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We determine the conformational ensemble of four RNA tetranucleotides by using available nuclear magnetic spectroscopy data in conjunc-
tion with extensive atomistic molecular dynamics simulations. This combination is achieved by applying a reweighting scheme based on the
maximum entropy principle. We provide a quantitative estimate for the population of different conformational states by considering different
NMR parameters, including distances derived from nuclear Overhauser effect intensities and scalar coupling constants. We show the useful-
ness of the method as a general tool for studying the conformational dynamics of flexible biomolecules as well as for detecting inaccuracies
in molecular dynamics force fields.
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1. Introduction

any biomolecules are highly dynamic systems that undergo significant conformational rearrange-
M ments during their function. Experimental techniques such as nuclear magnetic resonance (NMR)
spectroscopy, fluorescence spectroscopy and small-angle X-ray scattering (SAXS) are well-suited to probe
the dynamics of molecules in solution. However, obtaining a full description of structure and dynamics
of biomolecules using experiments alone can be highly non-trivial, because the measured quantities are
generally time and ensemble averages over conformationally heterogeneous states. In this perspective,
maximum entropy (1-3) (MaxEnt) and Bayesian (4) approaches have emerged as powerful theoretical tools
for integrating simulations with experiments. Such approaches typically generate a structural ensemble for
the system of interest using Molecular Dynamics (MD) or Monte Carlo simulations. This ensemble, however,
may not necessarily agree with available experimental data, due to limited sampling or to inaccuracies in
the employed model describing the physics and chemistry of the system (i.e. the force field). The underlying
idea behind MaxEnt is to minimally perturb a simulation ensemble so as to match the experimental
data. Random as well as systematic errors can be taken explicitly into account. The modification to the
ensemble can be either performed on-the-fly, or even a posteriori by reweighting existing simulations. These
approaches have been successfully employed to study protein systems (5), while applications to nucleic
acids have been so far limited (6, 7).

In this paper we consider the conformational ensembles of four RNA tetranucleotides by integrating
available NMR data (8-10) with extensive atomistic MD simulations. Despite their apparent simplicity,
tetranucleotides are particularly challenging systems both from the experimental and computational point of
view. First, they display significant dynamics: therefore one single structure cannot be representative of the
entire ensemble. The conformational heterogeneity makes it non-trivial to provide a structural interpretation
of average measurements using standard three-dimensional structure determination tools. Second, current
state-of-the-art molecular dynamics force fields fail in predicting the properties of these tetranucleotides (11).
Several studies (10, 12) have shown MD simulations to over-stabilize so-called intercalated conformations
(see Fig.1), that in some cases correspond to the predicted free-energy minimum. From the experimental
point of view the presence and the population of intercalated conformations is expected to be low, but
cannot be accurately quantified.

Here we show that, even with the aforementioned complications, it is possible to obtain an accurate
thermodynamic description for a system of interest by combining experiments and simulations. We report
extensive atomistic MD simulations in explicit water for r(AAAA), r(CCCC), r(GACC) and r(UUUU)
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Fig. 1. a) three dimensional structures of r(CCCC) discussed in the main text. b) eRMSD from A-form histogram for xorzand xorz-VdW-OPC simulations. Solid lines indicate
the average calculated using a blocking procedure, while the area between minimum and maximum is shown in shade. The histogram displays three peaks corresponding to
different conformations: A-form-like (eRMSD <0.75), C4-inverted (0.75 <eRMSD < 1) and intercalated/C2 unstacked (éRMSD> 1.0). Thresholds are shown as dashed lines.
c) Agreement between simulations and experiments quantified using the x2 statistic for backbone scalar couplings (3J bb), sugar scalar couplings, NOE and unobserved
NOE (uNOE). Error bars in black show the standard error of the mean.

tetranucleotides. Except for the sequence, no other prior structural knowledge of the systems is used in
simulations. We show substantial disagreement between predicted and experimental NMR data, even when
using recent force-field parameters. We therefore employ the MaxEnt/Bayesian approach to refine the
simulated ensembles so as to match a set of available NMR, experimental data, including NOE intensities
and scalar couplings. Analysis of the optimal ensembles shows that r(CCCC) and r(GACC) are mostly —
but not exclusively — in A-form-like conformations. r(AAAA) and r(UUUU) display a higher complexity, as
the optimal ensembles consist of a mixture of A-form with other conformationally heterogeneous structures.

2. Results

A. Agreement between experiments and simulations. We first consider the tetranucleotide with sequence
CCCC. NOE measurements for r(CCCC) were found to be consistent with a conformational ensemble
mostly composed of A-form like structures, with a minor population (13%) of conformations with cytosine
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at position 4 (C4) inverted (9) (see Fig. la). Extensive MD simulations with the standard AMBER
force field (yxor3 described in the Methods section) showed the presence of highly populated intercalated
structures in which C1 is interposed between C3 and C4 (10, 12), while C2 is either stacked on C3 or
solvent exposed. The lack of A-form-like structures is confirmed in our yorz simulations, as shown in
the eRMSD histogram from ideal A-form in Fig. 1b, yellow line. To measure distances between three
dimensional structures we here use the eRMSD, an RNA specific metric distance based on the relative
orientation and position of nucleobases (13). It has recently been reported (14) that corrections to oxygen
van der Waals radii (15) in conjunction with the OPC water model (16) (here called xor3-VdW-OPC)
significantly disfavor the presence of intercalated structures in r(GACC) and r(CCCC) tetranucleotides,
thereby stabilizing A-form-like conformations. When using the xor3-VAdW-OPC force field (Fig. 1b, blue
line), we observe a small, yet significant population of A-form like structures (eRMSD<0.75) as well as
C4-inverted conformations (0.75-1.0 eRMSD from A-form).

