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Abstract 

Roux-en-Y gastric bypass (RYGB) is an effective way to lose weight and reverse type 2 

diabetes. We profiled the metabolome of 18 obese patients (nine euglycemic and nine diabetics) 

that underwent RYGB surgery and seven lean subjects. Plasma samples from the obese patients 

were collected before the surgery and one week and three months after the surgery. We analyzed 

the metabolome in association to five hormones (Adiponectin, Insulin, Ghrelin, Leptin, and 

Resistin), four peptide hormones (GIP, Glucagon, GLP1, and PYY), and two cytokines (IL-6 and 

TNF). PCA showed samples cluster by surgery time and many microbially driven metabolites 

(indoles in particular) correlated with the three months after the surgery. Network analysis of 

metabolites revealed a connection between carbohydrate (mannosamine and glucosamine) and 

glyoxylate and confirms glyoxylate association to diabetes. Only leptin and IL-6 had a 

significant association with the measured metabolites. Leptin decreased immediately after 

RYGB (before significant weight loss), whereas IL-6 showed no consistent response to RYGB. 

Moreover, leptin associated with tryptophan in support of the possible role of leptin in the 

regulation of serotonin synthesis pathways in the gut. These results suggest a potential link 

between gastric leptin and microbial-derived metabolites in the context of obesity and diabetes. 

 

Introduction 

Obesity and type 2 diabetes (T2D) are among the top preventable causes of death worldwide 

(obesity kills ~3 million yearly) [1]. The number of obese and diabetic patients doubled in less 

than three decades [2,3]. The rapid rise of obesity and T2D reflects a complex interaction 

between the fast-changing environment (e.g., lifestyle) and the slow adapting biology (genetics). 

This complexity has led to diverse preventive and treatment approaches to address both the 

environmental (diet and exercise) and biological (medications and surgeries) aspects of the 

diseases; however, the effects of the current approaches are limited.  

Roux-en-Y gastric bypass (RYGB) is a surgical procedure that creates a small pouch from the 

stomach while bypassing the main portion of the stomach and most of the duodenum. The small 

pouch is connected to the jejunum forming a “Y” with the bypassed stomach and duodenum 
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components of the digestive tract. RYGB achieves remarkable results in addressing obesity and 

T2D - it persistently decreases weight and hyperglycemia in most patients [4,5]. Moreover, 

targeted metabolomic analyses showed that RYGB reduces circulating metabolites implicated in 

obesity and insulin resistance such as branch chain amino [6,7] and ceramides [8,9]. Untargeted 

metabolomic analyses confirm and unveiled alterations of essential metabolites by RYGB 

[10,11]. 

We conducted an untargeted metabolomics analysis of plasma from obese and obese diabetic 

patients in comparison with plasma from healthy lean women. Also, we studied the metabolic 

alterations by RYGB in association to distinct clinical features plus nine protein and peptide 

hormones and two cytokines. 

 

Results 

RYGB alters the metabolome profiles of obese patients independently of disease state 

We studied a cohort of 27 Caucasian women [12]: 18 obese (nine diabetics and nine non-

diabetics; BMI>35 kg/m2) and nine lean subjects (BMI<25 kg/m2). We dismissed two lean 

subjects because of incomplete data. Hereafter, we use “obese” to refer to both obese diabetic and 

obese non-diabetic patients. Obese patients underwent RYGB surgery causing weight loss and 

improvement of pre-diabetic/diabetic symptoms— rapid normalization of circulating insulin 

(within one week) and glucose (three months) [12](Supplementary Fig. S1).  

To understand the effects of RYGB on metabolic activities, we profiled the metabolome of the 

obese subjects one week before the surgery and one week and three months after the surgery; and 

of the lean subjects as a control. We measured 223 (including unknowns) and focused on 148 

known metabolites (10 carbohydrates, 32 amino acids, and 80 complex lipids). 

Principal component analysis (PCA) revealed a separation between obese and lean subjects (Fig. 

1a). Moreover, samples from obese subjects cluster by surgical stage (pre-surgery, one week and 

three months after surgery) rather than disease state (diabetic vs. non-diabetic). Indeed, this 

clustering is more prominent when we excluded samples of lean subjects (Fig. 1b). Finally, we 
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validated these observations using partial least square discriminate analysis (PLS-DA) 

(Supplementary Fig. S2).  

