulus α Phase Predicts Visual Awareness. Journal of 869 
Neuroscience, 29(9), 2725–2732. http://doi.org/10.1523/JNEUROSCI.3963-870 
08.2009 871 

McGinley, M. J., David, S. V., & McCormick, D. A. (2015). Cortical Membrane 872 
Potential Signature of Optimal States for Sensory Signal Detection. Neuron, 873 
87(1), 179–192. http://doi.org/10.1016/j.neuron.2015.05.038 874 

Meindertsma, T., Kloosterman, N. A., Nolte, G., Engel, A. K., & Donner, T. H. (2017). 875 
Multiple Transient Signals in Human Visual Cortex Associated with an 876 
Elementary Decision. Journal of Neuroscience, 37(23), 5744–5757. 877 
http://doi.org/10.1523/JNEUROSCI.3835-16.2017 878 

Melloni, L., Schwiedrzik, C. M., Wibral, M., Rodriguez, E., & Singer, W. (2009). 879 
Response to: Yuval-Greenberg et al., “Transient Induced Gamma-Band 880 
Response in EEG as a Manifestation of Miniature Saccades.” Neuron 58, 429-881 
441. Neuron, 62(1), 8–10– author reply 10–12. 882 
http://doi.org/10.1016/j.neuron.2009.04.002 883 

Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., & Fries, P. 884 
(2016). Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward 885 
Influences among Human Visual Cortical Areas. Neuron, 89(2), 384–397. 886 
http://doi.org/10.1016/j.neuron.2015.12.018 887 

Mitra, P. P., & Pesaran, B. (1999). Analysis of Dynamic Brain Imaging Data. 888 
Biophysical Journal, 76(2), 691–708. http://doi.org/10.1016/S0006-889 
3495(99)77236-X 890 

Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. 891 
(2012). Bias in the brain: a diffusion model analysis of prior probability and 892 
potential payoff. The Journal of Neuroscience : the Official Journal of the Society 893 
for Neuroscience, 32(7), 2335–2343. http://doi.org/10.1523/JNEUROSCI.4156-894 
11.2012 895 

Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian information criterion: 896 
background, derivation, and applications. Wiley Interdisciplinary Reviews: 897 
Computational Statistics, 4(2), 199–203. http://doi.org/10.1002/wics.199 898 

Ni, J., Wunderle, T., Lewis, C. M., Desimone, R., Diester, I., & Fries, P. (2016). 899 
Gamma-Rhythmic Gain Modulation. Neuron, 92(1), 240–251. 900 
http://doi.org/10.1016/j.neuron.2016.09.003 901 

Norton, E. H., Fleming, S. M., Daw, N. D., & Landy, M. S. (2017). Suboptimal 902 
Criterion Learning in Static and Dynamic Environments. PLoS Computational 903 
Biology, 13(1), e1005304–28. http://doi.org/10.1371/journal.pcbi.1005304 904 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open 905 
source software for advanced analysis of MEG, EEG, and invasive 906 
electrophysiological data. Computational Intelligence and Neuroscience, 2011(1), 907 
1–9. http://doi.org/10.1155/2011/156869 908 

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for 909 
scalp potential and current density mapping. Electroencephalography and 910 
Clinical Neurophysiology, 72(2), 184–187. http://doi.org/10.1016/0013-911 
4694(89)90180-6 912 

Peterson, E. J., & Voytek, B. (2017). Alpha oscillations control cortical gain by 913 
modulating excitatory-inhibitory background activity. Biorxiv.org 914 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 36

. http://doi.org/https://doi.org/10.1101/185074 915 
Pleskac, T. J., Cesario, J., & Johnson, D. J. (2017). How race affects evidence 916 

accumulation during the decision to shoot. Psychonomic Bulletin & Review, 917 
18(2), 1–30. http://doi.org/10.3758/s13423-017-1369-6 918 

Popov, T., Kastner, S., & Jensen, O. (2017). FEF-Controlled Alpha Delay Activity 919 
Precedes Stimulus-Induced Gamma-Band Activity in Visual Cortex. Journal of 920 
Neuroscience, 37(15), 4117–4127. http://doi.org/10.1523/JNEUROSCI.3015-921 
16.2017 922 

