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Recent theories propose that schizophrenia/schizotypy and autistic spectrum
disorder are related to impairments in Bayesian inference i.e. how the brain
integrates sensory information (likelihoods) with prior knowledge. However
existing accounts fail to clarify: i) how proposed theories differ in accounts of
ASD vs. schizophrenia and ii) whether the impairments result from weaker
priors or enhanced likelihoods. Here, we directly address these issues by
characterizing how 91 healthy participants, scored for autistic and schizotypal
traits, implicitly learned and combined priors with sensory information. This
was accomplished through a visual statistical learning paradigm designed to
quantitatively assess variations in individuals’ likelihoods and priors. The
acquisition of the priors was found to be intact along both traits spectra.
However, autistic traits were associated with more veridical perception and
weaker influence of expectations. Bayesian modeling revealed that this was
due not to weaker prior expectations but to more precise sensory

representations.

Introduction

In recent years Bayesian inference has come to be regarded as a general principle of brain
function that underlies not only perception and motor execution, but hierarchically extends

all the way to higher cognitive phenomena, such as belief formation and social cognition.
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Impairments of Bayesian inference have been proposed to underlie deficits observed in
mental illness, particularly schizophrenial® and autistic spectrum disorder (ASD)*’. The
general hypothesis for both disorders is that the weight, also called “precision”, ascribed to
sensory evidence and prior expectations is imbalanced, resulting in sensory evidence

having relatively too much influence on perception.

In schizophrenia, overweighting of sensory information could explain the decreased
susceptibility to perceptual illusions 8, as well as the peculiar tendency to jump to
conclusions °. Moreover, the systematically weakened low-level prior expectations might
lead to forming compensatory strong and idiosyncratic high-level priors (beliefs), which
would explain the emergence and persistence of delusions as well as reoccurring

hallucinations 3.

In ASD, the relatively stronger influence of sensory information could explain
hypersensitivity to sensory stimuli and extreme attention to details. The weaker influence of
prior expectations would also result in more variability in sensory experiences. The desire
for sameness and rigid behaviors could then be understood as an attempt to introduce more
predictability in one’s environment ‘. Furthermore, this could lead to prior expectations
which are too specific and which do not generalize across situations®. While all theories
agree that the relative influence of prior expectations is weaker in ASD, the primary source
of this imbalance is debated: does it arise from increased sensory precision (i.e. sharper
likelihood) or from reduced precision of prior expectations? 1*12 (Fig. 1). Some authors argue
for attenuated priors* !, while others argue for increased sensory precision &7 1013 but

conclusive experimental evidence is lacking.

A number of studies have aimed at testing Bayesian theories, either in a clinical population,
or by studying individual differences in the general population'*'” under the hypothesis of a
continuum between autistic/schizotypal traits and ASD/schizophrenia 2. Attenuated slow-
speed priors were reported in a motion perception task in individuals with ASD traits .
Autistic children also showed attenuated central tendency prior in temporal interval

reproduction?.
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Figure 1. Alternative hypotheses for ASD impairments within the Bayesian inference framework.
In Bayesian terms, the percept can be described as a posterior distribution, which is a
combination of sensory information (likelihood) and prior expectations (prior). Two contrasting

hypotheses have been proposed to underlie behavioural differences in ASD: enhanced sensory

precision, i.e. smaller Csens (left) vs. attenuated priors, i.e. larger Cexp (right). Both hypotheses
predict a reduced influence (bias) of the prior on the location of the posterior distribution
(posterior mean). However, these alternatives differ in their predictions for perceptual variability
(posterior width): the enhanced sensory precision hypothesis should lead to reduced variability
while the attenuated prior hypothesis should lead to increased variability. By measuring both

bias and variability, our experimental paradigm can distinguish between these two hypotheses.

Attenuated priors were also reported in perceptual tasks that incorporate probabilistic
reasoning '>22. However, the direction of gaze priors? and the light-from-above priors %
were found to be intact. Autistic children also demonstrated intact ability to update their
priors in a volatile environment in a decision-making task? but a follow-up study in ASD

adults showed that they overestimate volatility in a changing environment .

In schizophrenia/schizotypal traits, Teufel et al.’® reported increased influence of prior
expectations when disambiguating two-tone images, while Schmack et al.?* reported

weakened influence of stabilizing predictions when observing a bistable rotating sphere.

