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Abstract	17	

A	 deeper	 understanding	 of	 inter-tumor	 and	 intra-tumor	 heterogeneity	 is	 a	 critical	 factor	 for	 the	18	
advancement	of	next	generation	strategies	against	cancer.	The	heterogeneous	morphology	exhibited	19	
by	solid	tumors	is	mirrored	by	their	metabolic	heterogeneity.	Defining	the	basic	biological	mechanisms	20	
that	underlie	tumor	cell	variability	will	be	fundamental	 to	the	development	of	personalized	cancer	21	
treatments.	 Variability	 in	 the	molecular	 signatures	 found	 in	 local	 regions	 of	 cancer	 tissues	 can	 be	22	
captured	through	an	untargeted	analysis	of	their	metabolic	constituents.	Here	we	demonstrate	that	23	
DESI	mass	spectrometry	imaging	(MSI)	combined	with	network	analysis	can	provide	detailed	insight	24	
into	the	metabolic	heterogeneity	of	colorectal	cancer	(CRC).	We	show	that	network	modules	capture	25	
signatures	which	differentiate	tumor	metabolism	in	the	core	and	in	the	surrounding	region.	Moreover,	26	
module	 preservation	 analysis	 of	 network	modules	 between	 patients	 with	 and	without	metastatic	27	
recurrence	explains	the	inter-subject	metabolic	differences	associated	with	diverse	clinical	outcomes	28	
such	as	metastatic	recurrence.	29	

Significance	30	

Network	analysis	of	DESI-MSI	data	from	CRC	human	tissue	reveals	clinically	relevant	co-expression	ion	31	
patterns	associated	with	metastatic	susceptibility.	This	delineates	a	more	complex	picture	of	tumor	32	
heterogeneity	 than	conventional	hard	segmentation	algorithms.	Using	 tissue	sections	 from	central	33	
regions	and	at	a	distance	from	the	tumor	center,	ion	co-expression	patterns	reveal	common	features	34	
among	patients	who	developed	metastases	(up	of	>	5	years)	not	preserved	in	patients	who	did	not	35	
develop	 metastases.	 This	 offers	 insight	 into	 the	 nature	 of	 the	 complex	 molecular	 interactions	36	
associated	 with	 cancer	 recurrence.	 Presently,	 predicting	 CRC	 relapse	 is	 challenging,	 and	37	
histopathologically	 like-for-like	 cancers	 frequently	 manifest	 widely	 varying	 metastatic	 tendencies.	38	
Thus,	the	methodology	introduced	here	more	robustly	defines	the	risk	of	metastases	based	on	tumor	39	
biochemical	heterogeneity.	40	
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Introduction	48	
Cancerous	tissue	is	characterized	by	a	high	level	of	heterogeneity	when	compared	to	the	surrounding	49	
host	 tissue.	 This	 heterogeneity,	 expressed	 at	 multiple	 levels,	 may	 be	 purely	 genetic	 (Burrell,	50	
McGranahan	 et	 al.	 2013)	 or	 epigenetic	 (Marusyk,	 Almendro	 et	 al.	 2012)	 or	 a	 combination,	 and	51	
represents	 one	 of	 the	 most	 challenging	 aspects	 for	 the	 implementation	 of	 effective	 anti-cancer	52	
treatment	 strategies.	 In	 earlier	 work,	 mass	 spectrometry	 imaging	 (MSI)	 techniques	 have	 shown	53	
promise	in	their	ability	to	capture	the	diversity	of	tumors	through	the	analysis	of	molecular	expression	54	
patterns	 (Schwartz,	 Weil	 et	 al.	 2004,	 Eberlin,	 Dill	 et	 al.	 2010,	 McDonnell,	 Corthals	 et	 al.	 2010,	55	
Schwamborn	and	Caprioli	2010,	Eberlin,	Norton	et	al.	2012,	Alexandrov,	Becker	et	al.	2013),	showing	56	
that	the	underlying	heterogeneity	is	reflected	in	dramatic	metabolic	changes	across	different	tumor	57	
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sub-regions.	From	the	point	of	view	of	statistical	modelling,	the	lack	of	detailed	metabolic	data	of	the	58	
heterogeneous	 properties	 of	 cancerous	 tissues	 and	 the	 difficulty	 of	 detecting	 those	 differences	59	
through	visual	inspection	of	the	specimens	makes	necessary	the	use	of	analytical	methods	combined	60	
with	 unsupervised	 analysis	 techniques.	 These	 approaches	 can	 detect	 the	 underlying	 statistical	61	
structure	of	the	data	and	can	be	employed	to	cluster	molecular	abundance	patterns	that	are	found	to	62	
be	common	among	discrete	regions	of	tissues.	These	subsets	can	be	defined	both	in	the	spatial	domain	63	
(pixels)	and	 in	the	metabolic	domain	(ions	corresponding	to	molecules)	and	both	approaches	have	64	
been	explored	in	previous	work	for	the	study	of	cancer	and	other	types	of	tissues.	Linear	methods,	65	
such	as	PCA	or	MDS,	combined	with	hierarchical	clustering	have	shown	that	MALDI-MSI	can	capture	66	
the	 heterogeneity	 of	 cancer	 while	 allowing	 analysis	 of	 the	 properties	 of	 the	 metabolic	 space	67	
(Deininger,	Ebert	et	al.	2008,	Rauser,	Marquardt	et	al.	2010),	whereas	other	approaches	based	on	the	68	
combination	 of	 multiple	 clustering	 methods	 base	 their	 results	 on	 the	 presence	 of	 concordance	69	
between	 the	 spatial	 patterns	 associated	with	 clusters	 (pixels)	 (Jones,	 van	Remoortere	 et	 al.	 2011,	70	
Balluff,	Frese	et	al.	2015). Other	studies	have	associated	the	presence	of	specific	sets	of	molecules	in	71	
the	cancerous	tissue	with	clinical	outcome	(e.g.	increased	risk	of	mortality	or	metastasis	development)	72	
(Abdelmoula,	Balluff	et	al.	2016,	Lou,	Balluff	et	al.	2016).	However,	the	conclusions	from	this	earlier	73	
work	are	often	limited	to	providing	a	series	of	possible	biomarkers	for	tumor	heterogeneity	-	limited	74	
or	no	insight	is	given	into	the	possible	biochemical	mechanisms	related	to	the	increased/decreased	75	
abundance	of	identified	markers	in	a	specific	region	of	the	tissue.	76	