In sum, PCA indicates that the metabolome of obese patients was different from that of lean 

subjects. RYGB affected the metabolome of obese diabetic and obese non-diabetic similarly. 

Moreover, each surgical stage correlates with specific metabolites. 

Network analysis unveil a connection between glyoxylate and hexosamines  

To understand the association between the measured metabolites, we constructed an information-

theory-based metabolite network (Figure 2). The network is structured into modules of strongly 

interconnected lipids, amino acids, and carbohydrates. Interestingly, one module connects 

hexosamines (mannosamine and glucosamine) to members of the glyoxylate cycle (glyoxylate, 

oxalate, and succinate and fumarate). We inspected the response of these metabolites to RYGB. 

As expected, mannosamine and glucosamine dropped in response to RYGB in diabetic patients 

(P=0.02). Oxalate, succinate, and fumarate did not respond to RYGB and did not exhibit any 

significant difference between diabetic and none-diabetic obese patients (P=0.27, 0.32, 0.93, 

respectively). Glyoxylate showed a trending decrease in response to RYGB (though not 

statistically significant); however, glyoxylate was higher in diabetic compared to none-diabetic 

obese patients (P=0.008). 

Metabolites correlate with Leptin and IL-6 

In addition to the metabolic profiling and network analysis, we evaluated the metabolic 

alterations associated with the following parameters: fasting plasma glucose (FPG); C-peptide; 

free fatty acid (FFA); five hormones (Adiponectin, Insulin, Ghrelin, Leptin, and Resistin); four 

peptide hormones (GIP, Glucagon, GLP1, and PYY); and two cytokines (IL-6 and TNF). For 

simplicity, we will refer to these measurements as “clinical features.” 

To investigate the associations between the metabolites and the clinical features, we conducted 

orthogonal partial least square (OPLS) analysis. 5 out of 14 clinical features (FPG, BMI, weight, 

leptin, and IL-6) associated with at least one metabolite and 70 metabolites associated with at 

least one clinical feature (VIP>=1.5, Q2(cum)>=0.4 and R2Y>=0.5; Fig. 3). We validated the 

robustness of the OPLS models by the row permutation test [13] (Supplementary Fig. S3). Also, 
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we checked whether it could capture expected associations. Indeed, FPG linked with 

carbohydrates (mannosamine, glucosamine, and glucose) and 1,5 anhydrosorbitol (1,5AG); the 

latter is consistent with depletion of 1,5AG at hyperglycemia [14]. Furthermore, we confirmed 

associations of FPG, weight, and BMI to plasma amino acids [15–17]; and BMI and body weight 

to complex fatty acids and lipids [18].  

Figure 3 shows that leptin lacks association with carbohydrates, but has a strong association with 

amino acids (e.g., leucine and tryptophan), complex fatty acids (e.g., gamma-linolenic and 

eicosapentaenoic acids) and lipids. Also, IL-6 is independent of carbohydrates and amino acids 

but correlates with various complex fatty acids and lipids (e.g., ceramide and palmitic acid).  

Leptin and IL-6 response to RYGB 

Leptin is a hormone secreted by adipose tissues and by gastric mucosa[19]. It regulates food 

intake [20] and enhances energy expenditure [21]. Leptin is a hormone linked to fat stores and 

diseases such as anorexia nervosa, obesity, and Alzheimer's [22,23]. Before the surgery, we 

found fasting plasma leptin higher in obese patients compared to obese diabetic patients 

(P=0.004) and compared to lean (P=3.35e-5) subjects. Also, leptin in obese diabetic patients was 

comparable to that of leans subjects (P=0.12). Leptin declined immediately (1 week) after RYGB 

surgery (nondiabetic, P=6.32e-6; diabetic, P=0.005) and fell below the level in lean subjects after 

three months (nondiabetic, P=0.06; diabetic, P=0.003). 

IL-6 is a cytokine secreted by immune, fat and muscle cells. IL-6 responds to various stresses 

[24]and acts as both pro and anti-inflammatory agent [25]. Circulating IL-6 correlates with 

insulin resistance [26]. As expected [27], IL-6 is elevated in obese compared to lean subjects and 

the trend remains higher after three months (nondiabetic, Ppre=0.04, P3months=0.09; diabetic, 

Ppre=0.02, P3months=0.02). IL-6 does not change in respond to RYGB (non-diabetic, 

P1week/pre=0.77, P3months/pre=0.59; diabetic, P1week/pre=0.51, P3months/pre=0.89). 

