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Computational prediction of cell type-specific, in-vivo transcription factor10

binding sites is still one of the central challenges in regulatory genomics, and11

a variety of approaches has been proposed for this purpose.12

Here, we present our approach that earned a shared first rank in the13

“ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction14

Challenge” in 2017. This approach employs an extensive set of features de-15

rived from chromatin accessibility, binding motifs, gene expression, sequence16

and annotation to train classifiers using a supervised, discriminative learning17

principle. Two further key aspects of this approach is learning classifier pa-18

rameters in an iterative training procedure that successively adds additional19

negative examples to the training set, and creating an ensemble prediction20

by averaging over classifiers obtained for different training cell types.21

In post-challenge analyses, we benchmark the influence of different feature22

sets and find that chromatin accessiblity and binding motifs are sufficient to23

yield state-of-the-art performance for in-vivo binding site predictions. We24

also show that the iterative training procedure and the ensemble prediction25

are pivotal for the final prediction performance.26

To make predictions of this approach readily accessible, we predict 68227

peak lists for a total of 31 transcription factors in 22 primary cell types and28

tissues, which are available for download at https://www.synapse.org/#!29

Synapse:syn11526239, and we demonstrate that these predictions may help30

to yield biological conclusions.31
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1 Introduction35

Activation or repression of transcription is one of the fundamental levels of gene regu-36

lation. Transcriptional regulation depends on transcription factors (TFs), which specif-37

ically bind to sites in promoters or enhancers of regulated genes or bind indirectly via38

other, sequence specific TFs. Modeling binding specificities, typically represented as se-39

quence motifs, has been an important topic of bioinformatics since its infancy (Staden,40

1984; Berg and von Hippel, 1987). However, it soon became evident that in-silico binding41

site predictions based on sequence motifs alone are insufficient to explain in-vivo bind-42

ing of TFs and that determinants beyond sequence specificity likely play an important43

role (Stormo and Fields, 1998; Bulyk, 2003).44

The emergence of high-throughput techniques like ChIP-chip (Wu et al., 2006) or45

ChIP-seq (Johnson et al., 2007) allowed for experimentally determining in-vivo TF bind-46

ing regions on a genome-wide scale. While especially ChIP-seq and derived techniques47

have the potential to measure TF and cell type-specific binding, the experimental effort48

and costs currently preclude ChIP-seq experiments for hundreds to thousands of TFs49

in a variety of different cell types and tissues. Hence, there is a demand for computa-50

tional methods predicting cell type-specific TF binding with high accuracy. Fortunately,51

the existence of genome-wide ChIP data for a subset of TFs and cell types also opens52

up the opportunity to generate more accurate models by supervised machine learning53

techniques, which may consider further features besides motif matches.54

High-throughput sequencing may also be used to obtain genome-wide assays of chro-55

matin accessibility (e.g., DNase-seq (Hesselberth et al., 2009), ATAC-seq (Buenrostro56

et al., 2013)), which has been considered one of the key features distinguishing func-57

tional from non-functional TF binding sites (Galas and Schmitz, 1978; Chen et al.,58

2010). Chromatin accessibility data may yield genome-wide maps of functional binding59

sites of a large fraction of TFs but, in contrast to ChIP-seq, does not identify the TF60

binding to a specific region. Hence, the association between bound regions (“footprints”)61

and TFs is typically derived computationally (Pique-Regi et al., 2011).62

Following this path, a plenitude of tools (Supplementary Table S1) has been proposed63

over the last five years. While the general notion of combining sequence signals with64

chromatin accessibility data and, in some cases, other features is common to the majority65

of approaches, they differ in several specific aspects. Most approaches (e.g., Pique-Regi66

et al. (2011); Natarajan et al. (2012); Piper et al. (2013); Gusmao et al. (2014); Chen et al.67

(2017)) use binding motifs represented as position weight matrix (PWM) models that68

have been obtained from databases like TRANSFAC (Matys et al., 2006), Jaspar (Math-69

elier et al., 2016), UniProbe (Newburger and Bulyk, 2009) or CisBP (Weirauch et al.,70

2014), or from motif collections like Factorbook (Wang et al., 2012), the ENCODE-71

motif collection (Kheradpour and Kellis, 2014), or Homer (Heinz et al., 2010), while72

some perform de-novo motif discovery based on k-mers (Arvey et al., 2012) or as part of73

convolutional neural networks (Quang and Xie, 2017; Qin and Feng, 2017). Irrespective74

of the source of the motifs considered, three general schemas are have been established for75

combining motif predictions with chromatin accessibility data. First, motif matches (i.e.,76

predicted binding sites) may be used as prior information and combined with DNase-seq77
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data to distinguish functional from non-functional binding sites (e.g., Pique-Regi et al.78

(2011); Jankowski et al. (2016); Raj et al. (2015)), Second, TF footprints may be first79

identified from DNase-seq data and then annotated with specific TFs based on motif80

matches afterwards (Gusmao et al., 2014). Third, both sources of information are com-81

bined in a holistic approach (Quang and Xie, 2017; Qin and Feng, 2017). DNase-seq82

(and ATAC-seq) data are employed in different ways by existing approaches including83

i) binning of chromatin accessibility statistics in larger genomic regions around putative84

binding sites (Luo and Hartemink, 2012), ii) association of chromatin accessibility with85

specific genes (Schmidt et al., 2017), or iii) high-resolution maps of DNase cut sites (Sher-86

wood et al., 2014; Raj et al., 2015), which may additionally be considered separately for87

each DNA strand (Piper et al., 2013). On the methodological level, approaches either fol-88

low a supervised approach based on training examples labeled as “bound” or “unbound”,89

typically derived from TF ChIP-seq data (e.g., Arvey et al. (2012); Luo and Hartemink90

(2012); Kähärä and Lähdesmäki (2015); Liu et al. (2017)), or an unsupervised approach91

clustering regions into “bound” and “unbound” based on their experimental properties92

(e.g., DNase-seq data or histone modifications (Pique-Regi et al., 2011; Sherwood et al.,93

2014; Gusmao et al., 2014)), while others base their predictions on statistical tests (Piper94

et al., 2013) or scores related to binding affinity predictions (Schmidt et al., 2017). Su-95

pervised approaches use a variety of methods like support vector machines (Arvey et al.,96

2012; Kumar and Bucher, 2016), (sparse) logistic regression (Natarajan et al., 2012;97

Luo and Hartemink, 2012; Kähärä and Lähdesmäki, 2015; Chen et al., 2017), random98

forests (Liu et al., 2017), or neural networks adapted by deep learning (Quang and Xie,99

2017; Qin and Feng, 2017). Unsupervised approaches use hierarchical mixture mod-100

els (Pique-Regi et al., 2011), hierarchical multi-scale models (Raj et al., 2015), hidden101

Markov models (Gusmao et al., 2014), or other probabilistic models (Sherwood et al.,102

2014). In some approaches, sequence-based features besides motif matches (Kumar and103

Bucher, 2016; Gusmao et al., 2014; Chen et al., 2017), sequence conservation (Kumar104

and Bucher, 2016; Liu et al., 2017; Chen et al., 2017), or additional experimental data105

like histone modification (Pique-Regi et al., 2011; Arvey et al., 2012; Gusmao et al.,106

2014) are included into the model. Finally, a subset of approaches uses the prediction107

of TF binding regions as an intermediate step for predicting gene regulation (Natarajan108

et al., 2012) or tissue-specific gene expression (Schmidt et al., 2017).109

Each of these previous approaches has its benefits and downsides, and the results of110

benchmark studies in the respective original publications are ambiguous with regard to111

their prediction performance. Against this background, the “ENCODE-DREAM in vivo112

Transcription Factor Binding Site Prediction Challenge” (ENCODE-DREAM Consor-113

tium, 2017) aimed at assessing the performance of tools for predicting cell type-specific114

TF binding in human using a minimal set of experimental data in a fair and unbiased115

manner. The challenge setting has several important advantages over typical benchmark116

studies. First, approaches are typically applied to the challenge data by their authors,117

which reduces the risk of, for instance, sub-optimal parameter settings or mode choices.118

Second, the ground truth data used for evaluation are known only to the challenge or-119

ganizers, which ensures a fair and unbiased comparison. Third, at least in DREAM120

challenges, participants are required to document their method such that the submit-121
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ted predictions can be reproduced by the challenge organizers. In addition, preliminary122

assessments on dedicated leaderboard data may help to judge ranking relative to com-123

petitors and also limited tuning of methods in a realistic setting.124

Participants in the ENCODE-DREAM challenge were allowed to use binding motifs125

from any source, genomic sequence, gene annotations, in-silico DNA shape predictions,126

and cell type-specific DNase-seq and RNA-seq data. In addition, TF ChIP-seq data and127