Rajagovindan, & Ding, M. (2011). From pre-stimulus alpha oscillation to visual-923 
evoked response: an inverted-U function and its attentional modulation. Journal 924 
of Cognitive Neuroscience, 23(6), 1379–1394. 925 
http://doi.org/10.1162/jocn.2010.21478 926 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–927 
108. http://doi.org/10.1037//0033-295X.85.2.59 928 

Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive 929 
Psychology, 53(3), 195–237. http://doi.org/10.1016/j.cogpsych.2005.10.002 930 

Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for 931 
Two-Choice Decision Tasks. Neural Computation, 20(4), 873–922. 932 
http://doi.org/10.1162/neco.2008.12-06-420 933 

Ratcliff, R., Huang-Pollock, C., & McKoon, G. (2016, August 15). Modeling Individual 934 
Differences in the Go/No-Go Task With a Diffusion Model. http://doi.org/http:// 935 
dx.doi.org/10.1037/dec0000065 936 

Samaha, J., Iemi, L., & Postle, B. R. (2017). Pre-stimulus alpha-band power biases 937 
visual discrimination confidence, but not accuracy. Consciousness and 938 
Cognition. http://doi.org/10.1016/j.concog.2017.02.005 939 

Servan-Schreiber, D., Printz, H., & Cohen, J. D. (1990). A network model of 940 
catecholamine effects: gain, signal-to-noise ratio, and behavior. Science (New 941 
York, NY), 249(4971), 892–895. 942 

Supèr, H., Spekreijse, H., letters, V. L. N., 2003. (2003). Figure–ground activity in 943 
primary visual cortex (V1) of the monkey matches the speed of behavioral 944 
response. Elsevier 945 

, 344(2), 75–78. http://doi.org/10.1016/S0304-3940(03)00360-4 946 
Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and 947 

Biases. Science (New York, NY), 185(4157), 1124–1131. 948 
http://doi.org/10.1126/science.185.4157.1124 949 

Urai, A. E., de Gee, J. W., & Donner, T. H. (2018). Choice history biases subsequent 950 
evidence accumulation. bioRxiv, 251595. http://doi.org/10.1101/251595 951 

van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der 952 
Togt, C., & Roelfsema, P. R. (2014). Alpha and gamma oscillations characterize 953 
feedback and feedforward processing in monkey visual cortex. Proceedings of 954 
the National Academy of Sciences of the United States of America, 111(40), 955 
14332–14341. http://doi.org/10.1073/pnas.1402773111 956 

Werkle-Bergner, M., Grandy, T. H., Chicherio, C., Schmiedek, F., Lovden, M., & 957 
Lindenberger, U. (2014). Coordinated within-Trial Dynamics of Low-Frequency 958 
Neural Rhythms Controls Evidence Accumulation. Journal of Neuroscience, 959 
34(25), 8519–8528. http://doi.org/10.1523/JNEUROSCI.3801-13.2014 960 

White, C. N., & Poldrack, R. A. (2014). Decomposing bias in different types of simple 961 
decisions. Journal of Experimental Psychology Learning, Memory, and 962 
Cognition, 40(2), 385–398. http://doi.org/10.1037/a0034851 963 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 37

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian 964 
estimation of the Drift-Diffusion Model in Python. Frontiers in Neuroinformatics, 7. 965 
http://doi.org/10.3389/fninf.2013.00014 966 

Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I., & Deouell, L. Y. (2008). 967 
Transient Induced Gamma-Band Response in EEG as a Manifestation of 968 
Miniature Saccades. Neuron, 58(3), 429–441. 969 
http://doi.org/10.1016/j.neuron.2008.03.027 970 

Zaehle, T., Rach, S., & Herrmann, C. S. (2010). Transcranial Alternating Current 971 
Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE, 972 
5(11), e13766. http://doi.org/10.1371/journal.pone.0013766 973 