 

Discussion 
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We profiled the metabolome of obese diabetic and obese non-diabetic patients before RYGB, 

and one week and three months after RYGB, and of lean subjects. The metabolome profile of 

obese is distinct from that of lean patients. RYGB affected the metabolome of both obese groups 

similarly, confirming previous report [11]. Each surgical stage correlated with specific 

metabolites. For instance, 3-hydroxybutyrate correlates with the one-week post-surgery, possibly 

because of the beta-oxidation of fats due to the change in diet; i.e., from Optifast 800 (Novartis 

Nutrition Group, Vevey, Switzerland) to Bariatric Advantage Meal Replacement (Bariatric 

Advantage, Irvine, CA) after surgery [12]. The 2-hydroxybutyrate may reflect production of 

glutathione due to the oxidative stress arising from the surgical procedure. The erythro-

dihydrosphingosine or sphinganine is consistent with its role in regulating CD-95 mediated 

apoptosis of T-cells [28], possibly, contributing to post surgery recovery. Metabolites of 

microbial origin (indole-3-propionic acid, 3-indolesulfuric acid, hippuric acid and 

glycochenodeoxycholate acid) [29–31] correlated with the three months post-surgery; which 

suggests a change in the gut microbial population. Indeed, metagenomics sequencing before and 

after three months RYGB surgery showed a reduction of Firmicutes and Bacteroidetes and an 

increase of Proteobacteria and Verrucomicrobia [32]. Moreover, in in-vitro models, increasing 

indole-3-propionic acid reduced inflammation and intestinal permeability and altered the 

glucose/fructose transporter GLUT5 mRNA transcription [33]. 

Our network analysis showed an association between carbohydrates (mannosamine and 

glucosamine) and glyoxylate. Mannosamine and glucosamine are substrates for O-linked protein 

glycosylation and precursors for sialic acids which are important in N-linked protein 

glycosylation. O-linked glycosylation and the hexosamine biosynthetic pathway have been 

implicated in causing insulin resistance [34]. The hexosamines were elevated in diabetic patients 

and decreased in response to RYGB. We speculate that the alteration of gut microbes may, in 

part, contribute to the decrease in circulating hexosamines through altered breakdown of mucin 

within the intestine. The glyoxylate was elevated in diabetic patients which supports the 

suggested glyoxylate link to [35,36]. Glyoxylate is produced through the glyoxylate cycle which 

is an anabolic pathway that converts acetyl-CoA to glyoxylate and succinate in plants, bacteria, 

and invertebrates [37]. The succinate is used to produce cellular carbohydrates, and the 

glyoxylate is converted to malate to complete the abbreviated metabolic cycle. Change in 
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glyoxylate levels could reflect alterations of the microbiome; indeed, Proteobacteria is higher in 

the microbiome of diabetic patients compared to non-diabetic patients [38]. Although 

Proteobacteria increased after RYGB, this increase is reported for non-diabetic patients; and the 

effects of RYGB on microbiome of diabetic patients is required. The gut microbial origin of 

glyoxylate is consistent with nutrients-depleted environment expected in the lower gut. The 

microbial glyoxylate shunt is expected to be active in such environment, and the fuel for the 

shunt could be acetate produced by commensal gut microbes. In a long-term study of the effects 

of bariatric surgery, gut microbiota composition for Escherichia, Klebsiella, and Salmonella, 

among other species, increased in women who had RYGB versus obese women [39]. This same 

study showed that glyoxylate and dicarboxylate metabolism was enriched in vertical banded 

gastroplasty patients versus obese women but not for RYGB patients. The ability of any of these 

bacteria to degrade intestinal mucin was not discussed. Alternatively, glyoxylate could arise from 

glycine and hydroxyproline catabolism in the liver [40], although, our network analysis did not 

show a correlation of glyoxylate with glycine or hydroxyproline while a correlation with oxalate 

was observed. The network analysis allows for possible biochemical interpretation, but as 

previously mentioned glyoxylate, succinate and oxalate measured in the plasma did not respond 

to RYGB; although glyoxylate was higher in diabetic compared to non-diabetic patients. 