Overall, the existing findings are not only mixed, but also employ very different paradigms,
which makes their direct comparison difficult. Further, a critical limitation of most studies
(except for Karaminis et al.?!) is the lack of formal computational models that can test
whether behavioral differences originate from different priors or from different likelihoods.
Moreover, to our knowledge, despite the similarity of the Bayesian theories proposed for
ASD and schizophrenia, there is no previous work investigating both autistic and

schizotypal traits within the same experimental paradigm so as to test their differences.
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Figure 2: The moving dots task. (a) Sequence of events on a single trial. First, a fixation point is
presented. Next, a field of coherently moving dots is presented along with an estimation bar
(extending from the fixation point) which participants are required to move to indicate perceived
motion direction. Lastly, in a two-alternative forced choice, participants are asked to report
whether they saw the dots during the estimation part (detection task). (b) The probability of
different motion directions being presented: directions at +32° are presented more often than
other directions. Motion direction is plotted relative to a central reference angle (at 0°), which was

randomly set for each participant.

We here address these questions empirically in a context of visual motion perception. We
used a previously developed statistical learning task® in which participants have to estimate
the direction of motion of coherently moving clouds of dots (Fig. 2). Chalk et al.? found that
in this task healthy participants rapidly and implicitly develop prior expectations for the
most frequently presented motion directions. This in turn alters their perception of motion
on low contrast trials resulting in attractive estimation biases towards the most frequent
directions. In addition, prior expectations lead to reduced estimation variability and reaction
times, as well as increased detection performance for the most frequently presented
directions. When no stimulus is presented, the acquired expectations sometimes lead to
false alarms (‘hallucinations’), again, mostly in the most frequent directions. Importantly,
such biases were well described using a Bayesian model, where participants acquired a
perceptual prior for the visual stimulus that is combined with sensory information and
influences their perception. As such, this paradigm is well suited to quantitatively model

variations in likelihoods and priors in individuals with ASD or schizotypal traits.
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Results

Here, we investigated individual differences in statistical learning in relation to autistic and
schizotypal traits in a sample of 91 healthy participants. 8 participants failed to perform the
task satisfactorily and were excluded from the analysis (see Methods), leaving 83 participants

in the study (41 women and 42 men, age range: 18-69; mean: 25.7).

Task behavior at low contrast

First, we investigated whether participants acquired priors on the group level. We discarded
the first 170 trials as that is how long it took for the 2/1 and 4/1 staircases contrast levels to
converge (Supplementary Fig. 2) and for prior effects to become significant (Section 3 in
Supplementary Material). We analyzed task performance at low contrast levels (converged
2/1 and 4/1 staircases contrast levels) where sensory uncertainty is high. Replicating findings
of Chalk et al. (2010), we found that on the group level people acquired priors that
approximated the statistics of the task. Such priors were indicated by: attractive biases
towards +32° (Fig. 3a), less variability in estimations at +32° (Fig. 3b; standard deviation of
estimations 11.9+ 0.30"at +32° versus 13.84+2.38" over all other motion directions; signed rank
test: p<0.001), shorter estimation reaction times at +32'as compared to all other motion
directions (Fig. 3¢; average reaction time was 201.87 + 2.47 ms at +32° versus 207.75 + 2.60 ms
over all other motion directions; signed rank test: p < 0.001) and better detection at +32°as
compared to all other motion directions (Fig. 3d; detected 75.57 + 0.65% at +32°versus 66.70 +

0.83% over all other motion directions; signed rank test: p <0.001).

No-stimulus performance

Another indicator of acquired priors is the distribution of estimation responses on trials
when no actual stimulus was presented. We found that participants sometimes still reported
seeing dots (experienced "hallucinations’) but mostly so around +32° (Fig. 3f, solid line). To
quantify the statistical significance of "hallucinations” around +32> the space of possible
motion directions was divided into 45 bins of 16° and the probability of estimation within 8

of +32°was multiplied by the total number of bins:
Prel = P(Oest = +32(+87) - Nbins,, (1)

where Nbins is the number of bins (45), each of size 16°. This probability ratio would be
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equal to 1 if participants were equally likely to estimate within 8 of +32°, as they were to
estimate within other bins. We found that the median of Prel was significantly greater than 1

(median(Prel) = 1.6, p<0.001, signed rank test). Furthermore, the estimation distribution

when no dots where detected (Fig. 3f, dash-dot line) was found to be significantly flatter

(median(Prel) = 0, p < 0.001, signed rank test comparing with the median of Prel for
"hallucinations’), suggesting that the "hallucinations’” were indeed of perceptual nature

(rather than related to a response bias).

Task performance and autistic/schizotypy traits

Participants were prescreened to make sure they covered a wide range of autistic and
schizotypy scores. The AQ scores in our sample ranged from 6 to 41 with a mean (+SD) of

20.3 (£8.3). The RISC scores ranged from 8 to 55 with a mean of 31.7 (+11.9), and the SPQ
scores ranged from 4 to 59 with a mean of 26.4 (+13.8).