We	 hypothesize	 that	 the	mechanisms	 behind	 tumor	 heterogeneity	 are	much	more	 complex	 than	77	
those	captured	simply	by	the	identification	of	sets	of	locally	highly	abundant	metabolites	and,	for	this	78	
reason,	it	is	extremely	important	to	introduce	methodologies	capable	of	capturing	a	broader	view	of	79	
the	underlying	biochemical	interactions. Network	analysis	represents	a	natural	choice	in	this	regard,	80	
since	it	provides	a	set	of	tools	to	describe	the	possible	interactions	(co-expressions)	between	variables	81	
in	 terms	 of	 their	 mutual	 statistical	 similarities.	 In	 the	 present	 study,	 we	 have	 characterized	 the	82	
metabolic	differences	between	patients	with	or	without	metastatic	 recurrence	using	weighted	 co-83	
expression	 network	 analysis	 (WGCNA)	 (Langfelder	 and	 Horvath	 2008)	 module	 preservation	84	
(Langfelder,	 Luo	et	al.	2011).	Previous	 studies	have	applied	a	WGCNA	approach	 to	metabolic	data	85	
(DiLeo,	Strahan	et	al.	2011,	Su,	Wang	et	al.	2014,	Yu,	Niu	et	al.	2015)	and,	specifically,	several	studies	86	
have	 made	 use	 of	 module	 preservation	 as	 a	 measure	 for	 the	 identification	 of	 (gene)	 expression	87	
differences	between	species	or	disease	conditions	(Oldham,	Horvath	et	al.	2006,	Miller,	Horvath	et	al.	88	
2010,	Horvath,	Zhang	et	al.	2012,	Chen,	Cheng	et	al.	2013,	Tong,	Li	et	al.	2013,	Xue,	Huang	et	al.	2013,	89	
Huang,	Maruyama	et	al.	2014)	but,	to	the	best	of	our	knowledge,	this	is	the	first	application	to	MSI	90	
data	derived	from	cancerous	tissue	specimens.	A	related	study	uses	correlations	to	evaluate	the	ion	91	
co-localization	in	MSI	data	(McDonnell,	van	Remoortere	et	al.	2008).	The	hypothesis	underlying	the	92	
present	 study	 is	 that	 network	 modules	 can	 represent	 different	 aspects	 of	 the	 local	 metabolism	93	
through	 the	 analysis	 of	 co-localized	 ions	 and	 that	 the	metabolic	 differences	 characterizing	 tumor	94	
aggressiveness	can	be	identified	by	those	modules	associated	with	patients	with	metastases	that	are	95	
(or	are	not)	preserved	in	patients	without	metastases.	96	

For	both	the	data	collected	at	the	tumor	core	and	at	a	distance	of	10cm	from	the	tumor,	two	groups	97	
of	patients	are	defined:	a	control	cohort	consisting	of	patients	with	metastatic	recurrence	and	a	test	98	
cohort	consisting	of	those	patients	without	metastatic	recurrence.	Using	WGCNA,	an	ion	network	can	99	
be	 constructed	 using	 the	 mass	 spectral	 data	 from	 instances	 where	 the	 variables	 have	 stronger	100	
connections	if	co-localized	(correlated).	However,	in	contrast	to	gene	expression	analysis,	where	each	101	
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sample	 can	 be	 treated	 individually,	 MSI	 data	 from	 a	 single	 patient	 specimen	 often	 consists	 of	102	
thousands	of	mass	spectral	profiles	(one	for	each	pixel).	This,	together	with	the	different	number	of	103	
patients	 belonging	 to	 the	 two	 cohorts,	 may	 result	 in	 a	 significantly	 different	 number	 of	 spectra	104	
associated	 with	 the	 two	 clinical	 outcomes.	 Furthermore,	 treating	 the	 spectra	 as	 independent	105	
measures	does	not	guarantee	that	the	correlations	reflect	the	co-expression	levels	of	the	ions	within	106	
each	individual	tissue	specimen.	107	

For	these	reasons,	a	comparative	analysis	is	performed	using	a	consensus	cohort	network,	defined	by	108	
merging	the	tissue	sample	networks	from	a	single	cohort.	A	set	of	modules	are	defined	by	partitioning	109	
the	consensus	network	into	sub-networks	of	highly	correlated	nodes	and	the	metabolic	differences	110	
between	the	two	cohorts	are	characterized	in	terms	of	module	preservation.	111	

In	this	study,	the	WGCNA	module	preservation	analysis	on	DESI-MSI	data	from	specimens	surgically	112	
removed	at	the	tumor	center	and	at	a	distance	of	10cm	from	the	tumor	center	(Table	1)	shows,	using	113	
no	 prior	 information	 about	 the	 nature	 of	 the	 local	 tissue	 (tumor,	 surrounding	 healthy	 tissue	 or	114	
background),	 that	 the	 metastasis	 associated	 metabolic	 patterns	 within	 the	 tumor	 core	115	
microenvironment	involve	not	only	the	cancerous	tissue,	but	are	extended	to	the	neighboring	stromal	116	
tissue	and	furthermore,	that	metastasis	associated	differences	(albeit	different	ones)	in	the	cellular	117	
metabolism	are	also	detected	in	regions	relatively	distant	from	the	tumor.	118	