 974 
 975 

Materials and Methods 976 

Participants Sixteen participants (eight females, mean age 24.1 years, ± 1.64) took 977 

part in the experiment, either for financial compensation (EUR 10, - per hour) or in 978 

partial fulfillment of first year psychology course requirements. Each participant 979 

completed three experimental sessions on different days, each session lasting ca. 2 980 

hours, including preparation and breaks. One participant completed only two 981 

sessions, yielding a total number of sessions across subjects of 47. Due to technical 982 

issues, for one session only data for the liberal condition was available. One 983 

participant was an author. All participants had normal or corrected-to-normal vision 984 

and were right handed. Participants provided written informed consent before the 985 

start of the experiment. All procedures were approved by the ethics committee of the 986 

University of Amsterdam. 987 

Regarding sample size, our experiment consisted of 16 biological replications 988 

(participants) and either two (one participant) or three (fifteen participants) technical 989 

replications (i.e. experimental sessions). The sample size was determined based on 990 

two criteria: 1) obtaining large amounts of data per participant (thousands of trials), 991 

which is necessary to perform robust drift diffusion modelling of choice behavior and 992 

obtain reliable EEG spectral power estimates for each of the ten bins of trials that 993 
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were created within participants, and 2) obtaining data from a sufficient number of 994 

participants to leverage across-subject variability in correlational analyses. Thus, we 995 

emphasized obtaining many data points per participant relative to obtaining many 996 

participants, while still preserving the ability to perform correlations across 997 

participants. 998 

All participants were included in the signal-detection-theoretical and drift 999 

diffusion modeling analyses (Figure 2). One participant was excluded from the pre-1000 

stimulus alpha analysis (Figures 3 and 4) due to excessive noise (EEG power 1001 

spectrum opposite of 1/frequency). One further participant was excluded from the 1002 

gamma analyses (Figures 4, 5 and 6) because the liberal-conservative difference in 1003 

gamma power in this participant was > 3 standard deviations away from the other 1004 

participants.  1005 

Stimuli Stimuli consisted of a continuous semi-random rapid serial visual 1006 

presentation (rsvp) of full screen texture patterns. The texture patterns consisted of 1007 

line elements approx. 0.07° thick and 0.4° long in visual angle. Each texture in the 1008 

rsvp was presented for 40 ms (i.e. stimulation frequency 25 Hz), and was oriented in 1009 

one of four possible directions: 0°, 45°, 90° or 135°. Participants were instructed to 1010 

fixate a red dot in the center of the screen. At random inter trial intervals (ITI’s) 1011 

sampled from a uniform distribution (ITI range 0.3 – 2.2 s), the rsvp contained a fixed 1012 

sequence of 25 texture patterns, which in total lasted one second. This fixed 1013 

sequence consisted of four stimuli preceding a (non-)target stimulus (orientations of 1014 

45°, 90°, 0°, 90° respectively) and twenty stimuli following the (non)-target 1015 

(orientations of 0°, 90°, 0°, 90°, 0°, 45°, 0°, 135°, 90°, 45°, 0°, 135°, 0°, 45°, 90°, 45°, 1016 

90°, 135°, 0°, 135° respectively) (see Figure 2A). The fifth texture pattern within the 1017 

sequence (occurring from 0.16 s after sequence onset) was either a target or a 1018 
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nontarget stimulus. Nontargets consisted of either a 45° or a 135° homogenous 1019 

texture, whereas targets contained a central orientation-defined square of 2.42° 1020 

visual angle, thereby consisting of both a 45° and a 135° texture. 50% of all targets 1021 

consisted of a 45° square and 50% of a 135° square. Of all trials, 75% contained a 1022 

target and 25% a nontarget. Target and nontarget trials were presented in random 1023 

order. To avoid specific influences on target stimulus visibility due to presentation of 1024 

similarly or orthogonally oriented texture patterns temporally close in the cascade, no 1025 

45° and 135° oriented stimuli were presented directly before or after presentation of 1026 

the target stimulus. All stimuli had an isoluminance of 72.2 cd/m2. Stimuli were 1027 

created using MATLAB (The Mathworks, Inc., Natick, MA, USA) and presented using 1028 