We found significant effects of autistic traits on the performance at low contrast trials: autistic
traits were associated with less bias (Fig. 4a; mean absolute estimation bias: p = -0.228, p = 0.039)
and less variability in estimations (Fig. 4b; mean standard deviation of estimations: p =—-0.357, p =
0.001). In the Bayesian framework, less bias could arise either due to wider priors or narrower
sensory likelihoods, while less variability could be a result of either narrower priors or narrower
likelihoods (see Fig. 1). Thus, observing less bias and less variability together suggests that the
effects are driven by narrower likelihoods. An alternative is that the differences in variability
could be due to differences in motor noise, which we further assess via modeling (below).
Schizotypy traits (RISC and SPQ scores) were found to have no effect on task performance at

low contrast as indicated by the absence of correlations with mean absolute estimation bias
(RISC: p = 0.132, p = 0.235; SPQ (N=39): p = -0.171, p = 0.298) and with mean estimation
variability (RISC: p = 0.209, p = 0.058; SPQ (N=39): p = -0.253, p = 0.120); see Supplementary

Fig. 3.
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Figure 3: Average group performance on low-contrast trials (a-d) and on trials with no stimulus
(e). (a) Mean estimation bias, (b) standard deviation of estimations, (c) estimation reaction time
and (d) fraction of trials in which the stimulus was detected. (f) Probability distribution of
estimation responses on trials without stimulus. The solid line denotes the estimation responses
when participants reported detecting a stimulus ("hallucinations’). The dash-dot line denotes
estimation distributions when participants correctly reported not detecting a stimulus. (e)
Distribution of "hallucinations’ for high and low AQ groups (median split). The vertical dashed
lines correspond to the two most frequently presented motion directions (+32°). Error bars and

shaded areas represent within-subject standard error.
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Figure 4: Correlations between AQ scores and task performance on low contrast trials (a, b) and
when no stimulus is presented (c). (a) Mean absolute bias (p=-0.228, p= 0.039), (b) mean standard
deviation of estimations (p = -0.357, p = 0.001), and (c) the total number of "hallucinations’ (p =
-0.270, p = 0.014).
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Figure 5. Bayesian model of estimation response for a single trial. The actual motion direction

(0,c¢) is corrupted by sensory noise (o ), and then combined with prior expectations (mean

sens

0 and uncertainty o is

exp ) to form a posterior distribution. The perceptual estimate (0

exp perc)

defined as the mean of the posterior distribution. Finally, motor noise (0,,) and a probability of
random response () are incorporated to generate the response (0,4 ). This results in 4 free model

parameters: o o 0 and . Motor noise (0,,) is estimated from high contrast trials and

sens’ “exp, “exp

is used as a fixed parameter.

No-stimulus trials and autistic/schizotypal traits

We also investigated how the traits affected performance on trials when no actual stimulus
was presented. First, we looked at the total number of estimations. We found that autistic
traits were associated with less "hallucinations’ (Fig. 4c; p = —0.270, p = 0.014), while
schizotypal traits were found to have no effect on the number of "hallucinations” (RISC: p =
0.151, p = 0.173; SPQ (N=39): p = 0.006, p = 0.971). Secondly, we looked for relationships
between the traits and how the estimations on no-stimulus trials were distributed.
Specifically, we were interested in whether the traits predicted how densely "hallucinations’
were distributed around +32°, as this could be considered to reflect the differences in the
width of the underlying acquired prior distribution. To determine this, we looked at the
fraction of total "hallucinations’ in the region around +32° for three different-sized windows:
1) Within 8, within 16°and within 24° of +32°. These measures suggested that none of the
traits had any effect on how ’hallucinations” were distributed, suggesting no differences in
the acquired prior distributions (fraction of hallucinations within 8 of +32°: AQ - p = 0.070, p
= 0.527; RISC - p =-0.106, p = 0.341; SPQ - p = 0.024, p = 0.882; within 16°of +32: AQ - p = -
0.093, p = 0.406; RISC - p =-0.197, p = 0.075; SPQ - p = 0.034, p = 0.837; within 24" of +32: AQ -
p=0.003, p=0.977; RISC - p =-0.070, p = 0.527; SPQ - p =0.147, p = 0.371).
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Modeling results
Group level results

To quantitatively evaluate the relationships between underlying perceptual mechanisms
and task performance we fitted a range of generative models. One class of models was
Bayesian - it was based on the assumption that participants combine prior expectations with

uncertain sensory information on a single trial basis (Fig. 5).

To account for the possibility that the bimodal probability distribution of the stimuli, in
addition to inducing prior expectations, has also affected the sensory likelihood, we
constructed three variations of the Bayesian model: 'BAYES’, where the sensory precision
was constrained to be the same across all presented motion directions, 'BAYES_varmin’,
where the sensory precision was allowed to be different for the most frequently presented
motion directions, but was the same across all other directions, and '‘BAYES_var’, where
sensory precision was allowed to be different across all motion directions. Another class of
models was based on the assumption that task performance can be explained by response
strategies that do not involve Bayesian inference. That is, on any given trial participants
responded based on the prior expectations or sensory information alone. We considered
four variations of response strategy models: "ADD1’, "ADD2’, "ADD1_m’ and "ADD2_m’
(see Methods for details).