Results	119	

Re-calibration	of	peak	positions,	visual	assessment	of	sample	quality	and	ion	selection.	120	
The	 peak	 lists	 (centrode	 data),	 extracted	 from	 the	 RAW	 data	 using	 the	 ProteoWizard	 software	121	
(Kessner,	Chambers	et	al.	2008)	were	 re-calibrated	 in	order	 to	 reduce	 the	peak	 shifts	 arising	 from	122	
specific	instrumental	conditions	during	the	MS	acquisition.	Since	a	dedicated	reference	compound	for	123	
lock-mass	correction	was	not	infused	during	the	MS	measurement	process,	a	re-calibration	procedure	124	
was	 introduced	 exploiting	 the	 characteristics	 of	 the	 analyzed	 data.	 Two	 ions	 were	 identified	 as	125	
reference	 candidates	 because	 of	 their	 standard	 abundance	 across	 all	 the	 samples:	 palmitate	 ion,	126	
corresponding	 to	 255.2330	m/z	 ([M-H]-),	 was	 found	 homogeneously	 occurring	 in	 the	 entire	 layer	127	
containing	both	the	tissue	and	the	background;	whereas	phosphatidylinositol,	PI(38:4),	corresponding	128	
to	885.5499	m/z	 ([M-H]-)	was	mainly	 found	 in	 the	 region	occupied	by	 the	 tissue.	Using	 these	 two	129	
reference	 ions,	 the	m/z	 shift	across	 the	entire	sample	could	be	estimated.	Setting	a	1	Δ𝑝𝑝𝑚	wide	130	
search	window,	the	intensity	of	the	closest	peak	to	the	reference	ions	was	associated	with	each	pixel;	131	
if	no	peak	was	found	within	the	search	window,	the	pixel	was	left	blank.	Because	of	the	characteristics	132	
of	the	two	reference	ions,	it	was	expected	that	the	intensity	of	the	image	corresponding	to	palmitic	133	
acid	would	cover	the	entire	layer	whereas	the	image	corresponding	to	PI(38:4)	would	clearly	represent	134	
the	tissue	sample.	If	the	value	of	Δ𝑝𝑝𝑚	was	too	small,	the	matched	ions	intensity	image	would	instead	135	
present	holes	or	scattered	pixels.	 In	this	way,	after	scanning	 increasing	values	of	Δ𝑝𝑝𝑚	 in	steps	of	136	
1ppm,	the	optimal	Δ𝑝𝑝𝑚	was	defined	as	the	minimum	value	to	produce	images	defined	as	having	no	137	
more	than	1%	of	missing	pixels	for	the	palmitic	acid	image	and	a	clear	tissue	image	for	PI(38:4)	(Fig.	138	
1A-F).	If	the	optimal	Δ𝑝𝑝𝑚	was	larger	than	10ppm	(more	than	double	the	instrumental	error),	then	139	
the	quality	of	the	sample	was	considered	insufficient	and	the	sample	was	discarded.	Subsequently,	140	
the	m/z	values	found	in	the	search	window	corresponding	to	the	palmitate	peak	were	used	to	quantify	141	
the	peak	shift	across	all	the	pixels.	A	robust	Locally	Weighted	Scatterplot	Smoothing	(LOWESS)	model	142	
was	used	to	estimate	the	relative	distance	between	the	RAW	peak	positions	and	the	expected	m/z	143	
value	(255.2330	m/z)	(Fig.	1G).	Only	the	palmitic	acid	was	used	to	estimate	the	peak	shifts;	for	this	144	
ion,	the	LOWESS	model	was	also	capable	of	estimating	the	peak	shift	in	the	presence	of	a	small	number	145	
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of	blank	pixels,	whereas	it	failed	to	estimate	the	peak	shift	for	PI(38:4)	because	of	the	large	number	146	
of	consecutive	blank	pixels	(Fig.	1H).	The	estimated	peak	shift	was	used	to	re-calibrate	all	the	spectra,	147	
applying	a	rigid	translation	of	the	m/z	values,	so	that	the	m/z	values	corresponding	to	palmitic	acid	148	
were	set	equal	to	the	theoretical	value.	While	this	approach	gave	satisfactory	results	for	Orbitrap	data,	149	
the	same	algorithm	cannot	be	directly	used	for	the	correction	of	time-of-flight	data.	150	

After	 peak	matching	 (SI	 Appendix,	Materials	 and	Methods),	 in	 order	 to	 compare	 the	different	 co-151	
occurrence	patterns,	only	the	ions	present	in	all	the	samples	in	at	least	1%	of	the	pixels	were	used.	152	
Additionally,	in	order	to	consider	only	the	biological	correlation	patterns,	isotopes	were	identified	and	153	
removed.	An	ion	at	an	m	m/z	position	was	denoted	as	an	isotope	if	there	existed	another	ion	at	m0	in	154	
the	matched	 ions	 list	 such	 that	𝑚 ∈ 𝑚% − 1.003	𝑘,𝑚% + 1.0045	𝑘 ,	 with	𝑘 ∈ ℕ	 and	 such	 that	 it	155	
could	not	be	annotated	using	an	error	threshold	of	5	ppm	were	checked.	156	

Modelling	the	biochemical	differences	between	groups	of	patients	through	the	non-preserved	157	
network	ion	modules.	158	
In	all	experimental	analyses,	two	patients’	cohorts	were	defined:	the	reference	cohort,	Xmet,	consisting	159	
of	 those	 patients	 that	 showed	 clinical	 outcomes	 of	 interest	 (developed	metastasis),	 and	 the	 test	160	
cohort,	 Xnon-met,	 consisting	 of	 those	 patients	who	 did	 not	 develop	metastasis	 during	 the	 follow-up	161	
period.	The	assumption	behind	 this	procedure	was	 that	 the	differences	 in	 ion	abundances	 in	 local	162	
regions	of	the	tissue	reflected	metabolic	heterogeneity	and	that	differences	in	metabolic	pathways	163	
occurring	in	the	cancer	cells	were	associated	with	a	different	clinical	outcome.	In	order	to	calculate	a	164	
representative	network	for	each	cohort,	the	definition	of	a	consensus	network	was	used	(Langfelder	165	
and	Horvath	2008).	A	signed	adjacency	 (SI	Appendix,	Materials	and	Methods)	was	calculated	 from	166	
each	tissue	specimen	of	the	cohort,	and	combined	into	a	single	matrix	whose	elements	were	defined	167	
as	the	corresponding	minimum	value	across	all	the	cohort	samples.	The	soft	power	𝛽,	necessary	to	168	
calculate	 the	 signed	 topological	 overlap	 matrix	 (TOM)	 was	 determined	 as	 the	 smallest	 integer	169	
corresponding	to	a	𝑅4 ≥ 0.8	(𝑅4 ≥ 0.7	for	10cm	samples)	for	the	scale-free	network	assumption	for	170	
both	 Xmet	 and	 Xnon-met	 in	 a	 range	 of	 1	 to	 20.	 Using	 the	 same	 value	 of	 𝛽	 aimed	 to	 preserve	 the	171	
compatibility	between	the	control	and	test	networks.	In	a	similar	way,	the	consensus	TOM	from	the	172	
only	 control	data,	denoted	TOMmet,	was	defined	as	 the	matrix	whose	elements	were	equal	 to	 the	173	
corresponding	minimum	values	across	the	TOMs	of	the	cohort	(SI	Appendix,	Materials	and	Methods).	174	

In	order	to	obtain	a	partition	of	disjoint	sets	of	highly	correlated	ions	(denoted	reference	modules)	in	175	
the	reference	network,	a	hierarchical	clustering	with	average	linkage	on	the	TOMmet	based	distance	176	
matrix	 was	 applied.	 The	 distance	 matrix,	 calculated	 as	 1-TOMmet,	 represented	 the	 dissimilarities	177	
between	 the	 ion	 expressions	 within	 the	 metastatic	 tissue	 specimens.	 The	 optimal	 partition	 was	178	
identified	using	the	Dynamic	Tree	Cut	hybrid	algorithm	(Langfelder,	Zhang	et	al.	2008)	with	a	minimum	179	
number	of	ions	per	cluster	equal	to	5.	The	latter	choice	was	based	on	the	hypothesis	that	small	clusters	180	
could	 capture	 a	more	detailed	 picture	of	 the	 spatial	 similarities	 in	 the	molecular	 expressions.	 The	181	
module	eigenmetabolites	(ME)	(in	a	similar	fashion	to	the	module	eigengenes	of	the	original	WGCNA	182	
algorithm,	these	were	defined	as	the	scores	of	the	first	principal	component	of	the	MSI	data	limited	183	
to	 the	 module	 ions)	 defined	 the	 representative	 spatial	 distribution	 of	 the	 ions	 belonging	 to	 the	184	
module.	In	order	to	reduce	the	potential	redundancy	of	similar	ion	modules,	those	modules	where	185	
the	MEs	were	 characterized	 by	 a	 Pearson’s	 correlation	 larger	 than	 0.8	were	merged	 into	 a	 single	186	
module.	The	ions	that	were	not	clustered	(because	they	were	assigned	to	modules	with	less	than	5	187	
ions)	were	assigned	to	the	“grey”	module	and	were	not	passed	to	the	next	stage	of	the	analysis.	In	188	
this	way,	 a	 set	 of	modules	were	 associated	 to	 the	 consensus	 network,	 representing	 the	observed	189	
molecular	heterogeneity	of	the	cancerous	tissue.	The	metabolic	differences	between	the	reference	190	
cohort	of	patients	and	test	cohort	of	patients	were	determined	by	module	preservation	analysis	(SI	191	
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Appendix,	Materials	and	Methods).	The	Xmet	consensus	network	modules	were	tested	for	preservation	192	
in	the	Xnon-met	consensus	network,	under	the	hypothesis	that	not-preserved	modules	would	capture	193	
the	metabolic	differences	associated	with	the	patients’	prognosis.	194	

