bioRxiv preprint doi: https://doi.org/10.1101/230011; this version posted June 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 Learning from mistakes:

. Accurate prediction of cell type-specific
; transcription factor binding

. Jens Keilwagen', Stefan Posch?, and Jan Grau?

5 lInstitute for Biosafety in Plant Biotechnology, Julius Kiihn-Institut (JKI) - Federal Research
6 Centre for Cultivated Plants, Quedlinburg, D-06484, Germany

7 2Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), D-
s 06120, Germany.

10 Computational prediction of cell type-specific, in-vivo transcription factor
11 binding sites is still one of the central challenges in regulatory genomics, and
12 a variety of approaches has been proposed for this purpose.

13 Here, we present our approach that earned a shared first rank in the
14 “ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction
15 Challenge” in 2017. This approach employs features derived from chromatin
16 accessibility, binding motifs, gene expression, genomic sequence and annota-
17 tion to train classifiers using a supervised, discriminative learning principle.
18 Two further key aspects of this approach are learning classifier parameters in
19 an iterative training procedure that successively adds additional negative ex-
20 amples to the training set, and creating an ensemble prediction by averaging
21 over classifiers obtained for different training cell types.

2 In post-challenge analyses, we benchmark the influence of different feature
23 sets and find that chromatin accessiblity and binding motifs are sufficient to
2% yield state-of-the-art performance for in-vivo binding site predictions. We
25 also show that the iterative training procedure and the ensemble prediction
2 are pivotal for the final prediction performance.

27 To make predictions of this approach readily accessible, we predict 682
28 peak lists for a total of 31 transcription factors in 22 primary cell types and
29 tissues, which are available for download at https://www.synapse.org/#!
30 Synapse:synl11526239, and we demonstrate that these may help to yield
31 biological conclusions. Finally, we provide a user-friendly version of our ap-
32 proach as open source software at http://jstacs.de/index.php/Catchitt.
33 Contact: |grau@informatik.uni-halle.de
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s 1 Introduction

3 Activation or repression of transcription is one of the fundamental levels of gene regu-
a7 lation. Transcriptional gene regulation depends on transcription factors (TFs), which
38 specifically bind directly to sites in promoters or enhancers of regulated genes or bind
30 indirectly via other, sequence specific TFs. Modeling binding specificities, typically rep-
a0 resented as sequence motifs, has been an important topic of bioinformatics since its
s infancy (Staden| 1984; Berg and von Hippel, [1987)). However, it soon became evident
22 that in-silico binding site predictions based on sequence motifs alone are insufficient to
a3 explain in-vivo binding of TFs and that determinants beyond sequence specificity likely
s play an important role (Stormo and Fields| [1998; Bulyk, 2003).

a5 The emergence of high-throughput techniques like ChIP-chip (Wu et al., 2006) or
46 ChlIP-seq (Johnson et all, [2007)) allowed for experimentally determining in-vivo TF bind-
a7 ing regions on a genome-wide scale. While especially ChIP-seq and derived techniques
a8 have the potential to measure TF-specific and cell type-specific binding, the experimental
20 effort and costs currently preclude ChIP-seq experiments for hundreds to thousands of
so TFsin a variety of different cell types and tissues. Hence, there is a demand for computa-
51 tional methods predicting cell type-specific TF binding with high accuracy. Fortunately,
52 the existence of genome-wide ChIP data for a subset of TFs and cell types also opens
53 up the opportunity to generate more accurate models by supervised machine learning
54 techniques, which may consider further features beyond motif matches.

55 High-throughput sequencing may also be used to obtain genome-wide assays of chro-
s matin accessibility (e.g., DNase-seq (Hesselberth et al., 2009), ATAC-seq (Buenrostro
s7 |et al.l |2013)), which has been considered one of the key features distinguishing func-
s tional from non-functional TF binding sites (Galas and Schmitz, (1978 |Chen et al.,
s 2010). Chromatin accessibility data may yield genome-wide maps of functional binding
e sites of a large fraction of TFs but, in contrast to ChIP-seq, does not identify the TF
1 binding to a specific region. Hence, the association between bound regions (“footprints”)
e and TFs is typically derived computationally (Pique-Regi et al., 2011).

63 Following this path, a plenitude of tools (Supplementary Table detailed discussion
o« in Supplementary Text [Supplementary Text S1|) has been proposed over the last years
& (e.g., [Pique-Regi et al.| (2011); Natarajan et al.| (2012); |Arvey et al. (2012); Luo and
66 |[Hartemink| (2012)); Piper et al. (2013); [Sherwood et al. (2014); Gusmao et al. (2014);
e7 [Raj et al. (2015); |Kahara and Lahdesmaki| (2015); Kumar and Bucher| (2016]); Jankowski
e |et al. (2016)); Quang and Xie (2017); Liu et al. (2017); Qin and Feng (2017); Schmidt
6o |et al. (2017); Chen et al.[(2017)). While the general notion of combining sequence signals
70 with chromatin accessibility data and, in some cases, other features is common to the
71 majority of approaches, they differ in several aspects. Specifically, approaches differ
72 in the source of motif information, which may stem from motif databases or from de-
73 novo motif discovery. Matches to these motifs are either used as prior information and
74 filtered by their respective DNase-seq signals in a subsequent step, or DNase footprints
75 are first detected and annotated with TFs based on motif matches in those footprints, or,
76 finally, motif and DNase-seq information are processed jointly. Supervised approaches
77 rely on labeled training data, whereas unsupervised approaches may be applied without



https://doi.org/10.1101/230011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/230011; this version posted June 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

78 any a-priorily known binding sites of the TF at hand. Finally, motif and chromatin
79 accessibility data may be complemented with further experimental or computational
s assays like histone modifications or sequence conservation.

81 Each of these approaches has its benefits and downsides, and the results of bench-
g2 mark studies in the respective original publications are ambiguous with regard to their
83 prediction performance. Against this background, the “ENCODE-DREAM in vivo
s« Transcription Factor Binding Site Prediction Challenge” (https://www.synapse.org/
ss #!Synapse:syn6131484) aimed at assessing the performance of tools for predicting cell
s type-specific TF binding in human using a minimal set of experimental data in a fair
sz and unbiased manner. The challenge setting has advantages over typical benchmark
s studies, because approaches are typically applied to the challenge data by their authors,
so ground truth is known only by the challenge organizers, and participants are typically
90 required to provide code and documentation for their method such that predictions can
o1 be reproduced.

92 Participants in the ENCODE-DREAM challenge were allowed to use binding motifs
93 from any source, genomic sequence, gene annotations, in-silico DNA shape predictions,
oa and cell type-specific DNase-seq and RNA-seq data. In addition, TF ChIP-seq data and
o5 ChIP-seq-derived labels (“bound”, “unbound”, “ambiguous”) were provided for training
96 cell types and training chromosomes. Predictions had then to be made for combinations
o7 of TF and cell type not present in the training data on held-out chromosomes. Predic-
98 tions were evaluated against labels derived from TF ChlIP-seq data for that specific TF
90 and test cell type.

100 Here, we present our approach for predicting cell type-specific TF binding regions
101 earning a shared first rank among 40 international teams, including developers of sev-
102 eral established methods (https://www.synapse.org/#!Synapse:syn6131484/wiki/
103 405275). The approach presented in this paper combines several novel ideas. First,
104 we consider motifs from databases, but also motifs learned by de-novo motif discovery
105 from ChIP-seq and DNase-seq data using sparse local inhomogeneous mixture (Slim)
106 models (Keilwagen and Grau, |2015)), which may capture short to mid-range intra-motif
107 dependencies. Second, we process DNase-seq data following the binning idea of previ-
108 ous approaches but defining novel statistics computed from the data in those bins, and
100 derive several sequence-based, annotation-based, and RNA-seq-based features. Third,
10 we apply a supervised machine learning approach that employs a discriminative learning
1 principle, which is related to logistic regression but allows for explicit model assumptions
12 with regard to different features. Fourth, discriminative learning is combined with an
us iterative training approach for refining sets of representative negative examples. Finally,
114 we combine the predictions of classifiers trained in different of these iterations and on
15 different training cell types in an ensemble-like approach.

116 As this novel approach has already been benchmarked against a large number of com-
u7  peting approaches as part of the ENCODE-DREAM challenge (https://www.synapse.
us org/#!Synapse:syn6131484/wiki/405275), we focus on the analysis for the contribu-
1o tions of different aspects of this approach on the final prediction performance in this
120 paper. Specifically, we evaluate the contribution of different features, we compare the
121 performance achieved by standard training with that achieved by the iterative training
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122 procedure, and we assess the performance of individual classifiers compared with their
123 ensemble prediction. Based on these analyses, we define and benchmark a simplified
124 variant of the proposed approach. Finally, we provide a large collection of predicted, cell
15 type-specific tracks of binding regions for 31 TFs in 22 primary cell types and tissues to
126 make predictions by this approach readily accessible.

127 2 Methods
s 2.1 Data

120 We use the following types of input data sets as provided by the challenge organizers
130 (https://www.synapse.org/#!Synapse:syn6131484/wiki/402033):

131 e the raw sequence of the human genome (hgl9) and gene annotations according
132 to the gencode v19 annotation (http://www.gencodegenes.org/releases/19.
133 html) (Harrow et al., [2012),

134 e cell type-specific DNase-seq “fold-enrichment coverage” tracks, which represent
135 DNase-seq signal relative to a pseudo control, smoothed in a 150 bp window,

136 e cell type-specific DNase-seq peak files in “conservative” (IDR threshold of 10% in

137 pseudo replicates) and “relaxed” (no IDR threshold) flavors,

138 e cell type-specific TPM values from RNA-seq experiments in two bio-replicates for
139 all gencode v19 genes as estimated by RSEM (Li and Deweyl, 2011)),

140 e cell type-specific and TF-specific ChIP-seq peak files in “conservative” (IDR thresh-
141 old of 10% in pseudo replicates) and “relaxed” (no IDR threshold) flavors,

142 e cell type-specific and TF-specific label files classifying genome-wide 200 bp regions
143 every 50bp into B=“bound”, A=“ambiguous”, and U=*“unbound” according to
144 the respective conservative and relaxed ChIP-seq peak files; an overview of the
145 combinations of TF and cell type in the training data, the leaderboard data, and
146 the test data used for evaluation in the final challenge round is given in Supple-
147 mentary Figure

us In addition, we download sequence motifs represented as PWMs from the following

19 collections:

o

150 e TF-specific motifs from the databases HOCOMOCO (Kulakovskiy et al., [2016])
151 and DBcorrDB (Grau et al., [2015a),

152 e motifs related to epigenetic markers from the epigram pipeline (Whitaker et al.,
153 2015)).