To compare the models, we computed BIC values for each individual for each model; we used
individual BIC values as a summary statistic and compared the models using signed rank test
in order to preserve individual variability (Fig. 6a). We found that the BAYES model had

significantly smaller BIC values than the remaining models (see the p-values within Fig. 6a).
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Figure 6: Modelling results. (a) Model comparison for all participants using Bayesian

Information Criterion (BIC). y-axis measures the relative difference between BIC of each

model (as indicated on the x-axis) and BIC of BAYES model. Values greater than zero on the y-

axis indicate that the BAYES model provided a better fit. Each dot represents a participant.

Solid horizontal lines denote median values; doted horizontal lines denote 25th and 75th

percentiles. p-values above the plot indicate whether the median of the difference was

significantly different from zero for each model (signed rank test). Panels (a) and (c) present

task performance at different motion directions as predicted by BAYES model: (b) estimation

bias, (c) standard deviation of estimations. Error bars represent within-subject standard error.

(d) Population averaged prior as recovered via BAYES model. The vertical dashed lines

correspond to the two most frequently presented motion directions (+32°).
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Figure 8: Comparison of actual (x-axis) vs. recovered (y-axis) parameters using the "BAYES’ model.

(@) 0 - mean of the prior expectations (r = 0.77), (b) 0, ,, - uncertainty of the prior distribution (r =

exp exp

0.68), (c) o - uncertainty in the sensory likelihood (r = 0.88), (d) « - fraction of random

sens
estimations (r = 0.87). The dashed diagonal line is a reference line indicating perfect parameter

recovery.

Model parameters and autistic/schizotypal traits

Correlational analysis of BAYES model parameters and AQ revealed that autistic traits did

not have any effect on acquiring prior expectations. There was no correlation between AQ

0

and the mean of the acquired prior distribution Yexp, or between the AQ and the precision

of the prior “exp (Fig. 7a,b; p = 0.016, p = 0.884 and p = 0.002, p = 0.987, respectively).

Importantly, autistic traits were found to be strongly associated with less uncertainty in the

sensory likelihood, Ysens (Fig. 7c; p = —-0.285, p = 0.009). Moreover, the ratio between the
uncertainties of likelihood and prior was marginally significantly correlated with AQ (p = -0.211,
p = 0.055), consistent with smaller estimation biases found along the autistic traits. Finally, there
was no correlation with the amount of random estimations (Fig. 7d; p = —0.074, p = 0.509). Motor
noise, which was estimated from high contrast trials, separately from all other parameters (see
Methods), was also negatively correlated with autistic traits (p = -0.242, p = 0.028). On the other
hand, consistent with the absence of differences in the behavioral findings, schizotypal traits were

not associated with any difference in the BAYES model parameter values (Supplementary Fig. 5).
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Parameter recovery for BAYES

Finally, to further investigate that in our experimental paradigm the influence of stronger
likelihoods can be distinguished from that of weaker priors!'®! we performed parameter
recovery for the winning BAYES model. Parameter recovery involves generating synthetic
data with different sets of parameters ("actual parameters’) and then fitting the same model
to estimate the parameters (‘recovered parameters’) that are most likely to have produced
the data. If actual and recovered parameters are in a good agreement, it means that the
effects of different parameters can be reliably distinguished. At the same time, parameter
recovery is also affected by the parameter estimation methods and even more so by the
amount of data used for model fitting. Therefore, parameter recovery provides an overall
check for the reliability of modelling results and is recommended as an essential step in

computational modelling approaches .

We found that overall BAYES model (and MLE parameter estimation using simplex

optimization function) recovered parameters well (Fig. 8).

Parameter of the highest relevance for our results, the uncertainty in the sensory likelihood”

o was recovered most reliably (r = 0.88), followed by the fraction of random

sens’

estimations, a (r = 0.87), the mean of the prior expectations distribution, 0 0.77) and

exp (1=

the uncertainty in prior expectations, o 0.68).

exp (1=

Discussion

In this study, we investigated whether autistic and schizotypal traits are associated with
differences in the implicit Bayesian inference performed by the brain. Specifically, we
wanted to know whether autistic and schizotypal traits are accompanied by 1) differences in
how the priors are updated and/or in their precision and/or by 2) differences in the
precision with which the sensory information (the likelihood) is represented. We used a
visual motion estimation task? that induces implicit prior expectations via more frequent
exposure of two motion directions (+32°7). We found that on the group level (N=83)
participants acquired prior expectations towards +32° motion directions. This was indicated
by shorter estimation reaction times and better detection at +32°, as well as attractive biases

towards +32°and reduced estimation variability at +32°. Moreover, when no stimulus was
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presented, participants sometimes still reported seeing the stimulus, mostly around +32-.
Performance was best explained by a simple Bayesian model, which provided a good fit to
the data and captured the characteristic features of perceptual bias and variability. This
model provided estimates of Bayesian priors and sensory likelihoods for each participant,

which were then analyzed in relation to participants” schizotypal and autistic traits.