Phosphatidylglycerol	 metabolism	 in	 stromal	 tissue	 surrounding	 the	 tumor	 core	 is	195	

associated	with	metastasis.	196	
The	mass	spectral	data	from	the	tumor	core	specimens	of	32	subjects	(Table	1)	was	used	to	perform	197	
the	 module	 preservation	 analysis.	 The	 MSI	 data	 from	 the	 8	 patients	 that	 developed	 metastasis,	198	
denoted	 𝑋9:;

(=>?:),	 was	 used	 to	 define	 the	 consensus	 reference	 network,	 while	 the	 remaining	 24	199	

patients’	 MSI	 data,	 denoted	𝑋A>AB9:;
(=>?:) ,	 was	 used	 to	 build	 the	 test	 network.	 The	 high	 correlation	200	

between	their	node	connectivity	k,	defined	as	the	sum	of	the	node	edges	strengths	(Oldham,	Horvath	201	
et	al.	2006),	(Pearson’s	r	=	0.95,	Fig.	2A)	showed	that	the	two	networks	were	characterized	by	similar	202	
global	properties.	This	result	showed	that	the	global	tumor	metabolism	was	undifferentiated	between	203	
the	two	groups	of	patients.	By	partitioning	the	𝑇𝑂𝑀9:;

(=>?:)	using	the	hierarchical	clustering,	6	reference	204	
modules	were	found	(denoted	as	“blue”,	“brown”,	“green”,	“red”,	“turquoise”	and	“yellow”)	(Fig.	2A).	205	
A	visual	inspection	of	the	ME	images	showed	that	4	modules	were	associated	with	the	tissue	and	2	206	
were	localized	mainly	outside	of	the	tissue	(Fig.	S2).	Moreover,	it	was	seen	that	3	modules	captured	207	
different	tumor	sub-regions	and	one	module	was	mainly	expressed	in	the	stromal	connective	tissue	208	
(Fig.	 3A).	 The	 combination	of	 the	 relative	 intensities	of	 the	MEs	 localized	within	 the	 tumor	 region	209	
revealed	 the	 complex	 spatial	 patterns	 associated	 with	 its	 molecular	 heterogeneity	 (Fig	 3A).	 The	210	
module	 preservation	 analysis	 (5,000	 permutations)	 showed	 that	 4	 of	 the	 6	 metastatic	 network	211	
modules	were	from	weakly	to	moderately	preserved	in	the	Xnon-met	network.	Among	those,	the	green	212	
module	was	associated	with	tissue	and	was	weakly	preserved	(𝑍GH99I?J ≲ 5)	in	the	Xnon-met	data	(Fig.	213	

S1A).	The	relatively	lower	correlation	(Pearson’s	r	=	0.65)	between	the	𝑋9:;
(=>?:)	and	𝑋A>AB9:;

(=>?:) 	module	214	
membership	(kME),	defined	as	the	correlation	between	the	ions	 intensities	and	the	ME,	confirmed	215	
that	the	green	module	ions	were	not	equally	co-localized	in	the	two	datasets	(Fig.	S1A).	The	projection	216	
of	its	ME	intensities	on	the	optical	 image	of	the	H&E	stained	tissue	showed	that	the	green	module	217	
ions	involved	the	stromal	tissue	segment	of	the	tumor	with	the	observed	presence	of	free	fat	droplets	218	
and	infiltrations	of	tumor	cells	(an	example	is	reported	in	Fig	4A).	Noticeably,	the	MEs	revealed	that	219	
the	green	module	 ions	were	also	expressed	 in	 the	𝑋A>AB9:;

(=>?:) 	 samples	 (Fig.	 S3)	 confirming	 that	 the	220	
relevant	biochemical	differences	could	be	captured	only	in	terms	of	different	molecular	interactions	221	
(network	edge	weights)	and	not	in	terms	of	presence/absence	of	certain	sets	of	ions.	Analyzing	the	222	
corresponding	 regions	 in	 the	 optical	 images	 of	 the	 H&E	 stained	 tissue,	 it	 was	 observed	 that	 this	223	
module	corresponded	to	regions	close	to	the	necrotic	tissue	(an	example	is	reported	in	Fig.	4B).		224	

The	 ion	 annotation,	 performed	 through	 a	 Metlin	 database	 search	 (Smith,	 O'Maille	 et	 al.	 2005),	225	
revealed	that	those	of	the	weakly	preserved	green	module	consisted	of	phosphatidylglycerols	 (PG)	226	
and	fatty	acids	(FA)	(Fig	5A,	Table	S1).	Specifically,	hexadecanoic	acid	(C16:0),	eicosatetraenoic	acid	227	
(C20:4),	docosatetraenoic	acid	(C22:4),	docosapentaenoic	acid	(C22:5),	docosahexaenoic	acid	(C22:6)	228	
and	tetracosapentaenoic	acid	(C24:5)	which	showed	high	correlation	with	the	distribution	of	PG(36:3),	229	
PG(36:4),	 PG(38:5),	 PG(38:6),	 PG(40:6),	 PG(40:7)	 and	 the	 non-annotated	 292.2432,	 528.2736	 and	230	
791.5441	m/z	ions.	The	ion	pair	specificity	(SI	Appendix,	Materials	and	Methods),	confirmed	that	most	231	
of	the	PGs	together	with	tetracosapentaenoic	acid	were	specific	of	the	𝑋9:;

(=>?:)	sample	set	(Fig.	5A).	232	

Confirmation	 of	 the	 different	 network	 properties	 between	 the	 discovery	 and	 test	 datasets	 was	233	
obtained	by	running	WGCNA	directly	on	the	𝑋A>AB9:;