Leptin declined immediately after RYGB and fell below the level in lean subjects after three 

months. Indeed, other studies reported similar decline one [41], two [42] and three [43] weeks 

after the RYGB. The decrease in stomach secreted leptin due to RYGB alteration of the 

stomach’s physiology is speculated to cause this immediate response [42]. Gastric epithelial cells 

adapted to high-fat diet by increasing gastric leptin secretion in fasting mice [44]. Therefore, it is 

possible that adaptation to a new diet after RYGB may cause a decrease in gastric leptin. Also, 

gastric leptin (both protein [45] and mRNA) is higher in obese compared to lean subjects, and 

changes in gastric leptin precede changes in plasma leptin [44]. Circulating leptin, in part, 

originates from gastric leptin, most notably after food intake [19]. In sum, leptin drops in 

response to RYGB before any significant weight loss. This response could be due to decreases of 

gastric leptin secretion caused by the changes in the physiology of the stomach [42] or the 

changes in diet or both. 
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OPLS analysis shows that leptin correlated with several amino acids, including branched-chain 

amino acids. This is consistent with the observation that leucine-supplemented diet given to 

ob/ob mice for two weeks increased plasma leptin [46]. In rats, leucine-deficient diet reduced 

leptin response to meals (diet deficient in other amino acids did not alter leptin response to 

meals) [47]. Leucine enhances leptin sensitivity in rats on a high-fat diet [48] and regulates leptin 

translation (rather than transcription) in adipose tissues in rats. Moreover, plasma total cysteine 

positively correlates with leptin in a Hispanic cohort (the correlation is partially independent of 

fat mass) [49] and alanine stimulated leptin expression in rats [50]. 

The leptin association to tryptophan was unexpected. For example, tryptophan composition in 

diet yielded inconsistent leptin responses in pigs [51]. Recently, gastric leptin was proposed to 

regulate serotonin synthesis pathways through a mechanism involving increased expression of 

tryptophan hydroxylase-1 (TPH1; a rate limiting enzyme that converts tryptophan to serotonin) 

in the gut of obese subjects (similar to gastric leptin). Also, oral administration of leptin 

increased expression TPH1 in the intestine of leptin-deficient mice [44]. One hypothesis is that 

the association between circulating leptin and tryptophan may be partially explained by gastric 

leptin regulation of the tryptophan-serotonin pathways in the gut.   

 Another possible explanation of the leptin-tryptophan association could be through the aryl 

hydrocarbon receptor (AHR). AHR has been implicated in mice to play a significant role in 

obesity [52]. Tryptophan-derived indole metabolites (kynurenine, tryptamine, indole-3-acetic 

acid, indole-3-aldehyde and indole-3-acetaldehyde) have been shown to modulate AHR [53]. 

Several tryptophan-derived indole metabolites were observed in this study. We observed 

kynurenic acid decreased after RYGB which is in agreement with suggested kynurenine acid 

association with higher BMI [54]. Furthermore, Figure 3 showed associations between leptin, 

weight, and BMI and 3-indoxylsulfate and indole-3-propionic acid. Interestingly, removal of gut 

microbes by antibiotic treatment increases tryptophan and reduces tryptophan-related metabolites 

(i.e., serotonin and indole derivatives) in circulation and decreases weight gain. Xu et al. reported 

that, under a high-fat diet, AHR-deficient mice produced less leptin than wild-type mice. They 

suggested that the difference is due to the reduced amounts of epididymal white adipose tissue; 

however, the effects on the gut microbiome were not investigated [55]. Moreover, mice exposed 

to 2, 3, 7, 8-tetrachlorodibenzofuran, an AHR ligand, stimulated lipogenesis [56]. We report a 
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decrease in the AHR ligand, kynurenic acid, after RYGB surgery. Shin et al. in exploring the role 

of NRF2 (NF-E2 p45-related factor 2) pathway reported that it activated the AHR signaling 

cascade resulting in an inhibition of adipogenesis [57]. This negative regulation by AHR of 

adipogenesis, the authors reported was consistent with previous literature for one of the roles of 

AHR.  Summarizing the present work, these data support the suggested correlation between 

leptin, body weight and the microbiome [58–61], however, whether leptin directly affects the 

microbiome and indole-mediated AHR signaling needs further investigation. 