Schizotypal traits were found to have no measurable effect on perceptual biases in our
task and, therefore, were not associated with any differences in the precision ascribed to
priors and likelihoods. This finding challenges recent accounts of positive symptoms of
schizophrenia that predict impaired updating of priors and an imbalance in precision
ascribed to sensory information and prior expectations . An immediate explanation
might be that the influence of schizotypal traits in the healthy population is not strong
enough to lead to behavioral differences, even if the dimensionality assumption holds. It
is likely for example, that, even if they sometimes scored high in schizotypal traits, our
participants didn’t experience daily hallucinations. That they would not exhibit an
overweighting of perceptual priors would then be consistent with the recent study of
Powers et al®’. However, our results also contradict recent findings by Teufel et al.'® who
found that both early psychosis and schizotypal traits are associated with a relatively
stronger influence of prior knowledge. In that study, participants were presented with
ambiguous two-tone versions of images before and after seeing the actual images in full
color and had to report whether the presented two-tone image contains a face. People
with stronger schizotypal traits and early psychosis showed a larger improvement after
seeing the color images. A possible difference between their study and ours might be the
level at which the priors operate: the low-level prior for basic perceptual features (as
induced in our task) might function at a hierarchically lower level than prior knowledge
related to complex collection of features and semantic content (faces). The level at which
prior expectations are induced has indeed been shown to matter. A series of studies by
Schmack et al'”>?” 2 using 3D rotating cylinders report weaker low-level (perceptually-
induced - stabilizing) priors but stronger high-level (cognitively-induced) priors in both
schizophrenia and schizotypal traits. It is difficult to compare and reconcile these findings
with ours. One possibility is that the priors induced in our task lie in between their
perceptual and cognitive levels. The taxonomy of priors in relation to their place in the

computational hierarchy or to their complexity or specificity is still far from being
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established > and thus the potential relevance of such distinctions is still not known.
Autistic traits were associated with significant behavioral differences: weaker biases and
lower variability of direction estimation on low contrast trials. Modeling revealed that this
was because of increased sensory precision as well as a reduction in motor noise, while
there was no attenuation of acquired priors. Parameter recovery analysis confirmed that
our methodology provides reliable parameter estimates and, in particular, allows

disentangling variations in priors and likelihoods.

Autistic traits were also found to be associated with less false detections (“hallucinations’)
on trials when no stimulus was presented, consistent with the idea that prior expectations
had less influence in individuals with higher AQ. In an attempt to measure those
individual differences, we fitted a more sophisticated Bayesian model that could account
not only for the estimation performance but also for the detection data (see S4 in
Supplementary Material). This model provided a good fit to both estimation and detection
data, and preserved the correlation between ASD traits and the precision of the motion
direction likelihood (p=-0.235, p= 0.032). However, parameter recovery was not as good as
for the BAYES model presented above (see Supplementary Fig. 11) and for this reason we

focused on the simpler model in this paper.

Overall, our findings are in agreement with most of the recent Bayesian theories of ASD,
namely, that autistic traits are associated with a relatively weaker influence of prior
expectations. However, we find that this is due to enhanced sensory precision®” 1% 13, rather
than attenuated priors per set. Other empirical studies inspired by the Bayesian accounts
have reported either attenuated or intact priors, but most are subject to methodological
limitations, either because they did not use computational modeling'>?** or because their

model could not extract likelihoods and quantify their variations!'* 2.

The idea that sensory processing could be enhanced in autism has long been proposed
outside the Bayesian framework. Autistic traits have been associated with enhanced
orientation discrimination®, but only for first-order (luminance-defined) stimulus. This
enhancement has been proposed to be a result of either enhanced lateral *, or a failure to
attenuate sensory signals via top-down gain control®, both of which could be directly
related to narrower likelihoods in the Bayesian framework®. However, in motion

perception, previous research did not find improved discrimination for first-order stimulus
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in autism, while for second-order (texture-defined) stimulus, the autistic group was found
to underperform®. Our findings challenge these results and call for more research in this

area.