(=>?:) 	samples.	Indeed,	it	was	seen	that	the	green	234	
module	ions	were	split	 into	two	different	non-metastatic	modules	(Fig.	S4C).	Most	of	the	FAs	were	235	
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assigned	to	a	different	module	together	with	phosphatidylethanolamines	(PEs),	phosphatidylinositols	236	
(PIs)	and	phosphoserines	(PSs)	(Table	S2,	Fig.	S4D).	The	PGs	were	instead	assigned	together	in	a	larger	237	
module	consisting	of	only	phospholipids	(Table	S3,	Fig.	S4E).	238	

Phospholipid	metabolism	is	different	at	10cm	from	the	tumor	core	of	metastatic	and	239	

non-metastatic	patients.	240	
Analogous	to	the	tumor	core	analysis,	module	preservation	analysis	was	performed	using	the	MSI	data	241	
from	tissue	samples	collected	from	surgical	specimens	at	10cm	from	the	tumor	core.	The	specimens	242	
from	 29	 patients	 (Table	 1)	 were	 split	 into	 two	 groups	 corresponding	 to	 the	 occurrence/non-243	
occurrence	of	a	metastatic	relapse	during	the	follow-up	period.	The	MSI	data	of	the	6	patients	who	244	

developed	metastases,	denoted	𝑋9:;
(L%=9),	were	used	 to	determine	 the	 reference	network	modules	245	

that	were	later	tested	for	preservation	in	the	remaining	23	patients	MSI	data	(𝑋A>AB9:;
(L%=9) ).	As	seen	in	246	

the	tumor	center	samples,	the	WGCNA	consensus	networks	calculated	from	the	mass	spectral	data	247	

from	 𝑋9:;
(L%=9)	 and	 𝑋A>AB9:;

(L%=9) 	 were	 characterized	 by	 similar	 global	 properties	 (Pearson’s	 r	 =	 0.93	248	
between	metastatic	and	non-metastatic	data	k,	Fig.	2B);	this	result	also	showed	that	in	this	case	the	249	
two	metabolic	networks	were	globally	almost	identical.	The	metastatic	related	network	was	clustered	250	
in	6	modules	(denoted	“blue”,	“brown”,	“green”,	“turquoise”,	and	“yellow”)	(Fig	2B).	Analyzing	the	251	
spatial	distribution	of	the	detected	ME,	 it	was	observed	that	three	of	those	modules	showed	were	252	
localized	in	the	tissue	of	all	6	patients	(Fig.	S5).	The	combination	of	the	relative	intensity	of	those	MEs	253	
revealed	 the	molecular	 heterogeneity	 of	 the	 tissue	 sections	 (Fig.	 3B).	 Using	module	 preservation	254	
analysis	 with	 5,000	 permutations,	 it	 was	 observed	 that	 all	 the	 modules	 were	 from	 weakly	 to	255	
moderately	preserved	(2 ≤ 𝑍GH99I?J ≤ 10).	In	particular,	the	brown	module,	expressed	in	the	tissue,	256	
was	weakly	preserved	(𝑍GH99I?J ≲ 5)	in	the	patients	who	did	not	develop	metastasis.	As	observed	257	

in	the	tumor	core	data,	the	𝑋9:;
(L%=9)	and	𝑋A>AB9:;

(L%=9) 	the	brown	module	kMEs	showed	a	relatively	lower	258	
correlation	(Pearson’s	r	=	0.74,	Fig.	S1B).	259	

The	 annotation	 of	 the	 brown	module	 ions,	mainly	 expressed	 in	 the	 epithelium	 (as	 revealed	 by	 a	260	
comparison	with	 the	 optical	 images	 of	 the	H&E	 stained	 images,	 shown	 in	 Fig.	 4C-D),	 consisted	 of	261	
different	 classes	 of	 phospholipids	 (PE,	 PG,	 PI,	 and	 PS)	 together	 with	 phosphatidic	 acids	 (PA),	262	
octadecadienoic	acid	(C18:2),	eicosenoic	acid	(C20:1),	eicosadienoic	acid	(C20:2),	and	eicosatetraenoic	263	
acid	(C20:4)	(Table	S4).	The	ion	pair	significance	showed	that	the	phospholipid	distributions	showed	264	

stronger	correlations	in	𝑋9:;
(L%=9)	than	in	𝑋A>AB9:;

(L%=9) 	samples	(Fig	5B),	with	PG(36:4)	playing	a	central	265	
role	in	the	metastatic	network	specific	edges.	266	

Running	WGCNA	directly	on	the	𝑋A>AB9:;
(L%=9) 	MSI	data	showed	that	most	of	the	brown	module	ions	were	267	

assigned	 to	 a	 more	 complex	 module,	 labelled	 “turquoise”,	 together	 with	 different	 classes	 of	268	
phospholipids	 and	 FAs	 (Fig.	 S7A-C).	 Specifically,	 among	 the	 annotated	 ions,	 the	 most	 probable	269	
candidates	for	281.2486,	279.233,	277.2174,	309.28,	306.2521	m/z	were	identified	to	be	n-9	oleic	acid	270	
(C18:1),	 n-6	 linoleic	 acid	 (C18:2),	 n-3/6	 α/γ-linoleic	 acid	 (C18:3),	 n-9	 eicosenoic	 acid	 (C20:1),	 n-6	271	
dihomo-γ-linoleic	 acid	 (C20:3)	 and	 n-3	 docosahexaenoic	 acid	 (C22:6);	 those	 ions	 were	 found	 co-272	
localised	with	the	phospholipids	(Table	S5,	Fig.	S7D).	273	

	274	
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Discussion	275	
Understanding	the	mechanisms	behind	the	heterogeneity	of	cancerous	tissues	is	a	key	goal	for	the	276	
development	of	effective	cancer	treatment	strategies	(Murugaesu,	Chew	et	al.	2013).	In	this	study,	a	277	
network	based	analysis	of	the	co-localized	ions	allowed	the	identification	of	a	set	of	tissue	sub-types	278	
(ion	modules)	 that	 represent	 the	 tissue	heterogeneity	associated	with	each	 individual	 subject.	The	279	
WGCNA	approach,	combined	with	the	Dynamic	Tree	Cut	algorithm,	determined	the	optimal	number	280	
of	tissue	sub-types	with	no	user	intervention.	The	only	parameter	required,	the	minimum	number	of	281	
ions	 necessary	 to	 form	 a	module,	was	 set	 to	 5	 following	 the	 hypothesis	 that	 small	 clusters	 could	282	
capture	 finer	 details	 of	 the	 heterogeneous	 metabolic	 patterns.	 In	 order	 to	 detect	 the	 metabolic	283	
differences	between	the	group-of-interest	(patients	developing	metastasis)	and	the	remaining	part	of	284	
the	cohort,	the	modules	detected	were	tested	in	the	former	for	preservation	in	the	latter	group.	The	285	
permutation	 test	 applied	 on	 MSI	 data	 at	 a	 distance	 of	 10cm	 from	 the	 tumor	 core	 allowed	 the	286	
identification	of	one	module	associated	with	the	development	of	metastasis	in	both	the	cases.	287	