15+ Details about the motifs considered are given in section ‘{Features]’ and [Supplementaryl]
155 [Text S2
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156 For predicting cell type-specific binding of TFs in additional cell types beyond those
157 considered in the challenge, we download DNase-seq data (FastQ format) from the EN-
155 CODE project (encodeproject.org). Specifically, we select all DNase-seq experiments
19 that i) are flagged as “released”, ii) have Fast(Q files available, iii) are not from immortal-
160 ized cell lines, iv) have no entry in one of the “Audit error” categories, and v) are not in
161 the “insufficient replicate concordance” category of “Audit not compliant”. A list of the
162 corresponding experiments is obtained from the ENCODE project and experiments are
163 filtered for the existence of at least two replicates, yielding 23 experiments in total. One
164 of these experiments had to be excluded later, because a different DNase protocol with
165 much shorter reads had been used. For the remaining 22 experiments (Supplementary
166 Table , all FastQ files are downloaded from ENCODE and processed using ATAC-
17 Seq/DNase-Seq Pipeline (https://github.com/kundajelab/atac_dnase_pipelines,
168 latest git commit: ¢1d07d38a02af2f0319a69707eee047ab6112ecc (Tue Mar 21 20:31:25
10 2017)). The data sets are analyzed using the following parameters

170 -species hgl9 -type dnase-seq -subsample 50M -se. For further analyzes, the re-
i laxed (./out/peak/idr/pseudo_reps/repl/*.filt.narrowPeak.gz) and conservative
12 peaks ( ./out/peak/macs2/overlap/*pvalO.1x.filt.narrowPeak.gz) as well as the
173 DNase coverage (./out/signal/macs2/repl/*.fc.signal.bigwig) are used.

174 In addition, we download ChIP-seq peak files (Supplementary Table matching
175 these cell types and one of the TFs considered. Based on the “relaxed” (i.e., “optimal
176 idr thresholded peaks”) and “conservative” (i.e., “conservative idr thresholded peaks”)
177 peak files, we derive labels for 200 bp windows every 50 bp as proposed for the challenge.
178 Specifically, we label each 200bp region overlapping a conservative peak by at least
179 100bp as “bound”. Of the remaining regions, all regions that overlap a relaxed peak
180 by at least 1 bp are labeled “ambiguous”, while all other regions are labeled “unbound”.
181 For a subset of TF's, no conservative peaks are available due to the lack of replicates. In
182 such cases, we also use the relaxed peaks to assign “bound” labels.

13 2.2 Binning the genome

18 As the final prediction is requested for overlapping 200 bp regions with an offset of
185 D0 bp, we decide to compute features with a matching resolution of 50bp. To this
186 end, the genome is divided into non-overlapping bins of 50 bp. Features are then either
157 computed directly with that resolution (where possible, e.g., distance to the closest TSS),
188 or first computed with base-pair resolution and afterwards summarized as aggregate
19 values (minimum, maximum, median, or similar statistics) for each 50 bp bin. An odd
1o number of several, adjacent bins, i.e., the respective feature values (see below), is then
11 considered as input of the classifier composed of statistical models for the training process
102 as well as for making predictions. Conceptually, the classifier uses the information from
193 those bins to compute a-posteriori probabilities P; that center bin i (i.e., the central bin
194 of those adjacent bins considered, cf. Figure|l)) contains a peak summit. The number of
105 adjacent bins considered is determined from the median across cell types of the median
106 peak widths of a given TF in the individual training cell types.
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107 2.3 Features

108 The set of features considered may be roughly classified by the source of information:
190 DNase-seq data, motif profiles, raw sequence, RNA-seq data. Here, we give a brief
200 overview of these features, while we provide a complete list of definitions of all features
201 in [Supplementary Text S2|

202 The most informative features with regard to the challenge task are likely motif-based
203 and chromatin accessibility-based features. For obtaining a broad set of binding motifs
204 for each TF at hand, we combine motifs from databases with motifs obtained by de-novo
205 motif discovery from the challenge data. We retrieve PWM models of the TF at hand
206 from the databases HOCOMOCO (Kulakovskiy et al.,|[2016) and DBcorrDB (Grau et al.,
207 [2015a). We perform de-novo motif discovery with Dimont (Grau et al. 2013) learning
208 PWM and LSlim(3) models (Keilwagen and Grau, [2015) on the “conservative” and
00 “relaxed” ChlIP-seq peak files, and also based on the peak files obtained from DNase-seq
210 experiments. In addition, we obtain motifs from the epigram pipeline (Whitaker et al.,
a1 2015), which are related to DNA methylation and histone marks of active promoters and
212 enhancers. For a specific combination of cell type and TF, we also consider motifs of a
213 set of “peer” motifs, which are determined from the literature (Factorbook, Wang et al.
21e - (2012)) and by comparing the overlaps between the respective peak lists.

215 All of these motifs are then used in a sliding window approach to obtain base-pair
216 resolution score profiles, which are summarized by aggregate statistics representing the
217 binding affinity to the strongest binding site (i.e., the maximum log-probability in a
218 bin according to the motif model) as well as general affinity to broader regions (i.e, the
210 logarithm of the average probability in a bin). The set of motifs may comprise models
20 of general binding affinity of the TF at hand but may also capture cell type-specific
a1 differences in the binding regions, which could be caused by interaction with other TFs
222 including competition for similar binding sites.

223 DNase-seq-based features are computed from the “fold-enrichment coverage” tracks
24 and DNase-seq peak files provided with the challenge data. These features quantify
25 short and long range chromatin accessibility, stability of the DNase signal in the region
26 of interest and across different cell types, and overlaps with DNase-seq peak regions.

227 The set of sequence-based features comprises the raw sequence (i.e., in 1 bp resolution)
»s around the center bin and several measures computed from this sequence, for instance
20  G/C-content, the frequency of CG di-nucleotides, or the length of homo-polymer tracts.
230 Based on the gencode v19 genome annotation, we additionally define features based on
231 overlapping annotation elements like CDS, UTRs, or TSS annotations and based on
232 the distance to the closest T'SS annotation in either strand orientation. All of these
233 features are neither cell type-specific nor TF-specific. However, they may represent gen-
2 eral features of genomic regions bound by TFs (like CpG islands, GC-rich promoters,
235 or preference for non-coding regions), which might be helpful to rule out false posi-
26 tive predictions based on TF-specific features like motif scores. In addition, the model
237 parameters referring to those features may be adapted in a TF-specific and cell type-
238 specific manner, which may yield auxiliary information for cell type-specific prediction
239 of TF binding as well.
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240 Finally, RNA-seq data are represented by the TPM value of the gene closest to the
21 bin of interest as well as measures of stability within biological replicates and across
22 different cell types.

243 DNase-seq and RNA-seqg-based features are cell type-specific but not TF-specific by
24 design. However, model parameters may adapt to situations where one TF preferentially
25 binds to open chromatin, whereas another TF may also bind in nucleosomal regions.
246 Feature values are computed using a combination of Perl scripts and Java classes
27 implemented using the Java library Jstacs (Grau et all 2012). Genome wide feature
s values with bin-level resolution are pre-computed and stored in a sparse, compressed
29 text format.

0 2.4 Model & basic learning principle

21 We model the joint distribution of these different features by a simple product of in-
2 dependent densities or discrete distributions (Supplementary Text S3|). Specifically, we
253 model numeric features (e.g., DNase-based statistics, motif scores, RNA-seq-based fea-
24 tures) by Gaussian densities, discrete, annotation-based features by independent bino-
55 mial distributions, and raw sequence by a homogeneous Markov model of order 3. All
26 distributions are in the exponential family and parameterized using their natural pa-
257 rameterization (Bishop|, 2006; Keilwagen et al., [2010), which allows for unconstrained
258 numerical optimization.

250 As learning principle, we use a weighted variant (Grau, 2010)) of the discriminative
%0 maximum conditional likelihood principle (Roos et al.| (2005), [Supplementary Text S3)),
261 which is closely related to logistic regression but allows for making explicit assumptions
262 about the distribution of the underlying data.

w3 2.5 Prediction schema

264 In the challenge, final predictions have been requested for 200 bp windows shifted by
265 50 bp along the genome, while the proposed classifier predicts a-posteriori probabilities
266 that the current center bin contains a peak summit. To yield the predictions requested,
27 we use these original prediction values (cf. section to compute the probability that
28 the 200 bp window overlaps at least one predicted peak by at least 100 bp (Figure .
60 Assume that we already computed the a-posterior probabilities P; that center bin 4
270 contains the summit of a ChIP-seq peak according to the trained model. Further assume
on that for the current TF, a peak typically spans 5 bins in total, which corresponds to the
212 center bin, and two bins before and two bins after the center bin in our model (cf. regions
273 marked by lines in Figure [1)). Putative peaks overlapping the current 200 bp window
o74  starting at bin ¢ are those with center bins at ¢ — 1 to ¢ + 4. Hence, the probability S;
o7s that this window overlaps a peak may be computed as the complementary probability
a76 of the event that this window overlaps no predicted peaks, which in turn is just the
277 product of the complementary a-posteriori probabilities Py of these bins.
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Figure 1: Schema for computing probabilities for 200 bp regions overlapping with pre-
dicted peaks spanning five bins in this example. Center bins are indicated by
thick lines. Putative peaks are annotated with the probability P; of being a
true peak. All peaks marked in red overlap the region of interest (dotted blue
lines) by at least 100 bp and are considered for the prediction. The prediction
S; for the 200 bp region is then computed as the probability that this region
overlaps with at least one of the peaks.

a3 2.6 Initial training data

279 For training the model parameters by the discriminative maximum condition likelihood
20 principle, we need labeled input data comprising a set of positive (bound) regions and a
281 set of negative (unbound) regions. In general, a training region is represented by a vector
22 of all feature values described in section [Featured in an odd number of consecutive bins
283 (see section [Binning the genomel). In case of positive regions, these are centered at the
284 bin containing the peak summit. We include all such regions around the peak summits
285 of the “conservative peaks” for the current TF and cell type as positive regions.