In ASD as in schizotypy, prior integration might function differently at different levels of
sensory processing. For example, Pell et al.?® reported intact direction-of-gaze priors for
healthy individuals with high autistic traits and for highly functional individuals with a
clinical diagnosis. The authors did not directly investigate differences in sensory precision,
but the lack of behavioral differences suggests that there was none. Arguably, their
paradigm involves more complex stimuli than used in our task, which are also strongly
associated with semantic content (faces). It would not be surprising if increased sensory
precision does not extend to such stimuli. In fact, autistic individuals are known to exhibit
differential performance based on the complexity of the stimulus®, which also lies at the

foundation of some theoretical accounts, such as the “Weak Central Coherence’?.

In our paradigm people acquire prior expectations very quickly, within 200 trials (see
Section 3 in Supplementary material), which did not allow us to study individual
differences in the rate at which the priors are acquired. Bayesian accounts predict
differences in the dynamical updating of the priors, namely, that both autistic and
schizotypal traits should be associated with increased learning rate - which is the ratio of
likelihood and posterior precisions’. Our findings of increased sensory precision in autistic
traits also suggest that their learning rate should be faster. Future work will aim at directly

testing this.

Another aspect that our paradigm could not test is the specificity of the acquired priors32.
Some Bayesian accounts?® predict that priors may be overly context-sensitive in autism.
This is in line with the view that generalization is impaired in autism . Furthermore, such
over-specificity is thought to be stronger with more repetitive stimuli®*. Future research
could address this using statistical learning paradigms that incorporate increasingly

distinct contexts or stimuli.

Conclusion
We investigated statistical learning and Bayesian inference in a visual motion perception

task along autistic and schizotypal traits. To our knowledge, this study is the first to
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investigate differences in Bayesian inference along both trait spectra in a single task.
Furthermore, this study is the first visual study to computationally disentangle and
quantitatively assess the variations in individuals” likelihoods and priors. Surprisingly,
schizotypal traits were found to have no effect on task performance and thus were not
associated with any differences in the underlying statistical learning and Bayesian
inference. For autistic traits, however, significant behavioral differences in prior integration
were found, which were due to an increase in the precision of internal sensory

representations in participants with higher AQ.

Methods

Participants

91 (47 females, 44 males, age range: 18-69) naive participants with no motor disabilities and
with normal (or corrected to normal) vision were recruited from the general population. We
advertised for participants using posters and the internet across University of Edinburgh
locations and other sites across Edinburgh. All participants gave informed written consent
and received monetary compensation for participation. The study was approved by the

University of Edinburgh School of Informatics Ethics Panel.

Questionnaires

ASD was assessed using 50-item version Autism Spectrum Quotient (AQ) %, which is
commonly used for assessing milder variants of autistic-like traits within the general
population. Schizotypal traits were assessed using The Rust Inventory of Schizotypal
Cognitions (RISC)“.. RISC is specifically developed to measure schizotypal traits in the
general population. In addition, a sub-group of 41 participants also completed Schizotypal
Personality Questionnaire (SPQ) 2. Finally, all participants were also asked to complete the
Warwick-Edinburgh Mental Well-being Scale (WEMWBS)#in order to control for potential

depression-induced differences in performance .

Apparatus
The visual stimuli were generated using Matlab Psychophysics Toolbox #. Participants

viewed the display in a dark room at a distance of 80-100cm. The stimuli consisted of a
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cloud of dots with a density of 2 dots/deg?moving coherently (100%) at a speed of 9/sec.
Dots appeared within a circular annulus with minimum diameter of 2.2 and maximum
diameter of 7°. The stimuli were displayed on a Dell P790 monitor running at 1024x768 at
100 Hz. The display luminance was calibrated using a Cambridge Research Systems

Colorimeter (ColorCal MKII).

The task

The task was developed previously in our laboratory®. Participants have to: i) estimate the
direction of coherently moving simple stimuli (dots) that are presented at low contrast
levels (estimation task) and then ii) indicate whether they have actually perceived the
stimulus or not (detection task). Since Chalk et al.® had shown that the effects of acquired
priors become significant within the first 200 trials, instead of two experimental sessions of
850 trials each as in the original study, we used a single session of 567 trials (lasting around
40 min).

Each trial started by first displaying a fixation point (0.5°, 12.2 cd/m?) for 400 ms, after which
a field of moving dots appeared along with an orientation bar (length 1.1°, width 0.03;,
luminance 4 cd/m? extending from the fixation point). Initial angle of the bar was
randomized for each trial. Participants had to estimate the direction of motion by aligning
the bar (using a computer mouse) to the direction the dots were moving in, and by clicking
the mouse button to validate their estimate. The display cleared when either the participant
had clicked the mouse or when 3000 ms had elapsed. On trials where no stimulus was

presented, the bar still appeared for the estimation task to be completed.