ChIP-seq-derived labels (“bound”, “unbound”, “ambiguous”) were provided for training128

cell types and chromosomes. Predictions had then to be made for combinations of TF129

and cell type not present in the training data on held-out chromosomes. Predictions130

were evaluated against labels derived from TF ChIP-seq data for that specific TF and131

test cell type.132

Here, we present our approach for predicting cell type-specific TF binding regions133

earning a shared first rank among 40 international teams, including some of the devel-134

opers of those approaches mentioned above (https://www.synapse.org/#!Synapse:135

syn6131484/wiki/405275, (ENCODE-DREAM Consortium, 2017)). Following the cat-136

egorization applied to previous approaches above, the approach presented in this paper137

combines several novel ideas. First, we consider motifs from databases, but also motifs138

learned by de-novo motif discovery from ChIP-seq and DNase-seq data using sparse local139

inhomogeneous mixture (Slim) models (Keilwagen and Grau, 2015), which may capture140

short to mid-range intra-motif dependencies. Second, we process DNase-seq data fol-141

lowing the binning idea of previous approaches but defining novel statistics computed142

from the data in those bins, and derive several sequence-based, annotation-based, and143

RNA-seq-based features. Third, we apply a supervised machine learning approach that144

employs a discriminative learning principle, which is related to logistic regression but145

allows for explicit model assumptions with regard to different features. Fourth, dis-146

criminative learning is combined with an iterative training approach for refining sets147

of representative negative examples. Finally, we combine the predictions of classifiers148

trained in different of these iterations and on different training cell types in an ensemble-149

like approach.150

As this novel approach has already been benchmarked against a large number of151

competing approaches as part of the ENCODE-DREAM challenge (ENCODE-DREAM152

Consortium, 2017), we focus on the analysis for the contributions of different aspects of153

this approach on the final prediction performance in this paper. Specifically, we evaluate154

the contribution of related subsets of features, we compare the performance achieved by155

training on an initial negative set with that achieved by the iterative training proce-156

dure complementing this initial set with further negative examples, and we assess the157

performance of individual classifiers compared with their ensemble prediction. Based158

on these analyses, we define and benchmark a simplified variant of the proposed ap-159

proach. Finally, we provide a large collection of predicted, cell type-specific tracks of160

binding regions for 31 TFs in 22 primary cell types and tissues to make predictions by161

this approach readily accessible.162
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2 Methods163

2.1 Data164

We use the following types of input data sets as provided by the challenge organizers165

(https://www.synapse.org/#!Synapse:syn6131484/wiki/402033):166

• the raw sequence of the human genome (hg19) and gene annotations according167

to the gencode v19 annotation (http://www.gencodegenes.org/releases/19.168

html) (Harrow et al., 2012),169

• cell type-specific DNase-seq “fold-enrichment coverage” tracks, which represent170

DNase-seq signal relative to a pseudo control smoothed in a 150 bp window,171

• cell type-specific DNase-seq peak files in “conservative” (IDR threshold of 10% in172

pseudo replicates) and “relaxed” (no IDR threshold) flavors,173

• cell type-specific TPM values from RNA-seq experiments in two bio-replicates for174

all gencove v19 genes as estimated by RSEM (Li and Dewey, 2011),175

• cell type-specific and TF-specific ChIP-seq peak files in “conservative” (IDR thresh-176

old of 10% in pseudo replicates) and “relaxed” (no IDR threshold) flavors,177

• cell type-specific and TF-specific label files classifying genome-wide 200 bp regions178

shifted by 50 bp into B=“bound”, A=“ambiguous”, and U=“unbound” according179

to the respective conservative and relaxed ChIP-seq peak files; an overview of the180

combinations of TF and cell type in the training data, the leaderboard data, and181

the test data used for evaluation in the final challenge round is given in Supple-182

mentary Figure S1.183

In addition, we download sequence motifs represented as PWMs from the following184

collections:185

• TF-specific motifs from the databases HOCOMOCO (Kulakovskiy et al., 2016)186

and DBcorrDB (Grau et al., 2015a),187

• motifs related to epigenetic markers from the epigram pipeline (Whitaker et al.,188

2015).189

Details about the motifs considered are given in section Features and Supplementary190

Text S1.191

For predicting cell type-specific binding of TFs in additional cell types beyond those192

considered in the challenge, we downloaded DNase-seq data (FastQ format) from the193

ENCODE project (encodeproject.org). Specifically, we selected all DNase-seq exper-194

iments that i) were flagged as “released”, ii) have FastQ files available, iii) are not from195

immortalized cell lines, iv) have no entry in one of the “Audit error” categories, and v) are196

not in the “insufficient replicate concordance” category of “Audit no compliant”. A list197
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of the corresponding experiments was obtained from the ENCODE project (S3) and ex-198

periments were filtered for the existence of at least two replicates, yielding 23 experiments199

in total. One of these experiments had to be excluded later, because a different DNase200

protocol with much shorter reads had been used. For the remaining 22 experiments201

(Supplementary Table S3), all FastQ files were downloaded from ENCODE and pro-202

cessed using ATAC-Seq/DNase-Seq Pipeline (https://github.com/kundajelab/atac_203

dnase_pipelines, latest git commit: c1d07d38a02af2f0319a69707eee047ab6112ecc (Tue204

Mar 21 20:31:25 2017)). The data sets were analyzed using the following parameters205

-species hg19 -type dnase-seq -subsample 50M -se. For further analyzes, the re-206

laxed (./out/peak/idr/pseudo_reps/rep1/*.filt.narrowPeak.gz) and conservative207

peaks ( ./out/peak/macs2/overlap/*pval0.1*.filt.narrowPeak.gz) as well as the208

DNase coverage (./out/signal/macs2/rep1/*.fc.signal.bigwig) were used.209

In addition, we download ChIP-seq peak files (Supplementary Table S4) matching210

these cell types and one of the TFs considered. Based on the “relaxed” (i.e., “optimal211

idr thresholded peaks”) and “conservative” (i.e., “conservative idr thresholded peaks”)212

peak files, we derive labels for 200 bp windows every 50 bp as proposed for the challenge.213

Specifically, we labels each 200 bp region overlapping a conservative peak by at least214

100 bp as “bound”. Of the remaining regions, all regions that overlap a relaxed peak215

by at least 1 bp are labeled “ambiguous”, while all other regions are labeled “unbound”.216

For a subset of TFs, no conservative peaks are available due to the lack of replicates. In217

such cases, we also use the relaxed peaks to assign “bound” labels.218

2.2 Binning the genome219

Given the large number of ChIP-seq data sets for diverse TFs in the training, leader-220

board, and test cell types, defining features with base-pair resolution would have been221

a major challenge with regard to memory requirements (hard disk as well has main222

memory) as well as runtime. As the final prediction is requested for overlapping 200 bp223

regions with an offset of 50 bp, we decide to compute features with a matching resolu-224

tion of 50 bp. To this end, the genome is divided into non-overlapping bins of 50 bp.225

Features are then either computed directly with that resolution (where possible, e.g.,226

distance to the closest TSS), or first computed with base-pair resolution and afterwards227

summarized as aggregate values (minimum, maximum, median, or similar statistics) for228

each 50 bp bin. By this means, e.g., a score profile of a motif model or a DNase coverage229

profile is represented by a few aggregate values instead of 50 individual values, which230

substantially reduces memory requirements. An odd number of several, adjacent bins231

represented by the respective feature values (see below) is then considered as input of232

the classifier composed of statistical models for the training process as well as for making233

predictions. Conceptually, the classifier uses the information from those bins to compute234

a-posteriori probabilities Pi that center bin i contains a peak summit. The number of235

adjacent bins considered is determined from the median across cell types of the median236

peak width of a given TF in the individual training cell types.237
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2.3 Features238

The set of features considered may be roughly classified by the source of information239

(raw sequence, motif profiles, DNase-seq data, RNA-seq data). Here, we give a brief240

overview of these features, while we provide a complete list of definitions of all features241

in Supplementary Text S1.242

The set of sequence-based features comprises the raw sequence (i.e., in 1 bp resolution)243

around the center bin and several measures computed from this sequence, for instance244

G/C-content, the frequency of CG di-nucleotides, or the length of homo-polymer tracts.245

Based on the gencode v19 genome annotation, we additionally define features based on246

overlapping annotation elements like CDS, UTRs, or TSS annotations and based on247

the distance to the closest TSS annotation in either strand orientation. All of these248

features are neither cell type-specific nor TF-specific. However, they may represent gen-249

eral features of genomic regions bound by TFs (like CpG islands, GC-rich promoters,250

or preference for non-coding regions), which might be helpful to rule out false posi-251

tive predictions based on TF-specific features like motif scores. In addition, the model252

parameters referring to those features may be adapted in a TF-specific and cell type-253

specific manner, which may yield auxiliary information for cell type-specific prediction254

of TF binding as well.255

The most informative features with regard to the challenge task, however, are likely256

motif-based and chromatin accessibility-based features. For obtaining a broad set of257

binding motifs for each TF at hand, we combine motifs from databases with motifs ob-258

tained by de-novo motif discovery from the challenge data. We retrieve PWM models259

of the TF at hand from the HOCOMOCO database (Kulakovskiy et al., 2016) and our260

in-house database DBcorrDB (Grau et al., 2015a). We perform de-novo motif discov-261

ery by the in-house approach Dimont (Grau et al., 2013) learning PWM and LSlim(3)262

models (Keilwagen and Grau, 2015) on the “conservative” and “relaxed” ChIP-seq peak263

files, and also based on the peak files obtained from DNase-seq experiments. In addition,264

we obtain motifs from the epigram pipeline (Whitaker et al., 2015), which are related to265