Presentation (Neurobehavioral systems, Inc., Albany, CA, USA).  1029 

Experimental design The participants’ task was to detect and actively report targets 1030 

by pressing a button using their right hand. Targets occasionally went unreported, 1031 

presumably due to constant forward and backward masking by the continuous 1032 

cascade of stimuli and unpredictability of target timing (Fahrenfort, Scholte, & 1033 

Lamme, 2007). The onset of the fixed order of texture patterns preceding and 1034 

following (non-)target stimuli was neither signaled nor apparent.  1035 

At the beginning of the experiment, participants were informed they could 1036 

earn a total bonus of EUR 30, -, on top of their regular pay of EUR 10, - per hour or 1037 

course credit. In two separate conditions within each session of testing, we 1038 

encouraged participants to use either a conservative or a liberal bias for reporting 1039 

targets using both aversive sounds as well as reducing their bonus after errors. In 1040 

the conservative condition, participants were instructed to only press the button 1041 

when they were relatively sure they had seen the target. The instruction on screen 1042 

before block onset read as follows: “Try to detect as many targets as possible. Only 1043 
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press when you are relatively sure you just saw a target.” To maximize effectiveness 1044 

of this instruction, participants were told the bonus would be diminished by ten cents 1045 

after a false alarm. During the experiment, a loud aversive sound was played after a 1046 

false alarm to inform the participant about an error. During the liberal condition, 1047 

participants were instructed to miss as few targets as possible. The instruction on 1048 

screen before block onset read as follows: “Try to detect as many targets as 1049 

possible. If you sometimes press when there was nothing this is not so bad”. In this 1050 

condition, the loud aversive sound was played twice in close succession whenever 1051 

they failed to report a target, and three cents were subsequently deducted from their 1052 

bonus. The difference in auditory feedback between both conditions was included to 1053 

inform the participant about the type of error (miss or false alarm), in order to 1054 

facilitate the desired bias in both conditions. After every block, the participant’s score 1055 

(number of missed targets in the liberal condition and number of false alarms in the 1056 

conservative condition) was displayed on the screen, as well as the remainder of the 1057 

bonus. After completing the last session of the experiment, every participant was 1058 

paid the full bonus as required by the ethical committee. 1059 

Participants performed six blocks per session lasting ca. nine minutes each. 1060 

During a block, participants continuously monitored the screen and were free to 1061 

respond by button press whenever they thought they saw a target. Each block 1062 

contained 240 trials, of which 180 target and 60 nontarget trials. The task instruction 1063 

was presented on the screen before the block started. The condition of the first block 1064 

of a session was counterbalanced across participants. Prior to EEG recording in the 1065 

first session, participants performed a 10-minute practice run of both conditions, in 1066 

which visual feedback directly after a miss (liberal condition) or false alarm 1067 

(conservative) informed participants about their mistake, allowing them to adjust their 1068 
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decision bias accordingly. There were short breaks between blocks, in which 1069 

participants indicated when they were ready to begin the next block. 1070 

Behavioral analysis We calculated each participant’s criterion c (Green & Swets, 1071 

1966) across the trials in each condition as follows: 1072 

� � �
1

2
 ��	
��‐ �����  �  �	��‐ ������ 

where hit-rate is the proportion target-present responses of all target-present trials, 1073 

false alarm (FA)-rate is the proportion target-present responses of all target-absent 1074 

trials, and Z(...) is the inverse standard normal distribution. Furthermore, we 1075 

calculated objective sensitivity measure d’ using: 1076 

 1077 

�� � �	
��‐ ����� �  �	��‐ ����� 

 1078 

as well as by subtracting hit and false alarm rates. Reaction times (RTs) were 1079 

measured as the duration between target onset and button press. 1080 

Drift diffusion modeling of choice behavior In order to be detected, the 40 ms-1081 

duration figure-ground targets used in our study undergo a process in visual cortex 1082 

called figure-ground segregation. This process has been well characterized in man 1083 

and monkey (Fahrenfort, Scholte, & Lamme, 2008; Lamme, 1995; Lamme, Zipser, & 1084 