After a 200ms delay, the participants had to indicate whether they had actually detected
the presence of dots in the estimation period (detection task). The display was divided into
two parts by a vertical white line across the center of the screen, the left hand side area
reading "NO DOTS" and the right hand side area reading "DOTS" (Fig. 2a). The cursor
appeared in the center of the screen, and participants had to move it to the left or right and
click to indicate their response. Immediate feedback for correct or incorrect detection
responses was given by a cursor flashing green or red, respectively. The screen was cleared
for 400 ms before the start of a new trial. Every 20 trials, participants were presented with

feedback on their estimation performance in terms of average estimation error in degrees
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(e.g., "In the last 20 trials, your average estimation error was 23™"). Every 170 trials (i.e. on
three occasions) participants were given a chance to "have a short break to rest their eyes",

in order to prevent fatigue. Participants clicked when they were ready to continue.

Design

The stimuli were presented at four different levels of contrast: 0 contrast (no-stimulus
trials), 2 low levels contrasts and high contrast, randomly mixed across trials. There were
167 trials with no stimulus. The 2 low levels of contrast were determined using 4/1 and 2/1
staircases on detection performance?. There were 243 trials following the 4/1 staircase and
90 trials following the 2/1 staircase. The remaining 67 trials were at high contrast, which

was set to 3.51 cd/m?above the background luminance.

For the two low contrast levels, there was a predetermined number of possible directions:
0, £16°, £32°, +48°, and +64° with respect to a reference direction. The reference direction was
randomized for each participant. For the 2/1 staircased contrasts, each predetermined
motion direction was presented equally frequently. Unbeknownst to participants, stimuli
at high and 4/1 staircase contrasts were presented more frequently at -32° and +32°motion
directions, resulting in a bimodal probability distribution (Fig. 1b). For the 4/1 staircase
contrast level, the dots were moving at +32°in 173 (~70%) trials and in all the other
predetermined motion directions in the remaining 70 (~30%) trials equally frequently. At
the highest contrast level, 34 (~50%) trials had the dots moving at +32° and the remaining

33 (~50%) trials were at random directions (i.e. not just the predetermined directions).

Data analysis

Responses on high contrast trials were used as a performance benchmark to ensure that
participants were performing the task adequately. 8 out of 91 participants failed to satisfy
pre-defined performance criteria (at least 80% detection and less than 30" root mean
squared error of estimations) and were excluded from further analysis (Supplementary
Fig. 1).

Data analysis on the estimation of motion directions was performed on 4/1 and 2/1
staircased contrast levels only and only on trials where participants both validated their

choice with a click within 3000 ms in the estimation part and clicked "DOTS" in the
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detection part. The first 170 trials of each session were excluded from the analysis, as this
was the upper limit for the convergence of the staircases to stable contrast levels
(Supplementary Fig. 2).

After removing these trials, the luminance levels achieved by the 2/1 and 4/1 staircases
were found to be considerably overlapping (Supplementary Fig. 2). Therefore, the data for
both of these contrast levels was combined for all further analysis.

To account for random estimations (either accidental or intentional) that participants made
on some trials, we fitted each participant’s estimation responses to the probability

distribution:
(I-ax)- V(O lpx) + o, (2)

Where «a is the proportion of trials in which participant makes random estimates, and
V(Olwx) is the probability density function for the estimated angle 6 for von Mises
(circular normal) distribution with the mean u and variance 1/x. The parameters u and « of
the von Mises distribution were determined by maximizing the likelihood of the

distribution in Eq. (2) for each presented angle.

To analyze the distribution of estimations in no-stimulus trials, we constructed histograms
of 16" size bins. These histograms were converted into probability distributions by
normalizing over all motion directions. We analyzed the estimation distribution when
participants reported seeing dots (clicked "DOTS") within no-stimulus trials. We

interpreted these false alarms as a simple form of perceptual “hallucination”.

Modelling

Bayesian models
Bayesian models assume that participants combined a learned prior of the stimulus

directions with their sensory evidence in a probabilistic manner. We first assume that

participants make noisy sensory observations of the actual stimulus motion direction (Pact),
with a probability
(© 10,cp) = V(Op Kgens): (3)

Psens\Ysens

where 0 itself varies from trial to trial around 0, according to P(O10,400) = V(0100 Ksens)-
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While participants cannot access the “true” prior, Pexp(0), directly, we hypothesized that
they learned an approximation of this distribution, denoted Pexp(0). This distribution was

parameterized as the sum of two von Mises distributions, centered on motion directions

Oexp and Pexp, and each with variance Y Kexp :

(0)=0.5[V (-0 )+ V(O

Pexp exp ,Xexp exp , Kexp)] (4)

Combining these via Bayes’ rule gives a posterior probability that the stimulus is moving

in a direction 6:

ppost(e 1Osens) o pexp(e) " Psens(9sens ! ©) @)

0

The perceived direction, Yperc, was taken to be the mean of the posterior distribution

(almost identical results would be obtained by using the maximum instead). Finally, we

accounted for motor noise and a possibility of random estimates on some trials via:

P(Oest! eperc) =(l-a) - V(epercf Km) T & (6)

where a is the proportion of trials in which participants make random estimates and 1/ic,y,

is the variance associated with motor noise.