DNA methylation and histone marks of active promoters and enhancers. For a specific266

combination of cell type and TF, we also consider motifs of a set of “peer” motifs, which267

are determined from the literature (Factorbook, Wang et al. (2012)) and by comparing268

the overlaps between the respective peak lists.269

All of these motifs are then used in a sliding window approach to obtain base-pair270

resolution score profiles, which are then summarized by aggregate statistics representing271

the binding affinity to the strongest binding site (i.e., the maximum log-probability in a272

bin according to the motif model) as well as general affinity to broader regions (i.e, the273

logarithm of the average probability in a bin). The set of motifs may comprise models274

of general binding affinity of the TF at hand but may also capture cell type-specific275

differences in the binding regions, which could be caused by interaction with other TFs276

including competition for similar binding sites.277

DNase-seq-based features are computed from the “fold-enrichment coverage” tracks278

and DNase-seq peak files provided with the challenge data. These features quantify279

short and long range chromatin accessibility, stability of the DNase signal in the region280
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of interest and across different cell types, and overlaps with DNase-seq peak regions.281

Finally, RNA-seq data are represented by the TPM value of the gene closest to the282

bin of interest as well as measures of stability within biological replicates and across283

different cell types.284

DNase-seq and RNA-seq-based features are cell type-specific but not TF-specific by285

design. However, model parameters may adapt to situations where one TF preferentially286

binds to open chromatin, whereas another TF may also bind in nucleosomal regions.287

Feature values are computed using a combination of Perl scripts and Java classes288

implemented using the Java library Jstacs (Grau et al., 2012). Genome wide feature289

values with bin-level resolution are pre-computed and stored in a sparse, compressed290

text format.291

2.4 Model & basic learning principle292

We model the joint distribution of these different features by a simple product of indepen-293

dent densities or discrete distributions (Supplementary Text S2). Specifically, we model294

numeric features (e.g., DNase-based statistics, motif scores, RNA-seq-based features) by295

Gaussian densities, discrete, annotation-based features by independent binomial distri-296

butions for each type and strand of annotation, and raw sequence by a homogeneous297

Markov model of order 3. All distributions are in the exponential family and parameter-298

ized using their natural parameterization (Bishop, 2006; Keilwagen et al., 2010), which299

allows for unconstrained numerical optimization.300

As learning principle, we use a weighted variant (Grau, 2010) of the discriminative301

maximum conditional likelihood principle (Roos et al. (2005), Supplementary Text S2),302

which is closely related to logistic regression but allows for making explicit assumptions303

about the distribution of the underlying data.304

2.5 Prediction schema305

In the challenge, final predictions are requested for 200 bp windows shifted by 50 bp306

along the genome, while the proposed classifier predicts a-posteriori probabilities that307

the current center bin contains a peak summit. To yield the predictions requested, we308

use these original prediction values to compute the probability that the 200 bp window309

overlaps at least one predicted peak by at least 100 bp (Figure 1). Assume that we310

already computed the a-posterior probabilities Pi that bin i contains the summit of a311

ChIP-seq peak according to the trained model. Further assume that for the current TF,312

a peak typically spans two bins before and two bins after the center bin, yielding 5 bins313

in total. Putative peaks overlapping the current 200 bp window starting at bin i are314

those centered at bin i−1 to i+4. Hence, the probability Si that this window overlaps a315

peak may be computed as the complementary probability of the event that this window316

overlaps no predicted peaks, which in turn is just the product of the complementary317

a-posteriori probabilities P` of these bins.318
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Genome

50 bp︷ ︸︸ ︷
i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5

PiPi−1 Pi Pi+1 Pi+2 Pi+3 Pi+4. . . . . .

200 bp︷ ︸︸ ︷

︸ ︷︷ ︸
Si = 1−

∏i+4
`=i−1 (1− P`)

Figure 1: Schema for computing probabilities for 200 bp regions overlapping with pre-
dicted peaks spanning five bins in this example. The center bin is indicated by
a thick line. Putative peaks are annotated with the probability Pi of being a
true peak. All peaks marked in red overlap the region of interest (dotted blue
lines) by at least 100 bp and are considered for the prediction. The prediction
Si for the 200 bp region is then computed as the probability that this region
overlaps with at least one of the peaks.

2.6 Initial training data319

For training the model parameters by the discriminative maximum condition likelihood320

principle, we need labeled input data comprising a set of positive (bound) regions and a321

set of negative (unbound) regions. In general, a training region is represented by a vector322

of all feature values described in section Features in an odd number of consecutive bins323

(see section Binning the genome). In case of positive regions, these are centered at the324

bin containing the peak summit. We include all such regions around the peak summits325

of the “conservative peaks” for the current TF and cell type as positive regions.326

Since we face a highly imbalanced classification problem with rather few ChIP-seq327

peaks compared with the large number of bins not covered by a peak, and since the328

inclusion of all such negative regions into the training set would lead to an inaccept-329

able runtime, we decided to derive representative negative regions by different sampling330

strategies.331

All sampling steps are performed stratified by chromosome. First, we sample on each332

training chromosome 10 times as many negative regions (spanning an odd number of333

consecutive bins) as we find positive regions on that chromosome, where center positions334

are sampled uniformly over all bins not covered by a “relaxed” peak for the same cell335

type and TF.336

Second, we over-sample negative regions to yield a representative set of negative re-337

gions with large DNase-seq median values similar to those of positive examples. This is338

especially important as these will be regions that are hard to classify using DNase-seq339

based features but are only lowly represented by the uniform sampling schema. The340

over-sampling is adjusted for by down-weighting the drawn negative examples to the341

corresponding frequency among all negative regions (see Supplementary Text S3).342
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Third, we sample four times as many negative regions as we have positives from regions343

that are ChIP-seq positive for one of the other cell types (if more than one training cell344

type exists for that TF), but do not overlap a “relaxed peak” in the current cell type.345

The latter negative regions are weighted such that the sum of their weights matches346

the rate of such regions among all putative negative regions. This sampling schema is347

intended to foster learning cell type-specific properties as opposed to general properties348

of the binding regions of the current TF.349

Together, these three sampling schemas yield an initial set of negative regions, which350

serve as input of the discriminative maximum conditional likelihood principle in addition351

to the positive regions. However, in preliminary tests during the leaderboard round of the352

challenge, we observed that even this non-trivial sampling schema is not fully satisfactory.353

As testing (a large number of) other sampling schemas seemed futile, we designed an354

iterative training schema (Figure 2) that is loosely related to boosting (Freund and355

Schapire, 1996) and successively complements the initial set of negative training regions356

with further, informative examples.357

2.7 Iterative training358

The iterative training procedure is illustrated in Figure 2. Initially, we train a classifier on359

the negative regions obtained from the sampling schema explained above and all positive360

regions using the weighted variant of the maximum conditional likelihood principle. We361

then use this classifier to obtain a-posteriori probabilities Pi for bin i on the training362

chromosomes. To limit the runtime required for this prediction step, we restrict the363

prediction to chromosomes chr10 to chr14. These probabilities are then used as input364

of the prediction schema (section Prediction schema) to yield predictions for the 200 bp365

regions labeled by the challenge organizers based on the ChIP-seq training peaks. Hence,366

we may distinguish prediction values of positive regions (label B=“bound”) and negative367

regions (label U=“unbound”), while regions labeled as A=“ambiguous” are ignored.368

To select additional negative regions that are likely false positive predictions, we first369

collect the prediction scores of all positive regions (labeled as B) and determine the370

corresponding 1% percentile. We then select from the negative regions (labeled as U)371

all those with a predictions score larger than this 1% percentile, which are subsequently372

added to the set of negative regions with a weight of 1 per region selected.373

In the next iteration, we train a second classifier, again using all positive regions but374

the initial negative regions complemented with the additional negative regions identified375

in the previous step. Prediction is then performed using both classifiers, where the pre-376

dictions of the individual two classifiers (or all previously trained classifiers in subsequent377

iterations) are averaged per region. Again, regions labeled U with large prediction scores378

are identified and added to the set of negative regions, which then serve as input of the379

following iteration. After five rounds of training yielding five classifiers, the iterative380

training procedure is terminated.381
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positive regions

initial negative regions

Training (i:=1)

classifiers 1,. . . ,i

Prediction & Selection

B A U A

Iterative
Training

(i:=i+1)