286 Since we face a highly imbalanced classification problem with rather few ChIP-seq
287 peaks compared with the large number of bins not covered by a peak, and since the
288 inclusion of all such negative regions into the training set would lead to an inacceptable
280 runtime, we decided to derive representative negative regions by three different sampling
200 strategies. All sampling steps are performed stratified by chromosome.

201 First, we sample on each training chromosome 10 times as many negative regions
202 (spanning an odd number of consecutive bins) as we find positive regions on that chro-
203 mosome. Center bins are sampled uniformly over all bins not covered by a “relaxed”
204 peak for the same cell type and TF.

205 Second, we over-sample negative regions with large DNase-seq median values similar
206 to those of positive examples to yield a representative set of negative regions. This is
207 especially important as these will be regions that are hard to classify using DNase-seq
208 based features but are only lowly represented by the uniform sampling schema. The
200 over-sampling is adjusted for by down-weighting the drawn negative examples to the
s0 corresponding frequency among all negative regions (see [Supplementary Text S4J).

301 Third, we sample negative regions from regions that are ChIP-seq positive for one of
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302 the other cell types (if more than one training cell type exists for that TF), but do not
33 overlap a “relaxed peak” in the current cell type. These negative regions are weighted
304 such that the sum of their weights matches the rate of such regions among all putative
305 negative regions. This sampling schema is intended to foster learning cell type-specific
6 properties as opposed to general properties of the binding regions of the current TF. In
307 this case, we sample four times as many negative regions as we have positives.

308 Together, these three sampling schemas yield an initial set of negative regions, which
300 serve as input of the discriminative maximum conditional likelihood principle in addition
310 to the positive regions. However, in preliminary tests during the leaderboard round of the
s challenge, we observed that even this non-trivial sampling schema is not fully satisfactory.
siz - As testing (a large number of) other sampling schemas seemed futile, we designed an
si3 jterative training schema (Figure that is loosely related to boosting (Freund and
sis [Schapirel |1996) and successively complements the initial set of negative training regions
a5 with further, informative examples.

a6 2.7 lterative training

s1i7 The iterative training procedure is illustrated in Figure [2| Initially, we train a classifier
sis on the negative regions obtained from the sampling schemas explained above and all
310 positive regions. We then use this classifier to obtain a-posteriori probabilities P; for
320 each bin ¢ on training chromosomes. To limit the runtime required for this prediction
31 step, we restrict the prediction to chromosomes chrl0 to chrl4. These probabilities
322 are then used as input of the prediction schema (section [Prediction schema)) to yield
323 predictions for the 200 bp regions labeled based on the ChlIP-seq training peaks. Given
s+ these labels, we may distinguish prediction values of positive regions (label B=“bound”)
325 and negative regions (label U=“unbound”), while regions labeled as A=“ambiguous” are
326 ignored. To select additional negative regions that are likely false positive predictions,
s27 - we first collect the prediction scores of all positive regions (labeled as B) and determine
328 the corresponding 1% percentile. We then select from the negative regions (labeled as U)
320 all those with a predictions score larger than this 1% percentile, which are subsequently
330 added to the set of negative regions with a weight of 1 per region selected.

331 In the next iteration, we train a second classifier, again using all positive regions but
32 with negative regions complemented by these additional negative regions. Prediction
333 is then performed using both classifiers, where the predictions of the individual two
s classifiers (or all previously trained classifiers in subsequent iterations) are averaged per
335 region. Again, regions labeled U with large prediction scores are identified and added to
336 the set of negative regions, which then serve as input of the following iteration. After five
337 rounds of training yielding five classifiers, the iterative training procedure is terminated.

18 2.8 Final prediction

339 The iterative training procedure is executed for all K training cell types with ChIP-seq
a0 data for the TF of interest, which yields a total of 5- K classifiers. For the final prediction,
a1 the prediction schema (section [Prediction schemal) is applied to all chromosomes and



https://doi.org/10.1101/230011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/230011; this version posted June 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

initial negative regions
positive regions

Training (i:=1)

[ classifiers 1,...,i
Iterative

Prediction & Selection Training
(i:=i+1)

\T/

Figure 2: Iterative training procedure. Starting from an initial set of negative regions
and the complete set of positive regions, a first classifier is trained, applied
to the training data, and putative false positive (i.e, “unbound” regions with
large prediction scores) are identified. In each of the subsequent iterations,
such regions are added to the set of negative regions, which are in turn used
for training refined classifiers. The result of this iterative training procedure
is a set of 5 classifiers trained in 5 cycles of the iterative training procedure.
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a2 each classifier. These predictions are finally averaged per 200 bp region to yield the final
343 prediction result.

s 2.9 Catchitt: a streamlined open-source implementation

w5 Since the original challenge submission, we have re-implemented the basic approach with
a6 the aim of making it more accessible for both, users and developers. Specifically, our
s7  objectives were to implement a tool that i) is consolidated into a single runnable JAR
us file to limit system requirements to a current Java installation only, ii) has an extensible
a0 code base eliminating much of the experimental code of the challenge implementation,
ss0 i) is applicable to data from individual cell types to reduce data-interdependencies, and
31 1v) may be executed on a standard compute server in acceptable runtime.

352 To achieve these aims, some parts of the methods have been simplified and stream-
353 lined. First, we consider only the most important chromatin accessibility and motif-based
354 features, which reduces runtime and memory consumption. Second, we implement an
355 accelerated motif scanning module that computes whole-genome score profiles even for
356 the complex LSlim models within a few hours. Third, we skip steps that jointly eval-
37 uate data and/or feature files from multiple cell types. Specifically, we skip quantile
38 normalization of chromatin accessibility features (although normalization could be per-
350 formed externally, still), and we omit the sampling step depending on ChIP-seq data
30 for other cell types for determining initial negative regions. We call this implementa-
se1  tion “Catchitt” comprising five modules for i) computing chromatin accessiblity features
sz from DNase-seq or ATAC-seq data, ii) computing motif-based features, iii) deriving la-
363 bels from ChIP-seq peak lists, iv) performing iterative training given feature files and
s labels, and v) predicting binding probabilities for genomic regions.

s 2.10 Deriving peak lists

s66 For the additional primary cell types and tissues beyond those considered in the chal-
7 lenge, we further process final predictions to yield peak lists in narrowPeak format,
s which are smaller and easier to handle than the genome-wide probability tracks with
30 b0 bp resolution. To this end, we join contiguous stretches of regions with predicted
370 binding probability above a pre-defined threshold ¢ into a common peak region. For
sn1 each region, we record the maximum probability p, and discard bordering regions with a
sz probability below 0.8 - p. The resulting regions are then annotated according to the nar-
313 rowPeak format with a “peak summit” at the center of the region yielding p, a “score”
sra - of —100 - logip(1 — p), and a “signal value” equal to p. We generate “relaxed” peak
a5 predictions using ¢ = 0.6 and “conservative” peak prediction using ¢t = 0.8.

e 2.11 Availability

s77 - The original challenge implementation has been developed using the open source Java
srs  library Jstacs (Grau et al., [2012)) combined with custom Perl and bash scripts for data
a9 extraction, conversion, and pipelining. The complete code accompanying the challenge

11


https://doi.org/10.1101/230011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/230011; this version posted June 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

330 submission is, in accordance with the challenge guidelines, available from https://wuw.
381 |synapse.org/#!Synapse:syn8009967/wiki/412123 including a brief method writeup.
382 The Catchitt implementation is also based on the Jstacs library and is available as a
sss runnable JAR file at http://jstacs.de/index.php/Catchitt, where we also publish
s34 the corresponding source code under GPL 3. Catchitt will be integrated into the Jstacs
ss5 library with its next release.

s 3 Results

37 During the ENCODE-DREAM challenge, a large number of approaches created by 40
sss  international teams has been benchmarked on 13 cell type-specific ChIP-seq assays for
0 12 different TFs in human (Supplementary Figure [SI). A set of 109 data sets for the
s0 same (and additional) TFs in other cell types was provided for training. Training data
31 comprised cell type-specific DNase-seq data, cell type-specific RNA-seq data, genomic
32 sequence and annotations, and in-silico DNA shape predictions. In addition, cell type-
303 specific and TF-specific ChIP-seq data and derived labels were provided for training
304 chromosomes, while predictions were evaluated only on the remaining, held-out chromo-
305 somes chrl, chr8, and chr21 that were not provided with any of the ChIP-seq training
36 data. For 200 bp regions shifted by 50 bp, genome-wide predictions of the probability that
307 a specific region overlaps a ChIP-seq peak were requested from the participating teams.
w8 Predictions were evaluated by i) the area under the ROC curve (AUC-ROC), ii) the area
39 under the precision-recall curve (AUC-PR), iii) recall at 10% FDR, and iv) recall at 50%
a0 FDR on each of the 13 test data sets. These were aggregated per data set based on the
a1 average, normalized rank earned for each of these measures in 10 bootstrap samples of
02 the held-out chromosomes, and a final ranking was obtained as the average of these rank
s03  statistics (cf. https://www.synapse.org/#!Synapse:syn6131484/wiki/405275).