A	set	of	molecular	interactions	involving	PG	and	FAs	was	found	to	be	representative	of	the	increased	288	
risk	of	the	development	of	metastases	in	the	tumor	core.	Specifically,	the	combination	of	WGCNA	and	289	
the	differential	network	analysis	showed	that,	in	the	metastatic	tumor	core	set,	PGs	were	more	highly	290	
co-localized	 together	 with	 tetracosapentaenoic	 acid	 than	 in	 the	 non-metastatic	 related	 samples,	291	
suggesting	 a	 key	 role	 for	 these	 molecules	 in	 differentiating	 the	 local	 biochemical	 reactions.	 The	292	
presence	of	polyunsaturated	fatty	acids	(PUFAs)	in	the	“brown”	module	together	with	PGs	suggests	293	
that	 these	 regions	 elicit	 significantly	 higher	 phospholipase	 A2	 (PLA2)	 activity.	 This	 enables	 the	294	
formation	of	prostaglandins,	in	particular	prostaglandin	E2,	through	COX2	activity,	which	has	widely	295	
been	associated	with	tumor	invasion	and	metastasis	formation	in	a	broad	range	of	different	cancers.	296	
cPLA2	activity	itself	has	been	found	to	contribute	to	metastasis	formation	in	breast	cancer	via	TGF	β-297	
induced	epithelial-mesenchymal	transition	(EMT)	(Chen,	Fu	et	al.	2017).	298	

PGs	 are	 generally	 considered	 to	 be	 membrane	 constituents	 of	 bacterial	 cells,	 serving	 mainly	 as	299	
surfactants	in	mammalian	organisms.	In	this	regard,	the	PGs	detected	are	unlikely	to	be	building	blocks	300	
of	 cellular	 membranes	 in	 the	 tumor	 environment,	 but	 rather	 present	 in	 the	 interstitial	 space.		301	
Considering	 the	 apparent	 specificity	 of	 PLA2	 for	 anionic	 phospholipids	 likely	 excreted	 into	 the	302	
extracellular	space	and	the	rich	abundance	of	macrophages	in	association	with	the	green	module	(Fig.	303	
4A),	the	underlying	enzyme	is	probably	the	PLA2	produced	by	macrophages.	Macrophage	cPLA2	has	304	
already	 been	 associated	with	metastasis	 formation	 in	 case	 of	 lung	 cancer	 and	 it	 was	 successfully	305	
demonstrated	 that	 depletion	 of	macrophage	 cPLA2	 by	 gene	 knock	 out	 resulted	 in	 the	 significant	306	
decrease	of	metastatic	potential	 (Weiser-Evans,	Wang	et	al.	2009).	 In	 conclusion,	 the	macrophage	307	
infiltration	 clearly	 shown	 on	 Fig.	 4A	 is	 likely	 to	 confer	 sufficient	 PLA2	 activity	 to	 trigger	 EMT	 and	308	
downstream	 metastasis	 formation	 in	 the	 corresponding	 group.	 Although	 the	 involvement	 of	 gut	309	
microbiota	is	not	obvious	in	the	current	case,	bacterial	PGs,	as	the	main	constituents	of	prokaryotic	310	
cellular	membranes	can	potentially	contribute	to	the	expression	of	macrophageal	PLA2	through	TLR2	311	
pathway,	especially	in	the	proximity	of	necrotic	areas.	312	

From	analysis	of	the	weakly	preserved	module	between	the	metastatic	and	non-metastatic	related	313	
tissue	 samples	 at	 10cm	 from	 the	 tumor	 core,	 it	 was	 found	 that	 the	 PUFAs	 octadecadienoic	 acid,	314	
eicosenoic	acid,	eicosadienoic	acid	and	eicosatetraenoic	acid	were	correlated	mainly	with	PG,	PE	and	315	
plasmalogen	PE	together	with	PS	and	PI	in	sub-regions	of	epithelial	tissue.	In	this	case,	the	significantly	316	
stronger	 co-expression	 levels	 of	 the	 phospholipids	 determined	 by	 their	 high	 significance	 in	 the	317	
metastatic	related	tissues	can	be	interpreted	as	the	result	of	increased	activity	of	a	number	of	enzymes	318	
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including	phospholipase	D	(PLD).	Abnormalities	in	PLD	expression	can	be	responsible	for	altered	cell	319	
proliferation	mechanisms	(Foster	and	Xu	2003,	Park,	Lee	et	al.	2012).	Similarly	to	the	tumor	core,	a	320	
relatively	 high	 correlation	 of	 eicosatetraenoic	 acid	 with	 most	 of	 the	 detected	 phospholipids	 was	321	
observed	 in	 the	 weakly	 preserved	 module,	 suggesting	 evidence	 of	 PLA2	 activity	 that	 can	 be	322	
interpreted	 as	 a	 localized	 inflammatory	 condition,	 also	 confirmed	 by	 the	 visual	 inspection	 of	 the	323	
corresponding	 regions	 in	 the	H&E	 stained	 tissues	 (Fig	 4B).	 This,	 combined	with	 the	 abundance	 of	324	
plasmalogens	in	the	module,	implies	peroxisomal	involvement	in	metastasis	formation.	It	has	recently	325	
been	 demonstrated	 that	 peroxisomal	 functionality	 is	 key	 for	 macrophage	 activation	 (Di	 Cara,	326	
Sheshachalam	 et	 al.	 2017)	 which	 can	 explain	 the	 correlation	 between	 the	 peroxisomal	metabolic	327	
phenotype	 represented	 by	 the	 network	 structures	 (Fig	 5B)	 and	metastatic	 potential	 conferred	 by	328	
macrophage	PLA2	activity.		329	

Conclusions	330	
Tumors	 are	 characterized	 by	 a	wide	 range	 of	metabolic,	 genetic,	 and	 phenotypic	 properties.	 This	331	
heterogeneity,	expressed	at	the	genetic	and	epigenetic	level,	is	reflected	by	the	metabolites	produced	332	
within	 cells.	 In	 this	 study,	DESI-MSI	was	 shown	 to	be	effective	 for	untargeted	analysis	of	 the	 local	333	
metabolism	of	colorectal	cancer	tissue.	The	differences	in	the	correlations	between	the	distribution	334	
of	key	 ions	and	their	preservation	 in	 the	network	modules	 identified	 that	 the	 increased	activity	of	335	
PLA2,	exploiting	the	high	availability	of	PG	in	the	surfactant	layer	in	the	tumor	center,	was	associated	336	
with	a	risk	of	post-surgical	distant	metastasis	formation.	The	molecular	correlations	which	were	not	337	
preserved	 revealed	 that	 eicosanoid	 precursors	 in	 stromal	 tissue	 can	 play	 a	 significant	 role	 in	 the	338	
increased	cellular	proliferation	within	the	tumor	core.	At	10cm	from	the	tumor	center,	 the	altered	339	
peroxisomal	metabolic	phenotype	was	found	to	be	associated	with	the	different	metastatic	potential,	340	
likely	via	 a	macrophage	activation	mechanism.	Finally,	 the	network	approach	 identified	a	 complex	341	
picture	of	tumor	heterogeneity,	confirming	that	a	simple	‘presence/absence	of	ions’	approach	is	not	342	
able	to	determine	the	differences	between	the	metabolic	pathways.	343	