Spekreijse, 2006; Supèr, Spekreijse, letters, 2003, 2003), and results from recurrent 1085 

processing to extract the surface region in visual cortex. Figure-ground segregation 1086 

is known to extend far beyond the mere presentation time of the stimulus, thus 1087 

providing a plausible neural basis for the evidence accumulation process. Further, a 1088 

central assumption of the drift diffusion model is that the process of evidence 1089 
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accumulation is gradual, independent of whether sensory input is momentary. 1090 

Indeed, the DDM was initially developed to explain reaction time distributions during 1091 

memory retrieval, in which evidence accumulation must occur through retrieval of a 1092 

memory trace within the brain, in the complete absence of external stimulus at the 1093 

time of the decision (Ratcliff, 1978). Our observed RT distributions show the typical 1094 

features that occur across many different types of decision and memory tasks, which 1095 

the DDM is so well able to capture, including a sharp leading edge and a long tail of 1096 

the distributions (see Figure 2-supplement 3). The success of the DDM in fitting 1097 

these data is consistent with previous work (e.g. Ratcliff (2006)) and might reflect the 1098 

fact that observers modulate the underlying components of the decision process also 1099 

when they do not control the stimulus duration (Kiani, Hanks, & Shadlen, 2008). 1100 

 We fitted the drift diffusion model to our behavioral data for each subject 1101 

individually, and separately for the liberal and conservative conditions. We fitted the 1102 

model using a G square method based on quantile RT’s (RT cutoff, 200 ms, for 1103 

details, see Ratcliff et al. (2016)), using a modified version of the HDDM 0.6.0 1104 

package (Wiecki, Sofer, & Frank, 2013). The RT distributions for target-present 1105 

responses were represented by the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles, and, along 1106 

with the associated response proportions, contributed to G square. In addition, a 1107 

single bin containing the number of target-absent responses contributed to G square. 1108 

Fitting the model to RT distributions for target-present and target-absent choices 1109 

(termed ‘stimulus coding’ in Wiecki et al. (2013)), as opposed to the more common 1110 

fits of correct and incorrect choice RT’s (termed ‘accuracy coding’ in Wiecki et al. 1111 

(2013)), allowed us to estimate parameters that could have induced biases in 1112 

subjects’ behavior. 1113 
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 Parameter recovery simulations showed that letting both the starting point of 1114 

the accumulation process and drift bias (an evidence-independent constant added to 1115 

the drift toward one or the other bound) free to vary with experimental condition is 1116 

problematic for data with no explicit target-absent responses (data not shown). Thus, 1117 

to test whether shifts in drift bias or starting point underlie bias we fitted three 1118 

separate models. In the first model (‘fixed model’), we allowed only the following 1119 

parameters to vary between the liberal and conservative condition: (i) the mean drift 1120 

rate across trials; (ii) the separation between both decision bounds (i.e., response 1121 

caution); and (iii) the non-decision time (sum of the latencies for sensory encoding 1122 

and motor execution of the choice). Additionally, the bias parameters starting point 1123 

and drift bias were fixed for the experimental conditions. The second model (‘starting 1124 

point model’) was the same as the fixed model, except that we let the starting point 1125 

of the accumulation process vary with experimental condition, whereas the drift bias 1126 

was kept fixed for both conditions. The third model (‘drift bias model’) was the same 1127 

as the fixed model, except that we let the drift bias vary with experimental condition, 1128 

while the starting point was kept fixed for both conditions. We used Bayesian 1129 

Information Criterion (BIC) to select the model which provided the best fit to the data 1130 