404 As a result of this ranking, the approach presented in this paper (team “J-Team”)
a5 earned a shared first rank together with the approach created by team “Yuanfang Guan”.
406 In the following, we investigate the influence of different aspects of the proposed

a7 approach on the final prediction performance. First, we inspect the impact of different
sws  sets of related features (DNase-seq data, motif scores, RNA-seq data, sequence-based and
s00 annotation-based features) on prediction performance. Second, we study the importance
a0 of the iterative training approach as opposed to a training on initial training data. Third,
a1 we compare the performance of the predictions gained by classifiers trained on training
a12  data for individual cell types with the performance of the aggregated prediction obtained
a13 by averaging over these cell types. Finally, we apply the proposed method for predicting
a4 cell type-specific TF binding for 31 TFs in 22 additional primary cell types yielding a
a5 total of 682 prediction tracks.

ss 3.1 Impact of feature sets on prediction performance

a1z We use the prediction performance obtained by the proposed approach using all sets of
ns features (section [Features)), the iterative training procedure (section [Iterative training),
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Figure 3: Across cell type performance. For each of the 13 combinations of TF and cell
type within the test data, we compute the prediction performance (AUC-PR)
on the held-out chromosomes of classifiers i) using all features considered, ii)
using only motif-based features, iii) using only DNase-seq-based features, and
iv) using only motif-based and DNase-seq-based features. Median performance
of classifiers using all features is indicated by a dashed line.

sno and the aggregation over all training cell types (section [Prediction schemal) as a base-
20 line for all further comparisons (Figure |3; “all features”). Throughout this manuscript,
a1 we consider AUC-PR as the primary performance measure, since AUC-PR is more in-
a2 formative about classification performance for heavily imbalanced classification prob-
23 lems (Keilwagen et al. 2014; Saito and Rehmsmeier} 2015), and recall at the different
24 FDR levels is rather unstable since it corresponds to single points on the precision-recall
25 curve. AUC-PR values are computed using the R-package PRROC (Grau et al.,[2015b)),
226 which has also been used in the ENCODE-DREAM challenge.

a27 We find that prediction performance as measured by AUC-PR varies greatly among
28 the different transcription factors (Figure|3)) with a median AUC-PR value of 0.4098. The
220 best prediction performance is achieved for CTCF, which has a long and information-rich
30 binding motif, in two different cell types (IPSC and PC-3). Above-average performance
a1 is also obtained for FOXA1 and HNF4A in liver cells. For most other TFs, we find
a2 AUC-PR values around 0.4, whereas we observe a rather low prediction accuracy for
33 NANOG and REST.

434 To analyze the contribution of selected features on the final prediction performance,
135 we systematically exclude sets of related features from the input data in training and
136 prediction. As a baseline, we measure AUC-PR for the classifier using all feature sets.
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Figure 4: Importance of feature sets. We test the importance of related sets of features by
excluding one set of features from the training data, measuring the performance
(AUC-PR) of the resulting classifier, and subtracting this AUC-PR value from
the corresponding value achieved by the classifier using all features. Hence, if A
AUC-PR is above zero, the left-out set of features improved the final prediction
performance, whereas A AUC-PR values below zero indicate a negative effect
on prediction performance. We collect the A AUC-PR values for all 13 test
data sets and visualize these as violin plots.

a7 In addition, we measure AUC-PR when excluding each individual feature set, where the
a3s  difference of these two AUC-PR values quantifies the improvement gained by including
139 the feature set (Figure [4)).

440 We observe the greatest impact for the set of features derived from DNase-seq data.
a1 The improvement in AUC-PR gained by including DNase-seq data varies between 0.087
a2 for E2F1 and 0.440 for HNF4A with a median of 0.252.

443 Features based on motif scores (including de-novo discovered motifs and those from
ss  databases) also contribute substantially to the final prediction performance. Here, we
a5 observe large improvements for some TFs, namely 0.231 for CTCF in IPSC cells, 0.175
as  for CTCF in PC-3 cells, and 0.167 for FOXA1. By contrast, we observe a decrease in
w7 prediction performance in case of JUND (—0.080) when including motif-based features.
as  For the remaining TFs, we find improvements of AUC-PR between 0.008 and 0.079.
a0 We further consider two subsets of motifs, namely all motifs obtained by de-novo motif
0 discovery on the challenge data and all Slim/LSlim models capturing intra motif depen-
ss1 dencies. For motifs from de-novo motif discovery, we find an improvement for 9 of the
552 13 data sets and for Slim/LSlim model we find an improvement for 10 of the 13 data
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53 sets. However, the absolute improvements (median of 0.011 and 0.006, respectively)
4 are rather small, possibly because i) motifs obtained by de-novo motif discovery might
55 be redundant to those found in databases and ii) intra motif dependencies and hetero-
6 geneities captured by Slim/LSlim models (Keilwagen and Grau, 2015 might be partly
ss7 - covered by variations in the motifs from different sources.

ss  Notably, RNA-seq-based features (median 0.001), annotation-based features (0.000),
50 and sequence-based features (0.001) have almost no influence on prediction performance.
460 Having established that DNase-seq-based and motif-based features have a large impact
a1 on prediction performance, we also tested the prediction performance of the proposed
a2 approach using only features based on DNase-seq data and TF motifs, respectively. We
w3 find (Figure that classifiers using exclusively motif-based features already yield a
a4 reasonable prediction performance for some TFs (CTCF and, to some extent, E2F1 and
ss  GABPA), whereas we observe AUC-PR values below 0.12 for the remaining of TFs. This
a6 may be explained by the large number of false positive predictions typically generated
a7 by approaches using exclusively motif information, which may only be avoided in case
a8 of long, specific motifs as it is the case for CTCF.

460 Classifiers using only DNase-seq-based features yield a remarkable performance for
s0 many of the TFs studied (Figure [3)), which is lower than for the motif-based classifier
a1 only for the two CTCF datasets. For some datasets (especially JUND but also EGR1,
a2 MAX), we even observe that a classifier based on DNase-seq data alone outperforms the
a3 classifier utilizing all features.

a4 In case of JUND, the increase in performance when neglecting all non-DNase features
a7 can likely be attributed to a strong adaptation of classifier parameters to either cell type-
a6 specific binding motifs or cell type-specific co-binding with other TFs, because JUND is
a7 the only dataset with an improved performance when excluding motif-based features as
a7s  discussed above. For all three TFs, we do find an improvement of prediction performance
a0 if classifier parameters are trained on the training chromosomes of the test cell type (
a0 “within cell type” case; Supplementary Figure .

a81 Since DNase-seq-based and motif-based features appear to be the primary feature sets
a2 affecting prediction performance, we finally study prediction performance of a classifier
s33  using only these two feature sets. We observe that prediction performance using only
asa  DNase-seq-based and motif-based features is largely identical to that of the classifier us-
s ing all features (Figure[3)), where we observe the largest loss in AUC-PR for TAF1 (0.017)
a6 and the largest gain in AUC-PR for NANOG (0.007). We notice a similar behaviour for
a7 the within cell type case (Supplementary Figure . As the left-out feature sets include
a8 all RNA-seq-based features, this also has the consequence that one cell type-specific
10 assay (namely DNase-seq) is sufficient for predicting TF binding, which broadens the
a0 scope of cell types with readily available experimental data that the proposed approach
a1 may be applied to.

w2 3.2 lterative training improves prediction performance

a3 As a second key aspect of the proposed approach, we investigate the impact of the
04 iterative training procedure on the final prediction performance. To this end, we compare

15


https://doi.org/10.1101/230011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/230011; this version posted June 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

@ CTCF (IPSC) »
CTCF (PC-3)
>
£
=
£ o HNF4A-.
© FOXA2
g FOXALe
S MAX . /<3UuND
£ o E2F1. °, 4TAF1 GABPA
i EGR
9 NANOG «
< REST,
N
N
T T T T
0.2 0.4 0.6 0.8

AUC-PR (simple training)

Figure 5: Relevance of the iterative training procedure. For each of the 13 test data sets,
we compare the performance (AUC-PR) achieved by the (set of) classifier(s)
trained on the initial negative regions (abscissa) with the performance achieved
by averaging over all classifiers from the iterative training procedure (ordinate).

a5 for each TF the AUC-PR values obtained by averaging over the predictions all five
a6 classifiers resulting from the iterative training procedure for all training cell types with
a7 the AUC-PR values obtained by only averaging over the initially trained classifiers for all
a8 training cell types, i.e., classifiers trained only on the initial training data (section ‘
500 For 11 of the 13 test data sets, we observe an improvement of prediction performance
so1 by the iterative training procedure (Figure . The largest improvements are achieved
s for E2F1 (0.114), FOXA2 (0.085), NANOG (0.08), FOXA1 (0.063), and MAX (0.061).
503 Among these are TFs for that we observed a good performance using only DNase-
sa  seq-based features (E2F1, MAX) and TFs for which the combination with motif-based
sos features was beneficial (FOXA1, FOXA2, NANOG), which indicates that the additional
s06 negative regions added in iterations 2 to 5 do not induce a bias towards either of these
sor  two feature types. For four of these five TFs, only one (FOXA2, NANOG, FOXA1) or
s two (E2F1) training cell types were provided, and the variation between the different
s00 classifiers from iterative training may help to avoid overfitting. By contrast, we find a
si0  decrease in performance for JUND (0.041) and also TAF1 (0.01), which might be caused
si1 by astronger emphasis on cell type-specific binding regions in subsequent iterations of the
512 iterative training procedure. This hypothesis is also supported by the observation that
513 the iterative training procedure always leads to an increase in prediction performance
514 if classifier parameters are trained on the training chromosomes of the test cell type

515 (Supplementary Figure [S3)).
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s 3.3 Averaging predictions improves over random selection of cell types

sz For 9 of the 12 TFs considered, data for more than one training cell type is provided
518 with the challenge data. Hence, one central question might be the choice of the cell
510 type used for training and, subsequently, for making predictions for the test cell type.
s20 However, the only cell type-specific experimental data available for making that choice
s are DNase-seq and RNA-seq data, whereas similarity of cell types might depend on the
s TF considered. Indeed, similarity measures derived from DNase-seq data (e.g., Jaccard
s23  coefficients of overlapping DNase-seq peaks, correlation of profiles) or from RNA-seq
s data (e.g., correlation of TPM values) showed to be non-informative with regard to the
525 similarity of TF binding regions in preliminary studies on the training cell types.