In this study, IL-6 did not respond to RYGB. Previous studies were contradictory regarding IL-6 

response to RYGB. After RYGB: IL-6 increased within the first week and remained high at three 

months and decreased after one year [41]; IL-6 decreased after six months [27] and one year 

[62]; and IL-6 did not change within three weeks [63], one month [62], three months, six months 

[63] and one years [64]. These inconsistent results may reflect complex inflammatory patterns 

among obese and diabetic patients in response to uncontrolled environmental influences. Our 

observation that IL-6 correlates with various lipids (e.g., ceramide and palmitic acid), but not 

carbohydrates or amino acids, is consistent with the lipid signaling and IL6-mediated stress 

responses crosstalk in metabolic diseases [57] . 

 

Conclusion 

We have presented our analysis of untargeted metabolomics of plasma from obese and obese 

diabetic female patients in comparison with plasma from healthy lean women and associated the 

metabolic alterations by RYGB to distinct clinical features. What stands out in our results is the 

strong connection with the microbial metabolites at three months post-surgery and the 

connection between leptin and tryptophan and indole-related metabolites. The microbiome 

connection is consistent with metagenomics analyses of RYGB patients before and after surgery, 

and the leptin connection opens a new avenue of consideration. 

 

Methods 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230201doi: bioRxiv preprint 

https://doi.org/10.1101/230201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

Cohort, RYGB surgery procedure, and clinical data measurements 

The cohort and the procedure of RYGB surgery are described in [12]. All clinical features were 

measured as part of that study, but we are reporting them for the first time.  

Metabolomic profiling  

The metabolome was profiled by Metanomics Health (Berlin, Germany) using their broad 4 

phases profiling approach of gas chromatography-mass spectrometry (GC-MS) and liquid 

chromatography-mass spectrometry (LC-MS/MS) [65,66]. 

Statistical analysis 

R 3.2.4 was used for statistical analysis. “ropls” package [67] was used for PLS-DA and OPLS 

analysis. Values outside the 1.5 interquartile range were discarded as outliers. Figures were 

generated using ggplot2, and pheatmap of R. Two-sided t-test was used for all comparisons. 

Network analysis 

Scores based on information variation over minimum spanning tree was computed between 

metabolites. Insignificant links were removed after calculating expected scores based on 1000 

stochastic simulations. The network was visualized using ggnet2. 
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Figure legends 

Figure 1: Principal component analysis and partial least square discriminant analysis of 

metabolomics profiles (148 metabolites and 25 patients). Projection of metabolic data a) PCA 

using all subjects, it shows patients correlate with surgical condition b) same as (a) but excluding 

lean; eclipses represent 95% confidence interval. For visualization, only scattered metabolites are 

labeled.  

Figure 2: Metabolic network. Association network between metabolites. Red edges indicate 

positive correlation (Spearman>0.2); blue indicates negative correlation (Spearman<-0.2); and 

gray are indicative of possible association but no significant correlation. Node size correlates 

with node degree. 

Figure 3: Metabolites associations to clinical features. The heatmap shows “clinical features” 

(columns) association to metabolite (rows). The heatmap shows metabolites/clinical feature that 

has at least one association (VIP>1.5). Metabolites are ordered based on hierarchical clustering. 

For clarity, only part of metabolite name and unique IDs are shown. The full description of a 

metabolite can be queried by the ID in Supplemental Table S1. 

Supplemental Figure S1: Decrease in weight, fasting insulin and fasting glucose after 

RYGB. a) Barplot shows the number of subjects participated in the study. b) Boxplot shows the 

age distribution of the participants; diabetic participants are significantly older than the others c) 

Boxplot shows a significant weight loss of patients after RYGB. d) Same as (c) but for BMI. e) 

Barplot shows a significant drop of fasting insulin levels within the first week. f) shows a 

significant decline in fasting glucose levels within the first week of RYGB. We defined outlier 

points by the values outside the 1.5 interquartile range. We omitted outliers from the analysis. 

This figure is a representation of previously published data [12]. 

Supplemental Figure S2: Partial least square discriminant analysis of metabolomics 

profiles (148 metabolites and 25 patients). Projection of metabolic data a) PLSDA using all 

subjects, it shows a correlation between samples of the same surgical condition b) same as (a) 

but excluding lean subjects; eclipses represent 95% confidence interval. 
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Supplemental Figure S3: Permutation tests for orthogonal partial least square analysis. 

Boxplots show the distribution of Q2 and R2 for 1000 models. Each model generated after the 

rows of the metabolic data were randomly permuted. 

Table legends 

Table S1: Metabolome data. The list of measured metabolites. 
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