Figure 2: Iterative training procedure. Starting from an initial set of negative regions
and the complete set of positive regions, a first classifier is trained, applied
to the training data, and putative false positive (i.e, “unbound” regions with
large prediction scores) are identified. In each of the subsequent iterations,
such regions are added to the set of negative regions, which are in turn used
for training refined classifiers. The result of this iterative training procedure is
a set of K = 5 classifiers trained in 5 cycles of the iterative training procedure.
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2.8 Final prediction382

The iterative training procedure is executed for all K training cell types with ChIP-seq383

data for the TF of interest, which yields a total of 5·K classifiers. For the final prediction,384

the prediction schema (section Prediction schema) is applied to all chromosomes and385

each classifier. These predictions are finally averaged per 200 bp region to yield the final386

prediction result.387

2.9 Deriving peak lists388

For the additional primary cell types and tissues beyond those considered in the chal-389

lenge, we further process final predictions to yield peak lists in narrowPeak format,390

which are smaller and easier to handle than the genome-wide probability tracks with391

50 bp resolution. To this end, we join contiguous stretches of regions with predicted392

binding probability above a pre-defined threshold t into a common peak region. For393

each region, we record the maximum probability p, and discard bordering regions with a394

probability below 0.8 · p. The resulting regions are then annotated according to the nar-395

rowPeak format with a “peak summit” at the center of the region yielding p, a “score”396

of −100 · log10(1 − p), and a “signal value” equal to p. We generate “relaxed” peak397

predictions using t = 0.6 and “conservative” peak prediction using t = 0.8.398

2.10 Availability399

The approach presented here has been implemented using the Java library Jstacs (Grau400

et al., 2012) combined with custom Perl and bash scripts for data extraction, conversion,401

and pipelining. ENCODE-DREAM-specific Java classes will be part of the next Jstacs402

release. The complete code accompanying the challenge submission is, in accordance403

with the challenge guidelines, available from https://www.synapse.org/#!Synapse:404

syn8009967/wiki/412123 including a brief method writeup.405

3 Results406

During the ENCODE-DREAM challenge, a large number of approaches created by 40407

international teams has been benchmarked on 13 cell type-specific ChIP-seq assays for408

12 different TFs in human (Supplementary Figure S1). A set of 109 data sets for the409

same (and additional) TFs in other cell types was provided for training. In addition,410

teams could submit predictions for 27 further combinations of TF and cell type in a411

leaderboard round and evaluation results for submitted predictions were made available412

to all participants. Training data comprised cell type-specific DNase-seq data, cell type-413

specific RNA-seq data, genomic sequence and annotations, and in-silico DNA shape414

predictions. In addition, cell type-specific and TF-specific ChIP-seq data and derived415

labels were provided for training chromosomes, while predictions were evaluated only416

on the remaining, held-out chromosomes chr1, chr8, and chr21 that were not provided417
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with any of the ChIP-seq training data. For 200 bp regions shifted by 50 bp, genome-418

wide predictions of the probability that a specific region overlaps a ChIP-seq peak were419

requested from the participating teams. Predictions were evaluated by i) the area under420

the ROC curve (AUC-ROC), ii) the area under the precision-recall curve (AUC-PR), iii)421

recall at 10% FDR, and iv) recall at 50% FDR on each of the 13 test data sets. These422

were aggregated per data set based on the average, normalized rank earned for each of423

these measures in 10 bootstrap samples of the held-out chromosomes, and a final ranking424

was obtained as the average of these rank statistics (ENCODE-DREAM Consortium,425

2017).426

As a result of this ranking, the approach presented in this paper (team “J-Team”)427

earned a shared first rank together with the approach created by team “Yuanfang428

Guan” (https://www.synapse.org/#!Synapse:syn6131484/wiki/405275, ENCODE-429

DREAM Consortium (2017)).430

In the following, we investigate the influence of different aspects of the proposed431

approach on the final prediction performance. First, we inspect the impact of different432

sets of related features (DNase-seq data, motif scores, RNA-seq data, sequence-based and433

annotation-based features) on prediction performance. Second, we study the importance434

of the iterative training approach as opposed to a training on initial training data.435

Third, we compare the performance of the predictions gained by classifiers trained on436

training data for individual cell types with the performance of the aggregated prediction437

obtained by averaging over these predictions. Finally, we apply the proposed method for438

predicting cell type-specific TF binding for 31 TFs in 22 additional primary cell types439

yielding a total of 682 prediction tracks.440

3.1 Impact of feature sets on prediction performance441

We use the prediction performance obtained by the proposed approach using all sets442

of features (section Features), the iterative training procedure (section Iterative train-443

ing), and the aggregation over all training cell types (section Prediction schema) as a444

baseline for all further comparisons (Figure 3). Throughout this manuscript, we con-445

sider AUC-PR as the primary performance measure, since AUC-PR is more informative446

about classification performance for heavily imbalanced classification problems (Keilwa-447

gen et al., 2014; Saito and Rehmsmeier, 2015), and recall at the different FDR levels is448

rather unstable since it corresponds to single points on the precision-recall curve. AUC-449

PR values are computed using the R-package PRROC (Grau et al., 2015b), which has450

also been used in the ENCODE-DREAM challenge.451

We find that prediction performance as measured by AUC-PR varies greatly among452

the different transcription factors (Figure 3) with a median AUC-PR value of 0.4098. The453

best prediction performance is achieved for CTCF, which has a long and information-rich454

binding motif, in two different cell types (IPSC and PC-3). Above-average performance455

is also obtained for FOXA1 and HNF4A in liver cells. For most other TFs, we find456

AUC-PR values around 0.4, whereas we observe a rather low prediction accuracy for457

NANOG and REST.458

To analyze the contribution of selected features on the final prediction performance,459
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Figure 3: Across cell type performance. For each of the 13 combinations of TF and cell
type within the test data, we compute the prediction performance (AUC-PR)
on the held-out chromosomes of classifiers i) using all features considered, ii)
using only motif-based features, iii) using only DNase-seq-based features, and
iv) using only motif-based and DNase-seq-based features. Median performance
of classifiers using all features is indicated by a dashed line.
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Figure 4: Importance of feature sets. We test the importance of related sets of features by
excluding one set of features from the training data, measuring the performance
(AUC-PR) of the resulting classifier, and subtracting this AUC-PR value from
the corresponding value achieved by the classifier using all features. Hence, if ∆
AUC-PR is above zero, the left-out set of features improved the final prediction
performance, whereas ∆ AUC-PR values below zero indicate a negative effect
on prediction performance. We collect the ∆ AUC-PR values for all 13 test
data sets and visualize these as violin plots.

we systematically exclude sets of related features from the input data in training and460

prediction. Specifically, we exclude i) all DNase-seq-based features, ii) all motif-derived461

features, iii) all motif-derived features of motifs obtained by de-novo motif discovery on462

the challenge ChIP-seq peak files, iv) all motif-derived features based on LSlim models,463

v) all RNA-seq-based features, vi) all annotation-based features, and vii) all sequence-464

based features. As a baseline, we measure AUC-PR for the classifier using all feature465

sets. In addition, we measure AUC-PR when excluding each individual feature set,466

where the difference of these two AUC-PR values quantifies the improvement gained467

by including the feature set. We collect these differences for all 13 test data sets and468

visualize them as violin plots in Figure 4.469

We observe the greatest impact for the set of features derived from DNase-seq data.470

The improvement in AUC-PR gained by including DNase-seq data varies between 0.087471

for E2F1 and 0.440 for HNF4A with a median of 0.252.472

Features based on motif scores (including de-novo discovered motifs and those from473

databases) also contribute substantially to the final prediction performance. Here, we474

observe large improvements for some TFs, namely 0.231 for CTCF in IPSC cells, 0.175475
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for CTCF in PC-3 cells, and 0.167 for FOXA1. By contrast, we observe a decrease in476

prediction performance in case of JUND (−0.080) when including motif-based features.477

For the remaining TFs, we find improvements of AUC-PR between 0.008 and 0.079.478

We further consider two subsets of motifs, namely all motifs obtained by de-novo motif479

discovery on the challenge data and all Slim/LSlim models capturing intra motif depen-480

dencies. For motifs from de-novo motif discovery, we find an improvement for 9 of the481

13 data sets and for Slim/LSlim model we find an improvement for 10 of the 13 data482

sets. However, the absolute improvements (median of 0.011 and 0.006, respectively)483

are rather small, possibly because i) motifs obtained by de-novo motif discovery might484

be redundant to those found in databases and ii) intra motif dependencies and hetero-485

geneities captured by Slim/LSlim models (Keilwagen and Grau, 2015) might be partly486

covered by variations in the motifs from different sources.487

Notably, RNA-seq-based features (median 0.001), annotation-based features (0.000),488

and sequence-based features (0.001) have almost no influence on prediction performance.489