(Neath & Cavanaugh, 2012). The BIC compares models based on their maximized 1131 

log-likelihood value, while penalizing for the number of parameters. 1132 

Distinguishing DDM drift bias and drift rate In our task, only target-present 1133 

responses were coupled to a behavioral response (button-press), so we could 1134 

measure reaction times only for these responses, whereas reaction times for target-1135 

absent responses remained implicit. Thus, in our fitting procedure, the RT 1136 

distributions for target-present responses were represented by the 0.1, 0.3, 0.5, 0.7 1137 

and 0.9 quantiles, and, along with the associated response proportions, contributed 1138 
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to G square. In addition, a single bin containing the number of target-absent 1139 

responses contributed to G square. It has been shown that such a diffusion model 1140 

with an implicit (no response) boundary can be fit to data with almost the same 1141 

accuracy as fitting the two-choice model to two-choice data (Ratcliff et al., 2016). In a 1142 

diffusion model with an implicit (no response) boundary, both an increase in drift rate 1143 

and drift criterion would predict faster target-present responses. However, the key 1144 

distinction is that an increase in drift additionally predicts more correct responses (for 1145 

both target-present and target-absent responses), and an increase in drift criterion 1146 

shifts the relative fraction of target-present and target-absent responses (decision 1147 

bias). Because a single bin containing the number of target-absent responses 1148 

contributed to G square, our fitting procedure can distinguish between decision bias 1149 

versus drift rate. 1150 

EEG recording Continuous EEG data were recorded at 256 Hz using a 48-channel 1151 

BioSemi Active-Two system (BioSemi, Amsterdam, the Netherlands), connected to a 1152 

standard EEG cap according to the international 10-20 system. Electrooculography 1153 

(EOG) was recorded using two electrodes at the outer canthi of the left and right 1154 

eyes and two electrodes placed above and below the right eye. Horizontal and 1155 

vertical EOG electrodes were referenced against each other, two for horizontal and 1156 

two for vertical eye movements (blinks). We used the Fieldtrip toolbox (Oostenveld, 1157 

Fries, Maris, & Schoffelen, 2011) and custom software in MATLAB R2016b (The 1158 

Mathworks Inc., Natick, MA, USA) to process the data (see below). Data were re-1159 

referenced to the average voltage of two electrodes attached to the earlobes.  1160 

Trial extraction and preprocessing We extracted trials of variable duration from 1 1161 

s before target sequence onset until 1.25 after button press for trials that included a 1162 

button press (hits and false alarms), and until 1.25 s after stimulus onset for trials 1163 
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without a button press (misses and correct rejects). The following constraints were 1164 

used to classify (non-)targets as detected (hits and false alarms), while avoiding the 1165 

occurrence of button presses in close succession to target reports and button 1166 

presses occurring outside of trials: 1) A trial was marked as detected if a response 1167 

occurred within 0.84 s after target onset; 2) when the onset of the next target 1168 

stimulus sequence started before trial end, the trial was terminated at the next trial’s 1169 

onset; 3) when a button press occurred in the 1.5 s before trial onset, the trial was 1170 

extracted from 1.5 s after this button press; 4) when a button press occurred 1171 

between 0.5 s before until 0.2 s after sequence onset, the trial was discarded. See 1172 

Kloosterman et al. (2015) and Meindertsma et al. (2017) for similar trial extraction 1173 

procedures. After trial extraction, channel time courses were linearly detrended and 1174 

the mean of every channel was removed per trial.  1175 

Artifact rejection Trials containing muscle artifacts were rejected from further 1176 

analysis using a standard semi-automatic preprocessing method in Fieldtrip. This 1177 

procedure consists of bandpass-filtering the trials of a condition block in the 110–125 1178 

Hz frequency range, which typically contains most of the muscle artifact activity, 1179 

followed by a Z-transformation. Trials exceeding a threshold Z-score were removed 1180 

completely from analysis. We used as the threshold the absolute value of the 1181 

minimum Z-score within the block, + 1. To remove eye blink artifacts from the time 1182 

courses, the EEG data from a complete session were transformed using 1183 

independent component analysis (ICA), and components due to blinks (typically one 1184 

or two) were removed from the data. In addition, to remove microsaccade-related 1185 

artifacts we included two virtual channels in the ICA based on channels Fp1 and 1186 