Increased exposure to some motion directions might not only give rise to prior
expectations, but also affect the likelihood function®. Therefore, we fitted two more model

variants: ‘BAYES var’ where Xsens varied with the stimulus direction (i.e. it took five
different values for each of the angles: 0., +16., +32., +48, +64) and 'BAYES_varmin’ where

Kgong Was allowed to be different for +£32-but was the same for all other directions.

Response strategy models

We wanted to test whether task behavior might be better explained by simple behavioral
strategies. This class of models assumed that on trials when participants were unsure

about the presented motion direction, they made an estimation based solely on prior
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expectations, while on the remaining fraction of trials they made unbiased estimates based

solely on sensory inputs. The first model, "ADDY’, assumed that estimations derived from

prior expectations were simply sampled from a learnt ©xpected distribution, peyy(@) (see
Chalk et al.¥ and Supplementary Information). The second model, "ADD2’, was just as
"ADD1’ except when participants were unsure about the stimulus motion direction,
instead of sampling from the complete learned probability distribution ranging from —180
to +180r, they effectively truncated this distribution on a trial by trial basis and sampled
from only one part of it, negative (—180°to 0°) or positive (0° to +180°), depending on which
side of the distribution the actual stimulus occurred (see Chalk et al, 2010 and SI). We also
considered slight variations of the “ADD1” and “ADD2" models, denoted “ADD1_m’ and

‘ADD?2 ny Tespectively. These were identical to “ADD1” and ‘ADD2’ except from setting
1/Kexp to zero; that is, on trials when perceptual estimates were derived only from

expectations, they were equal to the mode of the learnt distribution (i.e. no uncertainty).

Parameter estimation
We used performance in high contrast trials to estimate motor noise, 1/, for each

individual. We assumed that, for those trials, sensory uncertainty was close to zero

(1/kgeng = 0). Motor noise was then determined by fjtting estimation responses to the

distribution in Eq. (2) by replacing pt with the actual motion direction, Pact- The estimated

motor noise was used in all subsequent model fitting as a fixed parameter. The rest of the

free parameters were estimated by fitting the response data at the two low (staircased)
contrast levels. For each model with a set of free parameters M, we computed the

probability distribution p(Oqg¢!0 M) of making an estimate O,g given the actual

act’

stimulus direction O, For the response strategy models, by definition, the p(Oqg! 04t

M) corresponds to average behavior in the task.

The parameters were estimated by maximizing the fit of the log likelihood function for the
experimental data for each participant individually. The maximum likelihood was found

using a simplex algorithm, using "fminsearchbnd" Matlab function. To avoid convergence

at a local maximum we constructed a grid of initial ¥exp and Ksens parameter values

covering the range found in previous studies. We selected the resulting set of parameters
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that corresponded to the largest log-likelihood.

Model Comparison

To compare the model fits we used Bayesian Information Criterion (BIC), which

approximates the log of model evidence * :

-2 -log(P (DIM)) = BIC=-2-1log(P (DIM, G)A ) +k - log(n), (7)

where M is model, D is observed data and P (DIM, ® ) is the likelihood of generating the

A

experimental data given the most likely set of parameters, ® ; k is the number of model
parameters and 7 is the number of data points (or equivalently, the number of trials). BIC
evaluates the model by how it fits the data by also penalizing for model complexity

(number of parameters); lower BIC score indicates a better model.

Parameter recovery

To determine whether the BAYES model can distinguish the effects of strong likelihoods
from those of weak priors 1> ! and to evaluate the robustness of our methods, we
performed parameter recovery. First, we generated 80 sets of parameters (i.e. 80 synthetic

individuals) by randomly sampling each parameter from @ Gaussian distribution centered

on the mean value of each parameter found in our sample (40 for eexpf 15. for Oexp’ 10. for

Ogeng 0-06 for acand 10 for oyy,). Second, for each set of parameters, we simulated data for

200 trials with the Bayesian model by randomly sampling from the estimation probability

distribution. We used 200 simulated trials only, to match the empirical data (200
corresponds to the amount of experimental trials used for fitting, after excluding high
contrast and zero contrast trials)!. Finally, we fitted the BAYES model to the simulated
data. To evaluate the goodness of recovered parameters, we computed Pearson’s

correlation between the actual parameters and the recovered parameters.

! Simulating more trials would result in a better parameter recovery but the results would no longer be
informative about the reliability of parameters estimated from empirical data.
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Statistical tests

Due to the presence of outliers in our data, we used Spearman’s correlations for measuring
the strength of the effects. We have also used Wilcoxon signed rank test for repeated

measures analysis.
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