Having established that DNase-seq-based and motif-based features have a large impact490

on prediction performance, we also tested the prediction performance of the proposed491

approach using only features based on DNase-seq data and TF motifs, respectively. We492

find (Figure 3) that classifiers using exclusively motif-based features already yield a493

reasonable prediction performance for some TFs (CTCF and, to some extent, E2F1 and494

GABPA), whereas we observe AUC-PR values below 0.12 for the remaining of TFs. This495

may be explained by the large number of false positive predictions typically generated496

by approaches using exclusively motif information, which may only be avoided in case497

of long, specific motifs as it is the case for CTCF.498

By contrast, classifiers using only DNase-seq-based features yield a remarkable perfor-499

mance for many of the TFs studied (Figure 3), which is lower than for the motif-based500

classifier only for the two CTCF datasets. For some datasets (especially JUND but501

also EGR1, MAX), we even observe that a classifier based on DNase-seq data alone502

outperforms the classifier utilizing all features. For EGR1 and MAX, we observe a503

drop in prediction performance when excluding only motif-based features and only a504

slight increase in performance when excluding one of the other non-DNase feature sets505

(Supplementary Table S2, Figure 4). Hence, the inclusion of non-DNase feature sets506

individually may not explain the apparent difference between the classifier using only507

DNase-seq-based features and the classifier based on all features, which suggests mutual508

interactions between the different feature sets.509

In case of JUND, however, the increase in performance when neglecting all non-DNase510

features can likely be attributed to a strong adaptation of classifier parameters to either511

cell type-specific binding motifs or cell type-specific co-binding with other TFs, because512

JUND is the only dataset with an improved performance when excluding motif-based513

features as discussed above. For all three TFs, we do find an improvement of prediction514

performance if classifier parameters are trained on the training chromosomes of the test515

cell type (Supplementary Figure S2).516

Since DNase-seq-based and motif-based features appear to be the primary feature sets517

affecting prediction performance, we finally study prediction performance of a classifier518

using only these two feature sets. We observe that prediction performance using only519
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DNase-seq-based and motif-based features is largely identical to that of the classifier520

using all features (Figure 3), where we observe the largest loss in AUC-PR for TAF1521

(0.017) and the largest gain in AUC-PR for NANOG (0.007). We notice a similar522

behaviour for the within-cell type case (Supplementary Figure S2). As the left-out523

feature sets include all RNA-seq-based features, this also has the consequence that one524

cell type-specific assay (namely DNase-seq) is sufficient for predicting TF binding, which525

broadens scope of cell types with readily available experimental data that the proposed526

approach may be applied to.527

3.2 Iterative training improves prediction performance528

As a second key aspect of the proposed approach, we investigate the impact of the529

iterative training procedure on the final prediction performance. To this end, we compare530

for each TF the AUC-PR values obtained by averaging over the predictions all five531

classifiers resulting from the iterative training procedure for all training cell types with532

the AUC-PR values obtained by only averaging over the initially trained classifiers for all533

training cell types, i.e., classifiers trained only on the initial training data (section Initial534

training data).535

For 11 of the 13 test data sets, we observe an improvement of prediction performance536

by the iterative training procedure (Figure 5). The largest improvements are achieved537

for E2F1 (0.114), FOXA2 (0.085), NANOG (0.08), FOXA1 (0.063), and MAX (0.061).538

Among these are TFs for which we observed a good performance using only DNase-539

seq-based features (E2F1, MAX) and TFs for which the combination with motif-based540

features was beneficial (FOXA1, FOXA2, NANOG), which indicates that the additional541

negative regions added in iterations 2 to 5 do not induce a bias towards either of these542

two feature types. For four of these five TFs, only one (FOXA2, NANOG, FOXA1) or543

two (E2F1) training cell types were provided, and the variation between the different544

classifiers from iterative training may help to avoid overfitting. By contrast, we find a545

decrease in performance for JUND (0.041) and also TAF1 (0.01), which might be caused546

by a stronger emphasis on cell type-specific binding regions in subsequent iterations of the547

iterative training procedure. This hypothesis is also supported by the observation that548

the iterative training procedure always leads to an increase in prediction performance549

if classifier parameters are trained on the training chromosomes of the test cell type550

(Supplementary Figure S3).551

3.3 Averaging predictions improves over random selection of cell types552

For 9 of the 12 TFs considered, data for more than one training cell type is provided553

with the challenge data. Hence, one central question might be the choice of the cell554

type used for training and, subsequently, for making predictions for the test cell type.555

However, the only cell type-specific experimental data available for making that choice556

are DNaseq-seq and RNA-seq data, whereas similarity of cell types might depend on the557

TF considered. Indeed, similarity measures derived from DNaseq-seq data (e.g., Jaccard558

coefficients of overlapping DNaseq-seq peaks, correlation of profiles) or from RNA-seq559
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we compare the performance (AUC-PR) achieved by the (set of) classifier(s)
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by averaging over all classifiers from the iterative training procedure (ordinate).

data (e.g., correlation of TPM values) showed to be non-informative with regard to the560

similarity of TF binding regions in preliminary studies on the training cell types.561

Hence, we consider the choice of the training cell type a latent variable, and average562

over the predictions generated by the respective classifiers (see section 2.5). As labels of563

the test cell types have been made available after the challenge, we may now evaluate the564

impact of this choice on prediction performance and also test the prediction performance565

of classifiers trained on individual cell types (Figure 6).566

For all test data sets with multiple training cell types available, we find that the567

averaged prediction yields AUC-PR values above the median of the AUC-PR values568

achieved for individual training cell types. This improvement is especially pronounced569

for REST, GABPA, and MAX. Hence, we may argue that averaging over the cell type-570

specific classifiers generally yields more accurate predictions than would be achieved by571

an uninformed choice of one specific training cell types.572

However, we also notice for almost all test data sets with multiple training cell types573

(the only exception being CTCF for the PC-3 cell type) that the best prediction perfor-574

mance achieved using one of the individual training cell types would have gained, in some575

cases considerable, improvements over the proposed averaging procedure. Notably, the576

variance of AUC-PR between the different training cell types is especially pronounces for577

JUND, which supports the previous hypothesis that some features, for instance binding578

motifs or co-binding of TFs, are highly cell type-specific for JUND. In general, deriving579

informative measures of TF-specific cell type similarity based on cell type-specific assays580
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Figure 6: Performance of ensemble classifiers. For each of the 13 test data sets, we
compare the performance (AUC-PR) of the individual classifiers trained on
single cell types (open circles) to that of the ensemble classifier averaging over
all classifiers trained on all training cell types (filled, orange circles). As a
reference, we also plot the median of the individual classifiers as a red bar.

and, for instance, preliminary binding site predictions, would likely lead to a further581

boost of the performance of computational approaches for predicting cell type-specific582

TF binding.583

3.4 Creating a collection of cell type-specific TF binding tracks584

Having established that a single type of experimental assay, namely DNase-seq, is suffi-585

cient for predicting cell type-specific TF binding with state-of-the-art accuracy, we may586

now use the classifiers obtained on the training cell types and TFs for predictions on587

further cell types. To this end, we download DNase-seq data for a collection of pri-588

mary cell types and tissues (see section Data), process these in the same manner as the589

original challenge data and, subsequently, extract DNase-seq-dependent features (sec-590

tion Features). We then applied the trained classifiers for all 31 TFs considered in the591

challenge to these 22 DNase-seq feature sets to yield a total of 682 prediction tracks with592

a resolution of 200 bp windows shifted by 50 bp.593

For the selected cell types (Supplementary Table S3), only few cell type and TF-594

specific ChIP-seq data are available (Supplementary Table S4). On the one hand, this595

means that the predicted TF binding tracks provide valuable, novel information for the596

collection of 31 TFs studied. On the other hand, this provides the opportunity to perform597
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benchmarking and sanity checks with regard to the predictions for the subset of these598

TFs and cell types with corresponding ChIP-seq data available. For benchmarking,599

we additionally obtain the “relaxed” and (where available) “conservative” peak files600

from ENCODE and derive the associated labels (“bound”, “unbound”, “ambiguous”)601

according to the procedure proposed for the ENCODE-DREAM challenge.602

For CTCF with ChIP-seq peaks available for multiple cell types, we generally find a603

prediction performance that is comparable to the performance observed on the challenge604

data (cf. Supplementary Table S2). For these cell types, AUC-PR values (Supplemen-605

tary Table S5) range between 0.7720 and 0.8197 if conservative and relaxed peaks are606

available and the donors match between the DNase-seq and ChIP-seq experiments, while607

performance is slightly lower for non-matching donors (0.7322) and in case of missing608

conservative peaks (0.7270). For JUN, MAX, and MYC, only relaxed peaks are available609

from ENCODE due to missing replicates. Here, we find AUC-PR values of 0.6310 for610