526 Hence, we consider the choice of the training cell type a latent variable, and average
s27  over the predictions generated by the respective classifiers (see section . As labels of
528 the test cell types have been made available after the challenge, we may now evaluate the
520 impact of this choice on prediction performance and also test the prediction performance
s of classifiers trained on individual cell types (Figure [6).

531 For all test data sets with multiple training cell types available, we find that the
532 averaged prediction yields AUC-PR values above the median of the AUC-PR values
533 achieved for individual training cell types. This improvement is especially pronounced
53 for REST, GABPA, and MAX. Hence, we may argue that averaging over the cell type-
535 specific classifiers generally yields more accurate predictions than would be achieved by
53 an uninformed choice of one specific training cell type.

537 However, we also notice for almost all test data sets with multiple training cell types
s3s  (the only exception being CTCF for the PC-3 cell type) that the best prediction perfor-
539 mance achieved for one of the individual training cell types would have gained, in some
50 cases considerable, improvements over the proposed averaging procedure. Notably, the
sa variance of AUC-PR between the different training cell types is especially pronounced for
s22 JUND, which supports the previous hypothesis that some features, for instance binding
53 motifs or co-binding of TFs, are highly cell type-specific for JUND. In general, deriving
s informative measures of TF-specific cell type similarity based on cell type-specific assays
ses  and, for instance, preliminary binding site predictions, would likely lead to a further
s6  boost of the performance of computational approaches for predicting cell type-specific
sa7 TF binding.

ss 3.4 Creating a collection of cell type-specific TF binding tracks

se0  Having established that a single type of experimental assay, namely DNase-seq, is suffi-
ss0  cient for predicting cell type-specific TF binding with state-of-the-art accuracy, we may
ss1. now use the classifiers obtained on the training cell types and TF's for predictions on fur-
ss2 ther cell types. To this end, we download DNase-seq data for a collection of primary cell
53 types and tissues (see section , process these in the same manner as the original
s« challenge data and, subsequently, extract DNase-seq-dependent features (section
s55  [tures|). We then applied the trained classifiers for all 31 TFs considered in the challenge
556 to these 22 DNase-seq feature sets to yield a total of 682 prediction tracks.
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Figure 6: Performance of ensemble classifiers. For each of the 13 test data sets, we
compare the performance (AUC-PR) of the individual classifiers trained on
single cell types (open circles) to that of the ensemble classifier averaging over
all classifiers trained on all training cell types (filled, orange circles). As a
reference, we also plot the median of the individual classifiers as a red bar.
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557 For the selected cell types (Supplementary Table , only few cell type and TF-
sss specific ChIP-seq data are available (Supplementary Table . On the one hand, this
50 means that the predicted TF binding tracks provide valuable, novel information for the
seo  collection of 31 TF's studied. On the other hand, this provides the opportunity to perform
s61  benchmarking and sanity checks with regard to the predictions for the subset of these
s TFs and cell types with corresponding ChIP-seq data available. For benchmarking,
563 we additionally obtain the “relaxed” and (where available) “conservative” peak files
s« from ENCODE and derive the associated labels (“bound”, “unbound”, “ambiguous”)
s6s  according to the procedure proposed for the ENCODE-DREAM challenge.

566 For CTCF with ChIP-seq peaks available for multiple cell types, we generally find a
s7  prediction performance that is comparable to the performance observed on the challenge
s data (cf. Supplementary Table [S2)). For these cell types, AUC-PR values (Supplemen-
se0  tary Table range between 0.7720 and 0.8197 if conservative and relaxed peaks are
s70  available and if the donors match between the DNase-seq and ChlP-seq experiments,
s while performance is slightly lower for non-matching donors (0.7322) and in case of
s72  missing conservative peaks (0.7270). For JUN, MAX, and MYC, only relaxed peaks
573 are available from ENCODE due to missing replicates. Here, we find AUC-PR values
s74 - of 0.6310 for JUN, which is substantially larger than for the challenge data, 0.4004 for
s55. MAX, which is slightly lower than for the challenge data, and 0.1989 for MYC, which
s76  has not been among the test TFs in the challenge but obtained substantially better
s77 - performance in the leaderboard round.

578 The 682 genome-wide prediction tracks are still rather large (approx. 830 MB per
s7o  track) and, hence, demand for substantial storage space that might not be available to
sso  the typical user, while the majority of regions are likely not bound by the TF of interest.
ss1 Hence, we further condense these predictions into predicted peak lists in narrowPeak
se2  format by joining contiguous stretches with high binding probability and applying a
ss3 threshold of 0.6 (relaxed) and 0.8 (conservative) on the maximum probability observed
ss¢ in a predicted “peak”. We provide these peak files for download at https://www.
ses |Synapse.org/#!Synapse:synl11526239 (doi:10.7303/syn11526239).

586 To get an impression of the quality of the predicted peaks, we further compute
ss7  Jaccard coefficients based on peak overlaps (computed using the GenomicRanges R-
sss  package (Lawrence et all, 2013)) between the predicted peak files and those from the
ss0 corresponding, available ChIP-seq peaks (Supplementary Tables and , and find
s00 those to be widely concordant to the previous assessment based on the derived labels.
501 Based on the predicted peak lists, we may also compare the predicted binding charac-
502 teristics of the different TFs across cell types. First, we inspect the number of predicted
s peaks per TF and cell type (Supplementary Figure . We find a distinct group of
s« highly abundant TFs (CTCF, GATA3, SPI1, CEBPB, FOXA1, FOXA2, MAX), which
s05  typically also show large numbers of peaks in the training data. Among these, we
s6  find patterns of cell type specificity from the ubiquitously abundant CTCF to larg-
so7 erly varying abundance for GATA3. The remainder of TFs obtains substantially lower
s numbers of predicted peaks with similar patterns, e.g, for ATF7/ARID3A/NANOG or
so  EP300/TEAD4/JUND, where the latter group has been reported to co-bind in distal
0 enhancers (Xie et al., [2013). Next, we study the stability of peak predictions, i.e., the
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so1 Jaccard coefficients of peaks predicted for each of the TFs in different cell types (Supple-
602 mentary Figure . Again, we find substantial variation among the TFs with GABPA,
603 CTCF, and REST having median Jaccard coefficients above 0.7. Notably, CTCF has
s« been one of the TFs with the largest number of predicted peaks (median 37455), whereas
s0s we observed an order of magnitude less predicted peaks for REST (median 3364) and
sos GABPA (median 5430). At the other end of the scale, we find indirectly binding TF's
e7 like EP300, or TFs that are highly specific to cell types under-represented in our data
s0s like NANOG (stem cells) and HNF4A (liver, kidney, intestines). Finally, we investigate
600 co-binding of TFs by computing the average Jaccard coefficient across cell types for each
s10 pair of TFs (Supplementary Figure . Here, we observe distinct groups of co-occurring
s T'Fs like CTCF/ZNF143 or FOXA1/FOXAZ2, which are known to interact in-vivo (Bai-
s12 ey et al., [2015; |Ye et al., [2016; [Motallebipour et al.l 2009). In addition, we find a larger
613 cluster of TFs with substantial overlaps between their predicted peaks comprising YY1,
s MAX, CREB1, MYC, E2F6, E2F1, and TAF1. As TAF1 (TATA-Box Binding Protein
15 Associated Factor 1) is associated with transcriptional initiation at the TATA box, one
616 explanation might be that binding sites of these TFs are enriched at core promoters.
617 Indeed, binding to proximal promoters has been reported for MYC/MAX (Guo et al.,
s1s |2014), CREB1 (Zhang et al., 2005), YY1 (Li et al., [2008), and E2F factors (Rabinovich
s10 |et al.l |2008).

e20 3.5 Streamlined Catchitt implementation yields competitive performance

621 We finally compare Catchitt, the simplified implementation of the iterative training
62 approach combining chromatin accessibility and motif scores, to the challenge imple-
623 mentation using DNase-seq-based and motif-based features for the within cell type case.
62 'To this end, we select five combinations of cell type and transcription factor spanning
625 the range of performance values observed in the challenge. Specifically, we consider
s2c  NANOG and TAF1, which obtained the lowest AUC-PR values (cf. Figure for the
627 challenge implementation, CTCF in IPSC cells, which obtained the largest AUC-PR
628 value, and FOXA1 and HNF4A, which obtained medium AUC-PR values but profited
620 substantially from iterative training (cf. Figure . We summarize the results of this
630 comparison in Supplementary Table Despite approximately ten-fold reduction in the
631 number of motifs considered and further simplifications (section, Catchitt still yields
6322 competitive AUC-PR values. Ranking the Catchitt results within the original challenge
633 results, we find that performance achieved by Catchitt scores only two ranks lower than
63 the challenge implementation using DNase-seq-based and motif-based features. As be-
635 fore, we find a substantial improvement of prediction performance due to the iterative
63 training procedure.

o 4 Discussion

633 Predicting in-vivo binding sites of a TF of interest in-silico is still one of the central
630 challenges in regulatory genomics. A variety of tools and approaches for this purpose
640 have been created over the last years and, among these, the approach presented here is
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641 not exceptional in many of its aspects. Specifically, it works on hand-crafted features
642 derived from genomic and experimental data, it considers TF binding motifs and chro-
643 matin accessibility as its major sources of information, and it uses supervised learning
644 related to logistic regression. Yet, this approach gained the best performance in the
es ENCODE-DREAM challenge. Here, we focus on the impact of further, novel aspects of
646 the proposed approach on prediction performance.