Fp2, which included transient spike potentials as identified using the saccadic 1187 

artefact detection algorithm from Hassler et al. (2011). This yielded a total number of 1188 
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channels submitted to ICA of 48 + 2 = 50. The two components loading high on 1189 

these virtual electrodes (typically with a frontal topography) were also removed. 1190 

Blinks and eye movements were then semi-automatically detected from the 1191 

horizontal and vertical EOG (frequency range 1–15 Hz; z-value cut-off 4 for vertical; 1192 

6 for horizontal) and trials containing eye artefacts within 0.1 s around target onset 1193 

were discarded. This step was done to remove trials in which the target was not 1194 

seen because the eyes were closed. Finally, trials exceeding a threshold voltage 1195 

range of 200 μV were discarded. To attenuate volume conduction effects and 1196 

suppress any remaining microsaccade-related activity, the scalp current density 1197 

(SCD) was computed using the second-order derivative (the surface Laplacian) of 1198 

the EEG potential distribution (Perrin et al., 1989). 1199 

Spectral analysis of EEG power We used a sliding window Fourier transform 1200 

((Mitra & Pesaran, 1999); step size, 50 ms; window length, 400 ms; frequency 1201 

resolution, 2.5 Hz) to calculate time-frequency representations (spectrograms) of the 1202 

EEG power for each electrode and each trial. We used a single Hann taper for the 1203 

frequency range of 3–35 Hz (spectral smoothing, 4.5 Hz, bin size, 1 Hz) and the 1204 

multitaper technique for the 36 – 100 Hz frequency range (spectral smoothing, 8 Hz; 1205 

bin size, 2 Hz; five tapers). See Kloosterman et al. (2015) and Meindertsma et al. 1206 

(2017) for similar settings. 1207 

Spectrograms were aligned to the onset of the stimulus sequence containing 1208 

the (non)target. Power modulations during the trials were quantified as the 1209 

percentage of power change at a given time point and frequency bin, relative to a 1210 

baseline power value for each frequency bin (Figure 3). We used as a baseline the 1211 

mean EEG power in the interval 0.4 to 0 s before trial onset, computed separately for 1212 

each condition. If this interval was not completely present in the trial due to 1213 
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preceding events (see Trial extraction), this period was shortened accordingly. We 1214 

normalized the data by subtracting the baseline from each time-frequency bin and 1215 

dividing this difference by the baseline (x 100 %). For the analysis of raw pre-1216 

stimulus power modulations, no baseline correction was applied on the raw scalp 1217 

current density values. We focused our analysis of EEG power modulations around 1218 

target onsets on those electrodes that processed the visual stimulus. To this end, we 1219 

averaged the power modulations or raw power across eleven occipito-parietal 1220 

electrodes that showed stimulus-induced responses in the gamma-band range (59–1221 

100 Hz). See Kloosterman et al. (2015) and Meindertsma et al. (2017) for a similar 1222 

procedure. 1223 

Condition-related raw EEG power change To test at which frequencies raw EEG 1224 

power differed for the liberal and conservative conditions, we averaged raw power 1225 

from 0.8 s up to 0.2 s before trial onset (i.e. up to half the window size used for 1226 

spectral analysis, to avoid contamination of post- with pre-stimulus activity (Iemi et 1227 

al., 2017)). Then, we took the liberal – conservative difference at each frequency bin 1228 

and statistically tested whether and at which frequency bins this signal differed from 1229 

zero (Figure 4C) (see Statistical comparisons). 1230 

Response gain model test To test the predictions of the gain model, we first 1231 

averaged activity in the 8–12 Hz range from 0.8 to 0.2 s before trial onset (staying 1232 

half our window size from trial onset, to avoid mixing pre- and poststimulus activity, 1233 

also see Iemi et al. (2017)), yielding a single scalar alpha power value per trial. If this 1234 

interval was not completely present in the trial due to preceding events (see Trial 1235 

extraction), this period was shortened accordingly. Trials in which the scalar was > 3 1236 

standard deviations away from the participant’s mean were excluded. We then 1237 

sorted all single-trial alpha values for each participant and condition in ascending 1238 
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order and assigned them to ten bins of equal size, ranging from weakest to strongest 1239 

alpha. Adjacent bin ranges overlapped for 50% to stabilize estimates. Then we 1240 

averaged the corresponding gamma modulation of the trials belonging to each bin 1241 