JUN, which is substantially larger than for the challenge data, 0.4004 for MAX, which611

is slightly lower than for the challenge data, and 0.1989 for MYC, which has not been612

among the test TFs in the challenge but obtained substantially better performance in613

the leaderboard round.614

The 682 genome-wide prediction tracks are still rather large (approx. 880 MB per615

track) and, hence, demand for substantial storage space that might not be available to616

the typical user, while the majority of regions are likely not bound by the TF of interest.617

Hence, we further condense these predictions into predicted peak lists in narrowPeak618

format by joining contiguous stretches with high binding probability and applying a619

threshold of 0.6 (relaxed) and 0.8 (conservative) on the maximum probability observed620

in a predicted “peak”. We provide these peak files for download at https://www.621

synapse.org/#!Synapse:syn11526239 (doi:10.7303/syn11526239).622

To get an impression of the quality of the predicted peaks, we further compute623

Jaccard coefficients based on peak overlaps (computed using the GenomicRanges R-624

package (Lawrence et al., 2013)) between the predicted peak files and those from the625

corresponding, available ChIP-seq peaks (Supplementary Tables S6 and S7), and find626

those to be widely concordant to the previous assessment based on the derived labels.627

For CTCF, we may also employ Jaccard coefficients to study cell type specificity (Sup-628

plementary Table S6). We find that many of the cell type-specific predictions for CTCF629

are more similar to the ChIP-seq peaks determined for “endothelial cells of umbilical630

vein” than to those of their cell type of origin according to the DNase-seq data. One631

reason might be that only for this experiment (ENCSR000DLW), peaks have not been632

called using the uniform ENCODE pipeline including SPP (Kharchenko et al., 2008),633

but by another, “unknown” software. However, if we in turn ask for each experimentally634

determined peak list, which of the predicted peak lists is the most similar one, this pic-635

ture becomes more encouraging. For 7 of the 8 cell types with matching donor between636

ChIP-seq and DNase-seq data, the most similar prediction is obtained for the true cell637

type, while in one case (“fibroblast of lung”), the most similar cell type is “foreskin638

fibroblast”.639

Based on the predicted peak lists, we may also compare the predicted binding charac-640

teristics of the different TFs across cell types. First, we inspect the number of predicted641
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peaks per TF and cell type (Supplementary Figure S4). We find a distinct group of642

highly abundant TFs (CTCF, GATA3, SPI1, CEBPB, FOXA1, FOXA2, MAX), which643

typically also show large numbers of peaks in the training data. Among these, we644

find patterns of cell type specificity from the ubiquitously abundant CTCF to larg-645

erly varying abundance for GATA3. The remainder of TFs obtains substantially lower646

numbers of predicted peaks with similar patterns, e.g, for ATF7/ARID3A/NANOG or647

EP300/TEAD4/JUND, where the latter group has been reported to co-bind in distal648

enhancers (Xie et al., 2013). Next, we study the stability of peak predictions, i.e., the649

Jaccard coefficients of peaks predicted for each of the TFs in different cell types (Supple-650

mentary Figure S5). Again, we find substantial variation among the TFs with GABPA,651

CTCF, and REST with median Jaccard coefficients above 0.7. Notably, CTCF has been652

one of the TFs with the largest number of predicted peaks (median 37 455), whereas653

we observed an order of magnitude less predicted peaks for REST (median 3 364) and654

GABPA (median 5 430). At the other end of the scale, we find indirectly binding TFs655

like EP300, or TFs that are highly specific to cell types under-represented in our data656

like NANOG (stem cells) and HNF4A (liver, kidney, intestines). Finally, we investigate657

co-binding of TFs by computing the average Jaccard coefficient across cell types for each658

pair of TFs (Supplementary Figure S6). Here, we observe distinct groups of co-occurring659

TFs like CTCF/ZNF143 or FOXA1/FOXA2, which are known to interact in-vivo (Bai-660

ley et al., 2015; Ye et al., 2016; Motallebipour et al., 2009). In addition, we find a larger661

cluster of TFs with substantial overlaps between their predicted peaks comprising YY1,662

MAX, CREB1, MYC, E2F6, E2F1, and TAF1. As TAF1 (TATA-Box Binding Protein663

Associated Factor 1) is associated with transcriptional initiation at the TATA box, one664

explanation might be that binding sites of these TFs are enriched at core promoters.665

Indeed, binding to proximal promoters has been reported for MYC/MAX (Guo et al.,666

2014), CREB1 (Zhang et al., 2005), YY1 (Li et al., 2008), and E2F factors (Rabinovich667

et al., 2008).668

4 Discussion669

Predicting in-vivo binding sites of a TF of interest in-silico is still one of the central670

challenges in regulatory genomics. A variety of tools and approaches for this purpose671

have been created over the last years and, among these, the approach presented here is672

not exceptional in many of its aspects. Specifically, it works on hand-crafted features673

derived from genomic and experimental data, it considers TF binding motifs and chro-674

matin accessibility as its major sources of information, and it uses supervised learning675

related to logistic regression. Here, we focus on the impact of further, novel aspects of676

the proposed approach on prediction performance.677

With regard to the features considered, we find that motif-based and DNase-seq-678

based features are pivotal for yielding a reasonable prediction performance for most679

TFs, while other sequence-based, annotation-based, or RNA-seq-based features have680

only marginal innfluence on the prediction result. In case of RNA-seq-based features,681

however, more sophisticated features than those employed in our approach might have682
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a positive influence on prediction accuracy. In addition, DNA shape might also be683

informative about true TF binding sites, although in-silico shape predictions provided684

in ENCODE-DREAM are determined based on k-mers, and their influence might also be685

captures by higher-order Markov models or Slim/LSlim models (Keilwagen and Grau,686

2015) employed in the approach presented here.687

Previous studies have shown that additional features like sequence conservation (Ku-688

mar and Bucher, 2016; Liu et al., 2017), histone marks (Pique-Regi et al., 2011; Arvey689

et al., 2012; Gusmao et al., 2014), or ChIP-seq data of co-factors (Kumar and Bucher,690

2016) might also help to predict in-vivo TF binding. However, these were not allowed691

to be used in the ENCODE-DREAM challenge and further experimental assays were692

unavailable for the training cell types. Hence, we decided to also exclude such features693

from the studies presented in this paper.694

Two further novel aspects of the presented approach, namely the iterative training695

procedure and aggregation of predictions across training cell types, also contribute sub-696

stantially to the final prediction performance. Both ideas might also be of relevance in697

related fields. Specifically, the iterative training procedure provides a general schema698

applicable to imbalanced classification problems, especially when these require sampling699

of negative examples. In an abstract sense, the aggregation across training cell types700

corresponds to favoring model averaging over model selection if good selection criteria701

are hard to find or might yield highly varying results.702

Despite its state-of-the-art performance proven in the ENCODE-DREAM challenges,703

the approach presented here has important limitations. First, the large number of mo-704

tifs (including those from de-novo motif discovery) and DNase-seq-based features lead705

to high demands with regard to disk space but also runtime, which are likely beyond706

reach for wet-lab biologists. Disk requirements could be reduced by computing features707

from (smaller) raw files on demand. However, this would in turn increase running time708

considerably.709

Second, the approach proposed here, like any of the other supervised approaches (Natara-710

jan et al., 2012; Arvey et al., 2012; Luo and Hartemink, 2012; Kähärä and Lähdesmäki,711

2015; Kumar and Bucher, 2016; Quang and Xie, 2017; Liu et al., 2017; Qin and Feng,712

2017; Chen et al., 2017), requires labeled training data for at least one cell type and the713

TF of interest to make predictions for this TF in another cell type.714

While the latter limitation is partly overcome by unsupervised approaches (Pique-715

Regi et al., 2011; Sherwood et al., 2014; Gusmao et al., 2014; Raj et al., 2015; Jankowski716

et al., 2016), this typically comes at the cost of reduced prediction accuracy (Kähärä717

and Lähdesmäki, 2015; Liu et al., 2017). We address the former limitation by providing718

a large collection of 682 predicted peak files for 31 TFs using 22 DNase-seq data sets for719

primary cell types and tissues. Benchmarks based on the limited number of available720

ChIP-seq data indicate that prediction performance on these cell types is comparable721

to that achieved in the ENCODE-DREAM challenge, where absolute values of AUC-722

PR measuring prediction accuracy vary greatly between different TFs. For the wide723

majority of these combinations of TF and cell type, no experimental data about cell724

type-specific TF binding is available so far, which renders these predictions a valuable725

resource for questions related to regulatory genomics in these primary cell types and726
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tissues. Preliminary studies raise our confidence that the predicted peak files may indeed727

help to solve biological questions related to these cell types and TFs.728
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ENCODE-DREAM training, leaderboard, and final round
sets.
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Supplementary Figure S4: Number of predicted peaks in “conservative” peak files for the
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Supplementary Figure S5: Jaccard coefficients of the different TFs computed on the
overlap of the peak files between all pairs of the 22 individual
cell types.
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Supplementary Figure S6: Average Jaccard coefficients computed on the overlap of the
peak files of pairs of TFs for matched cell types. In the color
scale, the solid cyan line represents the histogram of values
observed in the heatmap. Dashed lines indicate the value
at the center bin of the color scale. Rows and columns are
clustered by the R hclust function using complete linkage.
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Supplementary Methods886