647 With regard to the features considered, we find that motif-based and DNase-seq-
64s based features are pivotal for yielding a reasonable prediction performance for most
ss0 TFs, while other sequence-based, annotation-based, or RNA-seq-based features have
650 only marginal influence on the prediction result. In case of RNA-seq-based features,
651 however, more sophisticated features than those employed in our approach might have
652 a positive influence on prediction accuracy. In addition, DNA shape might also be
653 informative about true TF binding sites, although in-silico shape predictions provided
e« in ENCODE-DREAM are determined based on k-mers, and their influence might also be
65 captured by higher-order Markov models or Slim/LSlim models (Keilwagen and Grau,
6 2015) employed in the approach presented here.

657 Previous studies have shown that additional features like sequence conservation (Ku-
ess mmar and Bucher, 2016; Liu et al., 2017), histone marks (Pique-Regi et al., [2011; Arvey
60 et all 2012; \Gusmao et al., [2014)), or ChIP-seq data of co-factors (Kumar and Bucher,
660 |[2016) might also help to predict in-vivo TF binding. However, these were not allowed
661 to be used in the ENCODE-DREAM challenge and further experimental assays were
662 unavailable for the training cell types. Hence, we decided to also exclude such features
663 from the studies presented in this paper.

664 Two aspects of the presented approach, namely the iterative training procedure and
665 aggregation of predictions across training cell types, contribute substantially to the fi-
666 nal prediction performance. Both ideas might also be of relevance in related fields.
667 Specifically, the iterative training procedure provides a general schema applicable to
66s imbalanced classification problems, especially when these require sampling of negative
es0  examples. In an abstract sense, the aggregation across training cell types corresponds
670 to favoring model averaging over model selection if good selection criteria are hard to
e1 find or might yield highly varying results.

672 Despite its state-of-the-art performance proven in the ENCODE-DREAM challenges,
673 the approach presented here has important limitations. First, the large number of mo-
e+  tifs (including those from de-novo motif discovery) and DNase-seq-based features lead to
675 high demands with regard to disk space but also runtime, which are likely beyond reach
e76 for wet-lab biologists. Disk requirements could be reduced by computing features from
677 (smaller) raw files on demand. However, this would in turn increase running time con-
e siderably. Hence, we chose to implement a simplified version of the approach presented
679 here in an open source software available at http://jstacs.de/index.php/Catchitt)
680 which only uses a combination of chromatin accessibility features and motif-based fea-
1 tures. In preliminary benchmarks (Supplementary Table , this implementation still
632 achieved competitive performance.

683 Second, the approach proposed here, like any of the other supervised approaches (Natarna-
es4 |Jan et all 2012 |Arvey et al. 2012; Luo and Harteminkl|, 2012} [Kahara and Lahdesmakil,
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es5 |2015; [Kumar and Bucher| [2016; |Quang and Xie|, 2017} |[Liu et ol [2017; |Qin and Feng)
ess [2017; Chen et al.l [2017), requires labeled training data for at least one cell type and the
67 TF of interest to make predictions for this TF in another cell type. While the latter
ess limitation is partly overcome by unsupervised approaches (Pique-Regi et al., 2011} [Sher-
ss0 'wood et al.l [2014; (Gusmao et al., [2014; Raj et al.l, 2015} |Jankowski et al., 2016), this
s0 typically comes at the cost of reduced prediction accuracy (Kéahara and Lahdesmaki,
o1 [2015; [Liu et al., 2017)).

692 We also provide a large collection of 682 predicted peak files for 31 TFs using 22
63 DNase-seq data sets for primary cell types and tissues. Benchmarks based on the limited
s04 number of available ChIP-seq data indicate that prediction performance on these cell
605 types is comparable to that achieved in the ENCODE-DREAM challenge, where absolute
s06 values of AUC-PR measuring prediction accuracy vary greatly between different TFs.
607 For the wide majority of these combinations of TF and cell type, no experimental data
s0s about cell type-specific TF binding is available so far, which renders these predictions
600 a valuable resource for questions related to regulatory genomics in these primary cell
700 types and tissues. Preliminary studies raise our confidence that the predicted peak files
700 may indeed help to solve biological questions related to these cell types and TFs.
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= Supplementary Tables and Figures
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Supplementary Figure S1: Overview of the combinations of cell type and TF in the
ENCODE-DREAM training, leaderboard, and final round
sets.
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Supplementary Figure S2: Within cell type performance. For each of the 13 combina-
tions of TF and cell type within the test data, we compute
the prediction performance (AUC-PR) on the held-out chro-
mosomes of classifiers i) using all features considered, ii) us-
ing only motif-based features, iii) using only DNase-seq-based
features, and iv) using only motif-based and DNase-seq-based
features. The training data comprises the training chromo-
somes of the same (test) cell type, while predictions are made
for the held-out test chromosomes of that cell type.
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Supplementary Figure S3: Relevance of the iterative training procedure for within cell
type predictions. For each of the 13 test data sets, we compare
the performance (AUC-PR) achieved by the (set of) classi-
fier(s) trained on the initial negative regions (abscissa) with
the performance achieved by averaging over all classifiers from
the iterative training procedure (ordinate). The training data
comprises the training chromosomes of the same (test) cell
type, while predictions are made for the held-out test chro-
mosomes of that cell type.
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Supplementary Figure S4: Number of predicted peaks in “conservative” peak files for the
studied TFs (rows) in the collection of primary cell types and
tissues (columns). In each column of the heatmap, cyan trace
lines in addition to colors indicate the corresponding values in
each cell. In the color scale, the solid cyan line represents the
histogram of values observed in the heatmap. Dashed lines in-
dicate median values across all displayed numbers. Rows are
clustered by the R hclust function using complete linkage.
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Supplementary Figure S5: Jaccard coefficients of the different TFs computed on the

overlap of the peak files between all pairs of the 22 individual
cell types.
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Supplementary Figure S6: Average Jaccard coefficients computed on the overlap of the
peak files of pairs of TFs for matched cell types. In the color
scale, the solid cyan line represents the histogram of values
observed in the heatmap. Dashed lines indicate the value
at the center bin of the color scale. Rows and columns are
clustered by the R hclust function using complete linkage.
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TF cell type DNase+motif Catchitt

AUC-PR | Rank | #motifs | AUC-PR | Rank | #motifs | first iteration
CTCF IPSC 0.810 4 177 0.776 6 13 0.760
NANOG | IPSC 0.489 2 127 0.404 4 13 0.366
FOXA1 liver 0.544 2 121 0.465 4 12 0.435
HNF4A | liver 0.671 4 123 0.615 6 10 0.597
TAF1 liver 0.473 4 160 0.412 6 12 0.400

Supplementary Table S8: Benchmark of the simplified open source implementation
(Catchitt) of the presented approach compared with the chal-
lenge implementation using only DNase-based and motif-based
features for the within cell type case (cf. Supplementary Fig-
ure . For each of the TFs considered, we report AUC-PR
achieved by the challenge implementation using only DNase-
based and motif-based features (“DNase+motif”), the open
source Catchitt implementation. For Catchitt, we addition-
ally consider using only the classifier of the first iteration
(in analogy to the comparison in Supplementary Figure [S3)).
We also list the number of motifs utilized in the respective
runs for a specific TFs. For the Catchitt runs, we deliber-
ately limited the number of motifs considered to approximate
a real-world application of the software. We finally report
the ranks among the challenge participants according to the
results available at https://www.synapse.org/#!Synapse:
syn6131484/wiki/412905.
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s Supplementary Methods