(consisting of the average power modulation within 59–100 Hz 0.2 to 0.6 s after trial 1242 

onset, see Figure 3). Finally, we averaged across participants and plotted the 1243 

median alpha value per bin averaged across participants against gamma 1244 

modulation. See Rajagovindan and Ding (2011) for a similar procedure. To 1245 

statistically test for the existence of inverted U-shaped relationships between alpha 1246 

and gamma, we performed a one-way repeated measures ANOVA on gamma 1247 

modulation with factor alpha bin (10 bins) to each condition separately and a two-1248 

way repeated measures ANOVA with factors bin and condition for testing the liberal–1249 

conservative difference (Figure 5F). Given the model prediction of a Gaussian-1250 

shaped relationship between alpha and gamma, we constructed a Gaussian contrast 1251 

using the normal Gaussian shape with unit standard deviation (contrast values: -1252 

1000, -991, -825, 295, 2521, 2521, 295, -825, -991, -1000, values were chosen to 1253 

sum to zero). For plotting purposes (Figure 5C-F), we computed within-subject error 1254 

bars by removing within each participant the mean across conditions from the 1255 

estimates.  1256 

Correlation between gamma modulation and drift bias To link DDM drift bias and 1257 

cortical gamma power, we re-fitted the DDM drift bias model while freeing the drift 1258 

bias parameter both for each condition as well as for the ten alpha bins, while freeing 1259 

the other parameters (drift rate, boundary separation, non-decision time) for each 1260 

condition and fixing starting point across conditions. We then used repeated 1261 

measures correlation to test whether stronger gamma was associated with stronger 1262 

bias. Repeated measures correlation determines the common within-individual 1263 
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association for paired measures assessed on two or more occasions for multiple 1264 

individuals by controlling for the specific range in which individuals’ measurements 1265 

operate, and correcting the correlation degrees of freedom for non-independence of 1266 

repeated measurements obtained from each individual. Specifically, the correlation 1267 

degrees of freedom were 14 participants × 10 observations – Number of participants 1268 

– 1 = 140 – 14 – 1 = 125. Repeated measures correlation tends to have much 1269 

greater statistical power than conventional correlation across individuals because 1270 

neither averaging nor aggregation is necessary for an intra-individual research 1271 

question. Please see Bakdash and Marusich (2017) for more information. We 1272 

assessed the impact of single observations on the correlations by excluding 1273 

observations exceeding five times the average Cook’s distance of all values within 1274 

each condition (five observations for liberal and four for conservative) and 1275 

recomputing the correlations. 1276 

Statistical comparisons We used two-sided permutation tests (10,000 1277 

permutations) (Efron & Tibshirani, 1998) to test the significance of behavioral effects 1278 

and the model fits. Permutation tests yield p = 0 if the observed value falls outside 1279 

the range of the null distribution. In these cases, p < 0.0001 is reported in the 1280 

manuscript. The standard deviation (s.d.) is reported as a measure of spread along 1281 

with all participant-averaged results reported in the text. To quantify power 1282 

modulations after (non-)target onset, we tested the overall power modulation for 1283 

significant deviations from zero. For these tests, we used a cluster-based 1284 

permutation procedure to correct for multiple comparisons (Maris & Oostenveld, 1285 

2007). For time-frequency representations of power modulation, this procedure was 1286 

conducted across all time-frequency bins. For frequency spectra, this procedure was 1287 

performed across all frequency bins. To test the existence of inverted-U shaped 1288 
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relationships between gamma and alpha bins, we conducted repeated measures 1289 

ANOVA’s and Gaussian shaped contrasts (see section Response gain model test for 1290 

details) using SPSS 23 (IBM, Inc.). We used Pearson correlation to test the link 1291 

between parameter estimates of the DDM and SDT frameworks and repeated 1292 

measures correlation to test the link between gamma power and drift bias (see 1293 

previous section). 1294 
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