Due	to	the	limited	number	of	patients	considered,	these	results	should	be	considered	preliminary	and	344	
await	confirmation	in	a	larger	patient	cohort.	In	future	work,	the	study	will	be	expanded	to	a	larger	345	
number	of	patients,	allowing	a	more	detailed	analysis	of	the	metabolic	differences	associated	with	a	346	
range	of	clinical	characteristics.	Furthermore,	MSI	data	in	combination	with	local	genetic	expression	347	
identified	from	spatial	ME	maps	will	be	included	in	order	to	investigate	both	genetic	and	metabolic	348	
changes	to	achieve	deeper	insight	of	the	nature	of	tumor	heterogeneity	and	its	chemical/metabolic	349	
interactions	with	the	surrounding	tissue.	350	

Materials	and	Methods	351	
DESI	imaging	data	was	acquired	from	sections	of	individual	tumor	central	regions	and	from	section	of	352	
tissue	 at	 10cm	 from	 the	 tumor	 central	 regions	 of,	 respectively,	 32	 and	 29	 subjects	 affected	 by	353	
colorectal	cancer	(SI	Appendix,	Materials	and	Methods).	The	tissue	specimens	were	collected	after	the	354	
surgical	removal	of	the	tumor.	The	subjects	were	monitored	after	surgery	for	a	period	of	up	to	6	years,	355	
and	events	such	as	disease	occurrences	(metastases,	or	local	recurrence)	and	deaths	were	recorded.	356	
During	the	observational	period,	8	of	the	32	subjects	and	6	of	the	29	subjects	developed	metastatic	357	
recurrence.	The	tissue	sections	were	fresh-frozen	and	mass	spectrometry	 imaging	(MSI)	data	were	358	
acquired	 using	 an	 automated	 2D	 DESI	 source	 mounted	 to	 a	 Thermo	 Exactive	 Orbitrap	 mass	359	
spectrometer.	MS	data	were	acquired	in	the	negative	ion	mode,	in	the	range	of	200-1,050	m/z.	The	360	
RAW	spectra,	corresponding	to	tissue	regions	(pixels)	were	pre-processed	in	order	to	extract	a	set	of	361	
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variables	associated	with	the	informative	peaks	and	their	relative	abundances.	Centroided	data	were	362	
extracted	using	the	ProteoWizard	software	(Kessner,	Chambers	et	al.	2008)	and	pre-processed	using	363	
the	‘MALDIquant’	package	for	R	(Ihaka	and	Gentleman	1996,	Gibb	and	Strimmer	2012).	Before	pre-364	
processing,	a	re-calibration	procedure	was	applied	in	order	to	reduce	the	peak	shift	across	the	pixels	365	
of	 each	 tissue	 sample.	 The	 procedure	 is	 described	 in	 the	 ‘Results’	 section.	 The	 details	 of	 the	 pre-366	
processing	 workflow	 are	 reported	 in	 SI	 Appendix,	 Materials	 and	 Methods.	 The	 tumor	 core	 pre-367	
processed	data	corresponded	to	a	series	of	matrices	(pixels	x	ions)	containing	the	intensities	of	the	368	
185	m/z	values	common	to	all	the	sample	pixels.	For	the	samples	at	10cm	from	the	tumor,	141	m/z	369	
values	 were	 found	 common	 to	 all	 the	 samples.	 The	 consensus	 adjacency	 matrix	 elements	 were	370	
defined	 as	 the	 minimum	 of	 the	 ions	 pairwise	 Pearson’s	 correlations	 associated	 with	 each	 tissue	371	
section.	 In	a	similar	 fashion,	 the	TOM	was	calculated	using	the	signed	adjacency	raised	to	 the	soft	372	
power	 value.	Modules	were	 identified	 by	 applying	 the	 Dynamic	 Tree	 Cut	 hybrid	 algorithm	 to	 the	373	
hierarchical	dendrogram	with	an	average	linkage	obtained	using	1-TOM	as	distance	matrix.	Module	374	
preservation	 was	 performed	 using	 the	 WGCNA	 ‘modulePreservation’	 command	 with	 5000	375	
permutations,	using	the	consensus	adjacency	matrix	as	 input.	The	module	 identification	procedure	376	
was	applied	directly	on	the	consensus	matrices	of	the	non-metastatic	related	MSI	data	for	both	the	377	
tumor	core	and	10cm	datasets.	378	

Datasets	 and	 scripts	 are	 publicly	 available	 at	 https://doi.org/10.4121/uuid:f06dee0d-1d2e-4d67-379	
b978-5bac4087d346.	380	
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Tables	529	
Tumor	center	samples	

Age	(years):	
median,	range	 72,	[52,	88]	
	 	
Genre:	
Female	 12	(met	=	2,	(25%))	
Male	 20	(met	=	6,	(75%))	
	 	
Lymph	nodes	(number):		 	
median,	range	 1,	[0,	6]	

met:	2,	[0,	6]	
	 	
Metastasis:	 	
Bones	 1	
Liver	 6	
Lung	 3	
Omental/Peritoneal	 4	
	 	

10cm	samples	
Age	(years):	
median,	range	 72,	[55,	87]	
	 	
Genre:	
Female	 11	(met	=	1,	(17%))	
Male	 18	(met	=	5,	(83%))	
	 	
Lymph	nodes	(number):		 	
median,	range	 0,	[0,	5]	

met:	2,	[0,	5]	
	 	
Metastasis:	 	
Bones	 1	
Liver	 3	
Lung	 1	
Omental/Peritoneal	 4	

	530	

Table	1	–	Patient	clinical	metadata	associated	with	the	two	datasets.	531	
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Figures	538	