sss - Supplementary Text S1 — Tools for predicting in-vivo binding regions

sso Most approaches (e.g., [Pique-Regi et al.| (2011)); Natarajan et al.| (2012); [Piper et al.
g0 (2013)); |Gusmao et al| (2014); [Chen et al| (2017)) use binding motifs represented as
ss1  position weight matrix (PWM) models that have been obtained from databases like
s2  TRANSFAC (Matys et al., 2006)), Jaspar (Mathelier et al.,2016)), UniProbe
ses [and Bulyk, [2009) or CisBP (Weirauch et al/,2014), or from motif collections like Factor-
s book (Wang et all [2012), the ENCODE-motif collection (Kheradpour and Kellis|, 2014)),
sss or Homer (Heinz et all, [2010), while some perform de-novo motif discovery based on
s k-mers (Arvey et al.,|2012) or as part of convolutional neural networks (Quang and Xie,
s [2017; |Qin and Feng), [2017). Irrespective of the source of the motifs considered, three
ses  general schemas are have been established for combining motif predictions with chro-
sso  matin accessibility data. First, motif matches (i.e., predicted binding sites) may be used
g0 as prior information and combined with DNase-seq data to distinguish functional from
sn non-functional binding sites (e.g., Pique-Regi et al. (2011); Jankowski et al|(2016); Raj
872 E (2015)), Second, TF footprints may be first identified from DNase-seq data and
g3 then annotated with specific TFs based on motif matches afterwards (Gusmao et al.
g+ 2014). Third, both sources of information are combined in a holistic approach (Quang
g5 [and Xie, 2017; |Qin and Feng, 2017). DNase-seq (and ATAC-seq) data are employed
s7s  in different ways by existing approaches including i) binning of chromatin accessibility
877 statistics in larger genomic regions around putative binding sites (Luo and Hartemink,
878 , ii) association of chromatin accessibility with specific genes (Schmidt et al.,2017),
g0 or iii) high-resolution maps of DNase cut sites (Sherwood et al 2014} [Raj et al., [2015),
g0 which may additionally be considered separately for each DNA strand (Piper et a L
881 m On the methodological level, approaches either follow a supervised approach
82 based on training examples labeled as “bound” or “unbound”, typically derived from
ss3 [ I'F ChIP-seq data (e.g., |Arvey et al.| (2012)); |[Luo and Hartemink (2012); Kahara and
sss |Lahdesmaki| (2015); [Liu et al| (2017))), or an unsupervised approach clustering regions
sss  into “bound” and “unbound” based on their experimental properties (e.g., DNase-seq
ssc (data or histone modifications (Pique-Regi et al., |2011; |Sherwood et al., 2014; Gusmao
ss7 et al),[2014)), while others base their predictions on statistical tests (Piper et all 2013)
sss  or scores related to binding affinity predictions (Schmidt et al., [2017). Supervised ap-
s0 proaches use a variety of methods like support vector machines (Arvey et all [2012;
soo [Kumar and Bucher] [2016)), (sparse) logistic regression (Natarajan et al), 2012} [Luo and
son [Hartemink] 2012} [K&hérd and Lahdesméki, 2015 [Chen et all,[2017)), random forests (Liul
s2 |et al.,|2017), or neural networks adapted by deep learning (Quang and Xie, 2017; Qin
so3 jand Feng) 2017)). Unsupervised approaches use hierarchical mixture models (Pique-Regi
sos |et all [2011)), hierarchical multi-scale models (Raj et al) [2015), hidden Markov mod-
895 els (Gusmao et all,[2014)), or other probabilistic models (Sherwood et all[2014). In some
g6 approaches, sequence-based features besides motif matches (Kumar an Bucher, 2016
so7 (Gusmao et all, [2014; [Chen et al] [2017), sequence conservation (Kumar and Bucher,
sos 2016} [Liu et all 2017, [Chen et all 2017), or additional experimental data like histone
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soo modification (Pique-Regi et al., 2011; Arvey et al. [2012; |Gusmao et al., 2014) are in-
o0 cluded into the model. Finally, a subset of approaches uses the prediction of TF binding
o1 regions as an intermediate step for predicting gene regulation (Natarajan et al.l [2012])
o2 or tissue-specific gene expression (Schmidt et al., 2017).

w3 Supplementary Text S2 — Features

o4 The features described in the following are all determined on the level of genome bins.
o5  We refer to the bin for which the a-posteriori probability of being peak center should
o6 be computed (i.e., the bin containing the peak summit in case of positive examples) as
o7 center bin. Further, adjacent bins considered are defined relative to that center bin (see
o8 also section [Prediction schema)).

so S2.1 Sequence-based features

o0  As a first sequence-based feature, we consider the raw DNA sequence according to the
o1 hgl19 human genome sequence in the center bin and the directly preceding and the
o2 directly following bin. In total, this corresponds to 150 bp of sequence, centered at the
013 center bin.

914 We further consider the mean G/C-content, and the relative frequency of CG di-
o15s nucleotides in the raw sequence spanning those three bins centered at the center bin.
a6 G/C-content might be an informative property of promoters bound by a certain TF,
o7 and an enrichment of CG di-nucleotides might be informative about the presence of
o185 CpG islands.

919 We also compute the Kullback-Leibler divergence between the relative frequencies of
920 all tri-nucleotides in each of these three bins compared with their relative frequencies
921 in the complete genome. As a feature, we then consider the maximum of those three
o2 Kullback-Leibler divergence values obtained for the three bins. Here, the reasoning is
023 that a deviation from the genomic distribution of tri-nucleotides might be a sign of the
024 general information content of a sequence, which might help to distinguish coding and
o5  mnon-coding DNA regions as well as identifying regions that encode regulatory informa-
o6 tion.

927 Finally, we consider the length of the longest poly-A or poly-T tract, the length of the
o8 longest poly-C or poly-G tract, the length of the longest poly-A/T tract, and the length
o0 of the longest poly-G/C tract in these three bins.

930 All of those sequence-based features are neither TF-specific nor cell type-specific, but
031 model parameters learned on their feature values might well be different for different
o2 training TF's or cell types.

3 S2.2 Annotation-based features

o3¢ Based on the Gencode v19 genome annotation of the hgl9 genome, we derive a set
935 of annotation-based features. First, we consider the distance of the current center bin
a6 to the closest T'SS annotation (regardless of its strand orientation), which might be
037 informative about core promoter regions. Second, we collect the binary information if
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38 the current center bin overlaps with annotations of i) a CDS, ii) a UTR, iii) an exon,
030 1v) a transcript, or v) a TSS annotation, separately for each of the two possible strand
os0 orientations. Like some of the previous features, this helps to identify coding, non-coding
oa1  but transcribed, core promoter, and intergenic regions. Again, these features are not TF
o2 or cell type-specific, but model parameters may be adapted specifically for a TF or cell
w3 type.

s S2.3 Motif-based features

a5 As it might be expected that binding motifs are pivotal for predicting TF-specific bind-
a6 ing regions, we create a large collection of motifs for each of the TFs considered. For
a7 each of the TFs, we collect all position weight matrix models from the HOCOMOCO
wus database (Kulakovskiy et al., [2016]) as well as our in-house database DBcorrDB (Grau
wo et all 2015a)), and Slim/LSlim models of the respective TFs from a previous publica-
oo tion (Keilwagen and Graul [2015). In addition, we learn a large set of motifs from the
o1  data provided in the challenge using our motif discovery tools Dimont (Grau et al.,[2013])
o2 using PWM as well as LSlim(3) models (Keilwagen and Grau, 2015). Specifically, we
053 perform motif discovery for

954 e PWM models from the “conservative” peak files for each training cell type,

955 e PWM models from the “relaxed” peak files complemented by negative regions se-
956 lected to be DNase positive (i.e., open chromatin) but ChIP-seq negative according
957 to the ChIP-seq and DNase-seq peak files provided with the challenge data,

958 e LSlim(3) models from the “conservative” peak files for each training cell type,

950 e LSlim(3) models from the “relaxed” peak files for each training cell type,

960 e LSlim(3) models from the “relaxed” peak files complemented by negative regions
961 selected to be DNase positive (i.e., open chromatin) but ChIP-seq negative accord-
962 ing to the ChIP-seq and DNase-seq peak files provided with the challenge data.

o3 LSlim(3) may capture intra-motif dependencies between binding site position with a
964 distance of at most three nucleotides.

965 Motifs discovered using models of different complexity on these different sets of training
ws data (“conservative” and “relaxed” peaks, and “relaxed” peaks complemented by DNase
o7 positive regions) should i) capture the breadth of the binding landscape of a TF as
ws represented by the different levels of stringency (“conservative” vs. “relaxed”), and ii)
o0 represent potential intra-motif dependencies as well as traditional, “additive” binding
o0 affinities. In addition, we learn motifs from the DNase-seq peak files as well, considering

971 e LSlim(3) models from the “conservative” and “relaxed” DNase-seq peak files,
072 e LSlim(3) models from the regions in the intersection of all “relaxed” DNase-seq
973 peak files.
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o4 Learning motifs from the DNase-seq data alone might have the potential to capture
o7s additional binding motifs of TFs that are important for cell type-specific predictions but
o76 are not represented in the ChIP-seq data provided with the challenge data.

077 Regardless of the TF considered, we further include PWM and Slim/LSlim motifs
ars  discovered previously (Keilwagen and Grau, 2015; |Grau et al., 2015a)) for CTCF, SP1,
oo JUND, and MAX, as those i) mark boundaries between regulatory regions, ii) frequently
s0 interact with other transcriptions factor, or iii) bind to a large fraction of active promot-
1 ers. Further TFs that might interact with the currently considered TF as determined i)
s from the literature, specifically from Factorbook (Wang et al.,|2012)), ii) determined from
o83 the overlap between the ChIP-seq peaks provided with the challenge data. The latter is
ses accomplished by computing for each TF and cell type i) the TF with the largest overlap
ss  (F1 measure computed on the peaks) and ii) the TF with the lowest overlap between the
986 peak files. The former might be indicative of co-binding, while the latter might indicate
os7  mutually exclusive binding, both of which might help to predict TF-specific binding
988 Tregions.

989 Finally, we consider motifs determined by the epigram pipeline (Whitaker et al.,[2015)),
o0 which mark epigenetic modifications. Specifically, we select the top 10 motifs reported
o1 for “single mark” analyses for methylation, and H3K4me3 and H3K27ac histone mod-
o2 ifications (downloaded from http://wanglab.ucsd.edu/star/epigram/mods/index.
o3 html).

994 We use all motif models described above to scan the hgl9 genome for potential binding
905 regions. To this end, we apply a sliding window approach across the genome, and
o6 aggregate the motif scores obtained according to the genomic bins. For the TF-specific
997 motifs obtained by de-novo motif discovery from ChIP-seq data, we consider as features

998 e the maximum log-probability of all sliding windows starting in the center bin,

999 e the logarithm of the sum of binding probabilities in all sliding windows starting in
1000 the center bin or its two adjacent bins, and

1001 e the logarithm of the sum of binding probabilities in all sliding windows starting in
1002 any of the bins considered.

1003 The first feature should capture the binding affinity at the strongest binding site around
1004 the peak summit, while the latter two features represent the general binding affinity of
wos & region with different levels of resolution.

1006 For all of the remaining motifs, we consider the maximum of the bin-wise logarithm
w07 of the sum of binding probabilities over all bins considered (see section
1008 |genomel), as this reduces memory requirements as well as model complexity and this
oo level of detail might be sufficient to capture TF interactions.