Supplementary Text S1 – Features887

The features described in the following are all determined on the level of genome bins.888

We refer to the bin for which the a-posteriori probability of being peak center should889

be computed (i.e., the bin containing the peak summit in case of positive examples) as890

center bin. Further, adjacent bins considered are defined relative to that center bin (see891

also section Prediction schema).892

S1.1 Sequence-based features893

As a first sequence-based feature, we consider the raw DNA sequence according to the894

hg19 human genome sequence in the center bin and the directly preceding and the895

directly following bin. In total, this corresponds to 150 bp of sequence, centered at the896

center bin.897

We further consider the mean G/C-content, and the relative frequency of CG di-898

nucleotides in the raw sequence spanning those three bins centered at the center bin.899

G/C-content might be an informative property of promoters bound by a certain TF,900

and an enrichment of CG di-nucleotides might be informative about the presence of901

CpG islands.902

We also compute the Kullback-Leibler divergence between the relative frequencies of903

all tri-nucleotides in each of these three bins compared with their relative frequencies904

in the complete genome. As a feature, we then consider the maximum of those three905

Kullback-Leibler divergence values obtained for the three bins. Here, the reasoning is906

that a deviation from the genomic distribution of tri-nucleotides might be a sign of the907

general information content of a sequence, which might help to distinguish coding and908

non-coding DNA regions as well as identifying regions that encode regulatory informa-909

tion.910

Finally, we consider the length of the longest poly-A or poly-T tract, the length of the911

longest poly-C or poly-G tract, the length of the longest poly-A/T tract, and the length912

of the longest poly-G/C tract in these three bins.913

All of those sequence-based features are neither TF-specific nor cell type-specific, but914

model parameters learned on their feature values might well be different for different915

training TFs or cell types.916

S1.2 Annotation-based features917

Based on the Gencode v19 genome annotation of the hg19 genome, we derive a set918

of annotation-based features. First, we consider the distance of the current center bin919

to the closest TSS annotation (regardless of its strand orientation), which might be920

informative about core promoter regions. Second, we collect the binary information if921

the current center bin overlaps with annotations of i) a CDS, ii) a UTR, iii) an exon,922

iv) a transcript, or v) a TSS annotation, separately for each of the two possible strand923

orientations. Like some of the previous features, this helps to identify coding, non-coding924
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but transcribed, core promoter, and intergenic regions. Again, these features are not TF925

or cell type-specific, but model parameters may be adapted specifically for a TF or cell926

type.927

S1.3 Motif-based features928

As it might be expected that binding motifs are pivotal for predicting TF-specific bind-929

ing regions, we create a large collection of motifs for each of the TFs considered. For930

each of the TFs, we collect all position weight matrix models from the HOCOMOCO931

database (Kulakovskiy et al., 2016) as well as our in-house database DBcorrDB (Grau932

et al., 2015a), and Slim/LSlim models of the respective TFs from a previous publica-933

tion (Keilwagen and Grau, 2015). In addition, we learn a large set of motifs from the934

data provided in the challenge using our motif discovery tools Dimont (Grau et al., 2013)935

using PWM as well as LSlim(3) models (Keilwagen and Grau, 2015). Specifically, we936

perform motif discovery for937

• PWM models from the “conservative” peak files for each training cell type,938

• PWM models from the “relaxed” peak files complemented by negative regions se-939

lected to be DNase positive (i.e., open chromatin) but ChIP-seq negative according940

to the ChIP-seq and DNase-seq peak files provided with the challenge data,941

• LSlim(3) models from the “conservative” peak files for each training cell type,942

• LSlim(3) models from the “relaxed” peak files for each training cell type,943

• LSlim(3) models from the “relaxed” peak files complemented by negative regions944

selected to be DNase positive (i.e., open chromatin) but ChIP-seq negative accord-945

ing to the ChIP-seq and DNase-seq peak files provided with the challenge data.946

LSlim(3) may capture intra-motif dependencies between binding site position with a947

distance of at most three nucleotides.948

Motifs discovered using models of different complexity on these different sets of training949

data (“conservative” and “relaxed” peaks, and “relaxed” peaks complemented by DNase950

positive regions) should i) capture the breadth of the binding landscape of a TF as951

represented by the different levels of stringency (“conservative” vs. “relaxed”), and ii)952

represent potential intra-motif dependencies as well as traditional, “additive” binding953

affinities. In addition, we learn motifs from the DNase-seq peak files as well, considering954

• LSlim(3) models from the “conservative” and “relaxed” DNase-seq peak files,955

• LSlim(3) models from the regions in the intersection of all “relaxed” DNase-seq956

peak files.957

Learning motifs from the DNase-seq data alone might have the potential to capture958

additional binding motifs of TFs that are important for cell type-specific predictions but959

are not represented in the ChIP-seq data provided with the challenge data.960
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Regardless of the TF considered, we further include PWM and Slim/LSlim motifs961

discovered previously (Keilwagen and Grau, 2015; Grau et al., 2015a) for CTCF, SP1,962

JUND, and MAX, as those i) mark boundaries between regulatory regions, ii) frequently963

interact with other transcriptions factor, or iii) bind to a large fraction of active promot-964

ers. Further TFs that might interact with the currently considered TF as determined i)965

from the literature, specifically from Factorbook (Wang et al., 2012), ii) determined from966

the overlap between the ChIP-seq peaks provided with the challenge data. The latter is967

accomplished by computing for each TF and cell type i) the TF with the largest overlap968

(F1 measure computed on the peaks) and ii) the TF with the lowest overlap between the969

peak files. The former might be indicative of co-binding, while the latter might indicate970

mutually exclusive binding, both of which might help to predict TF-specific binding971

regions.972

Finally, we consider motifs determined by the epigram pipeline (Whitaker et al., 2015),973

which mark epigenetic modifications. Specifically, we select the top 10 motifs reported974

for “single mark” analyses for methylation, and H3K4me3 and H3K27ac histone mod-975

ifications (downloaded from http://wanglab.ucsd.edu/star/epigram/mods/index.976

html).977

We use all motif models described above to scan the hg19 genome for potential binding978

regions. To this end, we apply a sliding window approach across the genome, and979

aggregate the motif scores obtained according to the genomic bins. For the TF-specific980

motifs obtained by de-novo motif discovery from ChIP-seq data, we consider as features981

• the maximum log-probability of all sliding windows starting in the center bin,982

• the logarithm of the sum of binding probabilities in all sliding windows starting in983

the center bin or its two adjacent bins, and984

• the logarithm of the sum of binding probabilities in all sliding windows starting in985

any of the bins considered.986

The first feature should capture the binding affinity at the strongest binding site around987

the peak summit, while the latter two features represent the general binding affinity of988

a region with different levels of resolution.989

For all of the remaining motifs, we consider the maximum of the bin-wise logarithm990

of the sum of binding probabilities over all bins considered (see section Binning the991

genome), as this reduces memory requirements as well as model complexity and this992

level of detail might be sufficient to capture TF interactions.993

S1.4 DNase-based features994

For the DNase-seq data, the challenge provided tracks with a “fold-enrichment coverage”995

track, peak files, and the original BAM files from mapping the DNase-seq reads, of which996

we consider only the former two. From the fold-enrichment coverage track, we compute997

the following statistics:998

• the minimum value across the center bin and its two adjacent bins,999

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2017. ; https://doi.org/10.1101/230011doi: bioRxiv preprint 

http://wanglab.ucsd.edu/star/epigram/mods/index.html
http://wanglab.ucsd.edu/star/epigram/mods/index.html
http://wanglab.ucsd.edu/star/epigram/mods/index.html
https://doi.org/10.1101/230011
http://creativecommons.org/licenses/by-nc-nd/4.0/


• the minimum of the maximum value within each bin considered,1000

• the minimum of the 25% percentile within each bin considered, and1001

• the median values of all the bins considered.1002

After extracting those feature values for all genomic bins, we quantile normalize each1003

of the features independently across the challenge cell types. Before normalization, we1004

randomize the order of values to avoid systematic effects due to genomic order, which1005

might especially occur for the large number of very low values. For the additional,1006

primary cell types, we do not perform an independent quantile normalization but instead1007

map the DNase-seq features (according to their numerical order) to the corresponding,1008

quantile normalized values of the challenge cell types.1009

In addition to these short-range DNase features, we also determine a set of long-range1010

features, which are computed from i) 10 bins ii) 20 bins, and iii) 40 bins preceding and1011

succeeding the current center bin. These features are1012

• the minimum value across all bins,1013

• the maximum value across all bins,1014

• the minimum value across the bins preceding the center bin,1015

• the minimum value across the bins succeeding the center bin,1016

• the maximum value across the bins preceding the center bin, and1017

• the maximum value across the bins succeeding the center bin.1018

Together, these features capture chromatin accessibility on a short and long range level1019

with reasonable resolution, which should be highly informative with regard to the general1020