	539	

Fig.	 1	 –	 Effect	 of	 the	 search	window	width	 (𝛥𝑝𝑝𝑚)	 on	 the	 peaks	 detected	 in	 the	 raw	data.	 In	 the	540	
example	shown	in	the	figure,	a	𝛥𝑝𝑝𝑚	equal	to	1	or	2	is	too	small	compared	to	the	maximum	peak	shift	541	
found	in	the	sample,	producing	scattered	images	for	both	the	palmitic	acid	and	PI(38:4)	(𝛥𝑝𝑝𝑚 = 1,	542	
A-B;	𝛥𝑝𝑝𝑚 = 2,	C-D).	In	contrast,	using	the	value	𝛥𝑝𝑝𝑚 = 3,	a	peak	corresponding	to	255.2330	m/z	543	
for	the	full	layer	(0%	empty	pixels,	E)	can	be	detected	and	produced	an	image	similar	to	the	stained	544	
tissue	sample	(24.48%	empty	pixels,	F).	The	robust	LOWESS	model	fitted	to	the	peak	shift	measured	545	
with	𝛥𝑝𝑝𝑚 = 3	captures	the	m/z	shift	across	all	the	pixels	(G),	whereas	it	fails	to	estimate	the	m/z	546	
shift	for	the	peaks	corresponding	to	855.5499	m/z	because	of	the	large	number	of	missing	pixels	and	547	
also	because	of	the	gaps	related	to	the	localized	presence	of	tissue	in	the	image	(H).	548	
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Fig.	 2	 –	 Graphical	 representation	 of	 the	 co-expression	 networks.	 Panel	 A:	 TOM	 heatmap	 with	550	
hierarchical	clustering	results	for	the	metastatic	(top	left)	and	non-metastatic	(top	right)	tumor	center	551	
data;	multidimensional	scaling	(MDS)	scatter	plot	showing	the	node	distribution	associated	with	the	552	
module	color	attributes	for	the	metastatic	(center	left)	and	non-metastatic	(center	right)	tumor	center	553	
data.	The	high	Pearson’s	correlation	value	between	the	network	connectivity	k	of	the	metastatic	and	554	
non-metastatic	tumor	center	data	confirms	that	the	two	networks	are	characterized	by	similar	global	555	
topological	properties.	Panel	B:	Analogous	results	for	the	data	associated	with	the	tissue	sections	at	a	556	
distance	of	10cm	from	the	tumor.	Figures	at	left	represent	the	results	from	the	metastatic	samples,	557	
and	figures	at	right	represent	the	results	from	non-metastatic	samples.	558	
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	559	

Fig	3	–	Spatial	visualization	of	the	tissue	related	module	eigenmetabolites	(ME).	Panel	A:	results	for	the	560	
tumor	core	samples.	The	four	tissue	related	modules	are	localized	in	different	regions	of	the	cancerous	561	
tissue,	 the	 “blue”	 module	 is	 mainly	 expressed	 in	 the	 connective	 tissue	 surrounding	 the	 tumor	562	
(delineated	by	a	black	 line	 in	the	H&E	image	 in	the	first	column),	whereas	the	other	three	modules	563	
mostly	 involve	the	tumor.	The	tumor	molecular	heterogeneity	 is	captured	by	the	modules	“brown”,	564	
“green”	and	“turquoise”	as	shown	by	the	combination	of	their	ME	in	the	last	column.	Here	the	three	565	
ME	expressions	are	scaled	in	[0,	1]	and	visualized	as	the	intensities	of	RGB	channels.	Two	examples	are	566	
reported	for	both	the	metastatic	and	non-metastatic	samples.	Panel	B:	Analogous	results	for	the	tissue	567	
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section	at	10cm	from	the	tumor	center.	Here	the	three	tissue	related	modules	are	mainly	expressed	in	568	
the	epithelial	tissue,	as	shown	by	the	H&E	in	the	first	column.	The	analogous	combination	of	the	ME	569	
into	a	RGB	image	shows	the	molecular	heterogeneity	captured	by	WGCNA.	570	

	571	

Fig.	4	–	Examples	of	the	observed	tissue	associated	with	the	identified	modules.	In	the	metastatic	tumor	572	
center	 (A),	 the	weakly	 preserved	 “green”	module	 ions	 are	 localized	 in	 the	 stroma	 surrounding	 the	573	
tumor.	Noticeably	macrophages	 infiltrating	the	area	are	visible	together	with	free	fat	droplets.	The	574	
latter	have	been	previously	associated	with	an	inflammatory	response	to	the	infiltration	of	the	tumor	575	
cells	(Bozza	and	Viola	2010).	 In	the	non-metastatic	tumor	core,	the	module	 ions	are	still	associated	576	
with	an	inflammatory	condition	that	seems	to	be	driven	by	a	necrosis	process,	as	shown	in	the	zoomed	577	
H&E	stained	image	corresponding	region	of	the	module	eigenmetabolites	image	pointed	by	the	arrow	578	
(small	box)	(B).	This	observations	suggest	that	different	mechanisms	are	driving	the	local	inflammatory	579	
response.	Analogously,	at	a	distance	of	10cm	from	the	tumor,	the	weakly	preserved	“brown”	module	580	
is	localized	in	sub	regions	of	the	metastatic	related	epithelium	involving	groups	of	lymphatic	cells	as	581	
shown	by	the	highly	dense	cellular	populations	in	the	zoomed	H&E	stained	image	corresponding	to	the	582	
region	pointed	by	the	arrow	in	the	module	eigenmetabolites	image	(small	box)	(C).	A	similar	result	can	583	
be	observed	 in	 the	non-metastatic	 related	 tissue	 (D),	as	 represented	by	 the	 zoomed	 region	of	H&E	584	
corresponding	to	the	higher	intense	module	eigenmetabolites	region.	Here,	clusters	of	lymphatic	cells	585	
are	involved	in	the	selected	regions	of	the	non-metastatic	tissue	as	well.	586	
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	587	

Fig.	5	–	Graphical	representation	of	the	metastatic	related	modules	that	are	weakly	preserved	in	the	588	
non-metastatic	networks.	The	“green”	module	associated	with	the	 tumor	core	tissue	 (panel	A,	 left)	589	
consists	of	PG	and	PUFA.	The	edges	connecting	the	PUFA	and	the	PG	are	colored	in	blue,	whereas	those	590	
connecting	PUFA	to	PUFA	are	colored	in	red.	A	metastatic	edge	specificity	larger	than	0.8	reveals	that	591	
PG	and	C24:5	edges	are	present	in	the	metastatic	network	but	absent	in	the	non-metastatic	network	592	
(A,	 right).	Moreover,	 the	higher	number	of	edges	 involving	C24:5	and	the	 ion	791.5441	m/z	makes	593	
them	 the	 most	 representative	 ions	 of	 the	 metastatic-related	 module.	 Analogously,	 the	 weakly	594	
preserved	“brown”	module	of	the	network	associated	with	the	metastatic	10cm	tissue	sections	reveals	595	
a	more	complex	co-localization	pattern	 involving	different	 families	of	phospholipids	and	 fatty	acids	596	
(panel	B,	 left).	 In	particular,	 the	metastatic-specific	module	edges	 ions,	 in	 this	 case,	 involve	mainly	597	
phospholipids,	with	a	central	role	played	by	PG(36:4)	(panel	B,	right).	598	
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