1010 S2.4 DNase-based features

1011 For the DNase-seq data, the challenge provided tracks with a “fold-enrichment coverage”
o2 track, peak files, and the original BAM files from mapping the DNase-seq reads, of which

43


http://wanglab.ucsd.edu/star/epigram/mods/index.html
http://wanglab.ucsd.edu/star/epigram/mods/index.html
http://wanglab.ucsd.edu/star/epigram/mods/index.html
https://doi.org/10.1101/230011
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/230011; this version posted June 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1013 we consider only the former two. From the fold-enrichment coverage track, we compute
1014 the following statistics:

1015 e the minimum value across the center bin and its two adjacent bins,
1016 e the minimum of the maximum value within each bin considered,
1017 e the minimum of the 25% percentile within each bin considered, and
1018 e the median values of all the bins considered.

w010 After extracting those feature values for all genomic bins, we quantile normalize each
1020 of the features independently across the challenge cell types. Before normalization, we
121 randomize the order of values to avoid systematic effects due to genomic order, which
1022 might especially occur for the large number of very low values. For the additional,
1023 primary cell types, we do not perform an independent quantile normalization but instead
124 map the DNase-seq features (according to their numerical order) to the corresponding,
1025 quantile normalized values of the challenge cell types.

1026 In addition to these short-range DNase features, we also determine a set of long-range
w27 features, which are computed from i) 10 bins ii) 20 bins, and iii) 40 bins preceding and
1028 succeeding the current center bin. These features are

1020 e the minimum value across all bins,

1030 e the maximum value across all bins,

1031 e the minimum value across the bins preceding the center bin,

1032 e the minimum value across the bins succeeding the center bin,

1033 e the maximum value across the bins preceding the center bin, and
1034 e the maximum value across the bins succeeding the center bin.

1035 Together, these features capture chromatin accessibility on a short and long range level
1036 with reasonable resolution, which should be highly informative with regard to the general
1037 TF-binding potential. Model parameters should then be able to adapt for TF-specific
1038 preferences of chromatin accessibility.

1039 For the current center bin, we additionally determine features of stability across the
1040 different cell types, namely

1041 e the ratio of the minimum value in the current cell type divided by the average of
1042 the minimum values across all cell types,

1043 e the ratio of the maximum value in the current cell type divided by the average of
1044 the maximum values across all cell types,

1045 e the coefficient of variation (standard deviation divided by mean) of the minimum
1046 values across all cell types, and
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1047 e the coefficient of variation of the maximum values across all cell types,

a8 where the latter two features are identical for all cell types by design.
1049 We also determine several features that represent the monotonicity/stability of these
150 DNase-seq signals. Specifically, these features are

1051 e the number of steps (increasing or decreasing) in the track profile in a 450 bp
1052 interval centered at the center bin,

1053 e the longest strictly monotonically increasing stretch in the four bins preceding the
1054 center bin,

1055 e the longest strictly monotonically decreasing stretch in the four bins preceding the
1056 center bin,

1057 e the longest strictly monotonically increasing stretch in the four bins succeeding
1058 the center bin, and

1059 e the longest strictly monotonically decreasing stretch in the four bins succeeding
1060 the center bin.

w61 The first of these features has been inspired by the “orange” feature coined by team
1062 autosome.ru in the challenge.

1063 Finally, we define further features based on the “conservative” and “relaxed” DNase-
1064 seq peak files as provided with the challenge data. These are

1065 e the distance of the center bin to the summit of the closest conservative peak,

1066 e the distance of the center bin to the summit of the closest relaxed peak,

1067 e the peak statistic of a conservative peak overlapping the center bin (or zero if no
1068 such overlapping peak exists) multiplied by the length of the overlap,

1069 e the peak statistic of a relaxed peak overlapping the center bin (or zero if no such
1070 overlapping peak exists) multiplied by the length of the overlap,

1071 e the maximum of the g-values of an overlapping conservative peak (or zero if no
1072 such overlapping peak exists) multiplied by the length of the overlap across the
1073 five central bins,

1074 e the maximum of the g-values of an overlapping relaxed peak (or zero if no such
1075 overlapping peak exists) multiplied by the length of the overlap across the five
1076 central bins.

w77 S2.5 RNA-seq-based features

178 The RNA-seq data provided with the challenge data included the TPM values of genes
w079 according to the gencode v19 genome annotation. TPM values are also quantile normal-
1080 ized across the cell types. As features, we consider
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1081 e the maximum TPM value (averaged over the two bio-replicates per cell type) of
1082 genes in at most 2.5 kb distance

1083 e the coefficient of variation of the bio-replicated of the corresponding gene,

1084 e the relative difference (difference of values in bio-replicated divided by their mean
1085 value) of the corresponding gene.

10ss In analogy to the DNase-based features, we computed from the first feature as measures
1087 of stability across the different cell types

1088 e the ratio of the maximum TPM value in the current cell type divided by the average
1089 of the maximum values across all cell types, and
1090 e the coefficient of variation of the maximum TPM values across all cell types.

w1 Supplementary Text S3 — Model & learning principle

1002 For numerical features x, we use independent Gaussian densities parameterized as

6)\ e/\ 2
N\ p) =) — e~ T
(@A, ) 5 €
1003 which allows for unconstrained numerical optimization of both, A and u.
1004 For features y with K possible discrete values vy, ..., vx, we use (unnormalized) multi-
1005 nomial distributions with parameters 8 = (1, ..., k) defined as
K S(y=
s i (2200 )
>_rexp(Be)

k=1

1006 The multinomial coefficient is neglected in this case, since it only depends on the in-
1007 put data but not on the model parameters. In case of binary features, i.e., K=2, this
198 corresponds to an (unnormalized) binomial distribution.
1009 For modeling the raw sequence s = s1s9...51, s € ¥ = {A,C,G,T}, we use a
100 homogeneous Markov model of order 3 parameterized as

exp(ﬁl,sl) ) 6xp(ﬁ2,32|51) ) exp(53,33|5132) )
ZaEZ 61’}7(51’@) ZaGE exp(62,a|81) ZaeE exp(63,a|5152>
exp(ﬁh7sg|sg_38g_28g_1)
=4 ZaGE e$p(/6hva|sz738e72sz71) 7

M(s]Bs)

uot  where S, qp,a € 3,b € ¥3 are the homogeneous parameters and

e Bs = (Bra,---, P11, 82,4145 - - - Bo,11s B3,41AA - - - B3,r\mTs Br,ajaAAs - - Burirrr) de-
103 notes the vector of all model parameters.
1104 Let € = (z1,...,2y) denote the vector of all numerical features, y = (y1,...,ya) de-

nos note the vector of all discrete features, and s denote the raw sequence of one region repre-
nos  sented by its feature values z = (@, y,s). Let @ = (A1,..., AN, i1, -+ -y 4N, B1y- -+, Bar, Bs)
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oz denote the set of all model parameters. We compute the likelihood of z as an independent
mos  product of the terms for the individual features, i.e.,

M
P(z]0) : (HN | Ae, ue) ) : <H3(yz|ﬂz)> - M(s]Bs).
=1

/=1

moee  For modeling the distribution in the positive (foreground) and negative (background)
o class, we use likelihoods P(z|60¢,) and P(z|0y,) with independent sets of parameters
un Ory and 6O, respectively In addition, we define the a-priori class probabilities as

wa P(fgln. ) = et iy and Plhgln. 1) = oo P2y,
1113 Based on these de nitions, we may compute the a-posteriori class probability of the

114 positive class as

P(fgln,72) - P(2|0;y)

P(fglv,v2) - P(2]0rg) + P(bgly1,72) - P(2]6hg)

uis  and the a-posteriori class probability of the negative class in complete analogy.

1116 Using the discriminative maximum conditional likelihood principle (Roos et al.,[2005)),
u17 the parameters are optimized such that the a-posteriori probabilities of the correct class
s labels given data and parameters are maximized. Here, we use a variant (Grau, [2010])
1o of the maximum conditional likelihood principle that incorporates weights. Let F =
u20 (z1,...,27) denote the set of positive examples and let B = (z741,...,2s) denote the
un21 set of negative examples, where z; is assigned weight w;. The parameters are then
12 optimized with regard to

P(fg|z7 ofga 01)977) =

I
(0%,055,7") = argmax | > w;-log P(fglzi,0r4,05,7) +
(efg70bgv7) =1
J
Z wi'IOgP(bg|zi>0fgvgb977)
i=I+1

23 Supplementary Text S4 — Sampling of DNase-matched negative regions

124 We sample negative regions with chromatin accessibility values matched to the positive
uzs  regions (following an idea related to importance sampling) as explained in the following.
126 We consider the center bins of all positive regions, collect the corresponding DNase-
u2r  seq median feature values (see [Supplementary Text S2)) of those bins, and determine a
128 histogram of the collected values. The histogram is composed of 20 equally sizes bins
120 between the observed maximum and minimum values of the DNase-seq median values.
unso This histograms represents an approximation of the distribution of DNase-seq median
us1 values in the positive regions. As we expect DNase-seq values to be highly informative
usz about TF binding, we aim at sampling a representative set of negative regions that
nss  exhibit similar DNase-seq values but might be distinguished from positive regions by
u3e  other features.
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1135 To this end, we assign each of the negative regions to the same histogram bins based
u3ss on their respective DNase-seq median values at their center bins. This also yields an
us7  analogous histogram of the DNase-seq median values for the negative regions, which will
u3s usually be different from the histogram for the positive regions.

1139 Within each histogram bin, we then draw a subset of the negative regions assigned to
14 that bin by i) drawing a subset of these regions four times as large as the corresponding
ua positive set, and ii) weighting the drawn negative regions such that the sum of weights
a2 matches the relative abundance of that histogram bin in the histogram on all negative
143 Tegion.

1144 Conceptually, this procedure yields an over-sampling of negative regions with large
1es  DNase-seq median features, which is adjusted for by down-weighting such examples to
146 the corresponding frequency on the chromosome level. This is especially important as
147 these will be regions that are hard to classify using DNase-seq based features but are
s only lowly represented by the uniform sampling schema.
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