TF-binding potential. Model parameters should then be able to adapt for TF-specific1021

preferences of chromatin accessibility.1022

For the current center bin, we additionally determine features of stability across the1023

different cell types, namely1024

• the ratio of the minimum value in the current cell type divided by the average of1025

the minimum values across all cell types,1026

• the ratio of the maximum value in the current cell type divided by the average of1027

the maximum values across all cell types,1028

• the coefficient of variation (standard deviation divided by mean) of the minimum1029

values across all cell types, and1030

• the coefficient of variation of the maximum values across all cell types,1031

where the latter two features are identical for all cell types by design.1032

We also determine several features that represent the monotonicity/stability of these1033

DNase-seq signals. Specifically, these features are1034
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• the number of steps (increasing or decreasing) in the track profile in a 450 bp1035

interval centered at the center bin,1036

• the longest strictly monotonically increasing stretch in the four bins preceding the1037

center bin,1038

• the longest strictly monotonically decreasing stretch in the four bins preceding the1039

center bin,1040

• the longest strictly monotonically increasing stretch in the four bins succeeding1041

the center bin, and1042

• the longest strictly monotonically decreasing stretch in the four bins succeeding1043

the center bin.1044

The first of these features has been inspired by the “orange” feature coined by team1045

autosome.ru in the challenge.1046

Finally, we define further features based on the “conservative” and “relaxed” DNase-1047

seq peak files as provided with the challenge data. These are1048

• the distance of the center bin to the summit of the closest conservative peak,1049

• the distance of the center bin to the summit of the closest relaxed peak,1050

• the peak statistic of a conservative peak overlapping the center bin (or zero if no1051

such overlapping peak exists) multiplied by the length of the overlap,1052

• the peak statistic of a relaxed peak overlapping the center bin (or zero if no such1053

overlapping peak exists) multiplied by the length of the overlap,1054

• the maximum of the q-values of an overlapping conservative peak (or zero if no1055

such overlapping peak exists) multiplied by the length of the overlap across the1056

five central bins,1057

• the maximum of the q-values of an overlapping relaxed peak (or zero if no such1058

overlapping peak exists) multiplied by the length of the overlap across the five1059

central bins.1060

S1.5 RNA-seq-based features1061

The RNA-seq data provided with the challenge data included the TPM values of genes1062

according to the gencode v19 genome annotation. TPM values are also quantile normal-1063

ized across the cell types. As features, we consider1064

• the maximum TPM value (averaged over the two bio-replicates per cell type) of1065

genes in at most 2.5 kb distance1066

• the coefficient of variation of the bio-replicated of the corresponding gene,1067
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• the relative difference (difference of values in bio-replicated divided by their mean1068

value) of the corresponding gene.1069

In analogy to the DNase-based features, we computed from the first feature as measures1070

of stability across the different cell types1071

• the ratio of the maximum TPM value in the current cell type divided by the average1072

of the maximum values across all cell types, and1073

• the coefficient of variation of the maximum TPM values across all cell types.1074

Supplementary Text S2 – Model & learning principle1075

For numerical features x, we use independent Gaussian densities parameterized as1076

N (x|λ, µ) :=

√
eλ

2π
· e−

eλ

2
(x−µ)2

,

which allows for unconstrained numerical optimization of both, λ and µ.1077

For features y with K possible discrete values v1, . . . , vK , we use (unnormalized) multi-1078

nomial distributions with parameters β = (β1, . . . , βK) defined as1079

B(y|β) :=
K∏
k=1

(
exp(βk)∑
` exp(β`)

)δ(y=vk)

.

The multinomial coefficient is neglected in this case, since it only depends on the in-1080

put data but not on the model parameters. In case of binary features, i.e., K=2, this1081

corresponds to an (unnormalized) binomial distribution.1082

For modeling the raw sequence s = s1s2. . .sL, s` ∈ Σ = {A,C,G, T}, we use a1083

homogeneous Markov model of order 3 parameterized as1084

M(s|βs) :=
exp(β1,s1)∑
a∈Σ exp(β1,a)

·
exp(β2,s2|s1)∑
a∈Σ exp(β2,a|s1)

·
exp(β3,s3|s1s2)∑
a∈Σ exp(β3,a|s1s2)

·

L∏
`=4

exp(βh,s`|s`−3s`−2s`−1
)∑

a∈Σ exp(βh,a|s`−3s`−2s`−1
)
,

where βh,a|b, a ∈ Σ, b ∈ Σ3 are the homogeneous parameters and1085

βs = (β1,A, . . . , β1,T , β2,A|A, . . . , β2,T |T , β3,A|AA, . . . , β3,T |TT , βh,A|AAA, . . . , βh,T |TTT ) de-1086

notes the vector of all model parameters.1087

Let x = (x1, . . . , xN ) denote the vector of all numerical features, y = (y1, . . . , yM ) de-1088

note the vector of all discrete features, and s denote the raw sequence of one region repre-1089

sented by its feature values z = (x,y, s). Let θ = (λ1, . . . , λN , µ1, . . . , µN ,β1, . . . ,βM ,βs)1090

denote the set of all model parameters. We compute the likelihood of z as an independent1091

product of the terms for the individual features, i.e.,1092

P (z|θ) :=

(
N∏
`=1

N (x`|λ`, µ`)

)
·

(
M∏
`=1

B(y`|β`)

)
· M(s|βs).
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For modeling the distribution in the positive (foreground) and negative (background)1093

class, we use likelihoods P (z|θfg) and P (z|θbg) with independent sets of parameters1094

θfg and θbg, respectively. In addition, we define the a-priori class probabilities as1095

P (fg|γ1, γ2) := exp(γ1)
exp(γ1)+exp(γ2) and P (bg|γ1, γ2) = exp(γ2)

exp(γ1)+exp(γ2) .1096

Based on these definitions, we may compute the a-posteriori class probability of the1097

positive class as1098

P (fg|z,θfg,θbg,γ) =
P (fg|γ1, γ2) · P (z|θfg)

P (fg|γ1, γ2) · P (z|θfg) + P (bg|γ1, γ2) · P (z|θbg)
,

and the a-posteriori class probability of the negative class in complete analogy.1099

Using the discriminative maximum conditional likelihood principle (Roos et al., 2005),1100

the parameters are optimized such that the a-posteriori probabilities of the correct class1101

labels given data and parameters are maximized. Here, we use a variant (Grau, 2010)1102

of the maximum conditional likelihood principle that incorporates weights. Let F =1103

(z1, . . . ,zI) denote the set of positive examples and let B = (zI+1, . . . ,zJ) denote the1104

set of negative examples, where zi is assigned weight wi. The parameters are then1105

optimized with regard to1106

(θ∗fg,θ
∗
bg,γ

∗) = argmax
(θfg ,θbg ,γ)

[
I∑
i=1

wi · logP (fg|zi,θfg,θbg,γ) +

J∑
i=I+1

wi · logP (bg|zi,θfg,θbg,γ)

]
.

Supplementary Text S3 – Sampling of DNase-matched negative regions1107

We sample negative regions with chromatin accessibility values matched to the positive1108

regions (following an idea related to importance sampling) as explained in the following.1109

We consider the center bins of all positive regions, collect the corresponding DNase-1110

seq median feature values (see Supplementary Text S1) of those bins, and determine a1111

histogram of the collected values. The histogram is composed of 20 equally sizes bins1112

between the observed maximum and minimum values of the DNase-seq median values.1113

This histograms represents an approximation of the distribution of DNaseq-seq median1114

values in the positive regions. As we expect DNase-seq values to be highly informative1115

about TF binding, we aim at sampling a representative set of negative regions that1116

exhibit similar DNaseq-seq values but might be distinguished from positive regions by1117

other features.1118

To this end, we assign each of the negative regions to the same histogram bins based1119

on their respective DNase-seq median values at their center bins. This also yields an1120

analogous histogram of the DNase-seq median values for the negative regions, which will1121

usually be different from the histogram for the positive regions.1122

Within each histogram bin, we then draw a subset of the negative regions assigned to1123

that bin by i) drawing a subset of these regions four times as large as the corresponding1124
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positive set, and ii) weighting the drawn negative regions such that the sum of weights1125

matches the relative abundance of that histogram bin in the histogram on all negative1126

region.1127

Conceptually, this procedure yields an over-sampling of negative regions with large1128

DNase-seq median features, which is adjusted for by down-weighting such examples to1129

the corresponding frequency on the chromosome level. This is especially important as1130

these will be regions that are hard to classify using DNase-seq based features but are1131

only lowly represented by the uniform sampling schema.1132
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