The higher accuracy of xor3-VAW-OPC with respect to xors is further confirmed by the improved
agreement between calculated and experimental data. Fig. 1lc reports the x? for backbone 3J scalar
couplings (H3-P, H5'/H5”-P, H4-H5'/H5"), sugar 3J couplings (H1-H2’, H2-H3’, H3’-H4’) and NOE
intensities (9, 10). Additionally, we consider the absence of specific peaks in the NOESY spectra as a source
of information. On the basis of assigned chemical shifts, NMR spectra were inspected for the presence of
NOE cross-peaks between every pair of non-exchangeable protons in the tetramers. To assign unobserved
NOEs (uNOE), the maximum NMR observable distance was estimated for each potential NOE from the
minimum detectable cross-peak volume (see Methods). Whenever simulations predict a shorter distance
between such proton-pairs, it is considered a violation of a uNOE. Note that the importance of unobserved
NOE have been discussed for protein systems as well (17). Unobserved NOEs are of particular importance
because several violations are present in intercalated structures (10). It can be clearly seen in Fig. 1c that
the xoL3-VAW-OPC force field provides a better agreement with experimental data, especially for NOEs.
We note, however, the higher y? for 3J sugar scalar couplings with respect to the standard yor,3 force field.

B. Reweighting procedure. It is evident from Fig.1c that the conformational ensemble predicted by sim-
ulations alone is not in complete agreement with experiments. We therefore generate a conformational
ensemble that satisfies the experimental constraints using the MaxEnt /Bayesian approach with the inclusion
of error treatment (4, 6). In MaxEnt approaches one seeks the minimal perturbation of the simulated
ensemble (i.e. the prior distribution) that satisfies a set of known experimental averages. This can be
achieved (2, 6) by minimizing the function

m 1 m
I'=log(Z(\) + > N FEXP | 3 > Ao} 1]

with respect to the set of Lagrange multipliers A = A1 ... \,,. Here, the index 7 runs over the m experimental
averages FZ»EXP with associated normally distributed and uncorrelated errors o;. Z is the partition function
Z(\) = Z;V w? exp [— 21" N\iFi(x;)] where F;(x;) is the function used to back-calculate the experimental
observable from the atomic coordinates x, and {w{...w%} correspond to the weights of the N frames in
the prior distribution. Note that this approach is completely equivalent to a Bayesian ensemble refinement
approach (4, 18) in which one seeks the optimal weights {wy ...wy} minimizing the log posterior L

m
L(w1 R wN) = 5)(2 + GSREL [2]
2 m (N EXP)? 9. - .
where x* =>; (Zj w;Fi(xj) — F; ) /mo; is the deviation from the experimental averages, and the

relative entropy SgrprL = Z;-V w; log w; /w? quantifies the deviation from the prior distribution. 6 is a
parameter that sets the relative weight between these two quantities, and needs to be chosen e.g. via
L-curve selection.
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Fig. 2. Agreement between reweighted r(CCCC) simulations and experiments as a function of the parameter 6. x?2 for different values of § are reported when using a) scalar
couplings only, b) NOE distances and ¢) uNOE distances. Results using all three types of data are shown in panel d. Initial, unreweighted X2 are shown as dashed lines.

A few items are worth highlighting. First, the number of experimental constraints, m, is typically much
smaller compared to the number of samples, N, and it is therefore in practice easier to minimize the
function in Eq.1 rather than Eq.2. Second, 6 enters the MaxEnt formulation (Eq.1) as a global scaling
factor of all Gaussian errors ¢;. Third, heterogeneous data (NOE, 3J couplings, chemical shifts, etc.) can
be used simultaneously in the reweighting procedure, both as averages as well as inequality constraints (6).

C. Choosing the data and the confidence parameter. Before proceeding to the analysis of the optimized
ensemble, we study the dependence of the results on i) the type of experimental data used for reweighting
and ii) the tunable parameter, . Given the better initial agreement with experimental data, we here
consider the yor,3-VAdW-OPC simulations. Figure 2a shows x? as a function of § when using scalar couplings
as the only input for reweighting. As expected, small 6 corresponds to a better fit, while in the limit of
large 0 we approach the original, unreweighted x? value (dashed line). We can also monitor the behavior of
x? relative to data that were not used in the reweighting (Fig. 2a). In the limit of # — 0 the violations of
uNOE become very small. Conversely, the agreement with NOE distances has a clear minimum around
6 = 3. When using only NOEs for reweighting (Fig. 2b), we observe improved agreement with respect to
all other experimental sources of data. This effect is more pronounced when using uNOE only (Fig. 2c),
demonstrating the importance and the validity of this type of data. Note that, at least for r(CCCC), the
reweighted x? values are always smaller compared to the original, unreweighted values, indicating that the
different types of data are consistent. Given the cooperative effect of the different types of data, we finally
consider the case in which 3J couplings, NOE and uNOE are all used at the same time for reweighting (Fig.
2d). This combination provides the best accord both for r(CCCC) as well as for the other tetranucleotides
(Figs. S1-S3).

When considering x? alone one would choose a small 6, so as to attain the best fit. In the limit § — 0,
however, the original ensemble can be substantially distorted, to the point that the physico-chemical
information contained in the force field is lost (Eq. 2). Additionally, this has a detrimental effect on the
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Fig. 3. Distribution of different observables before and after reweighting r(CCCC) simulations using xor3-VdW-OPC. Solid lines indicate the average calculated using a
blocking procedure, minima and maxima are shown in shade. a) eRMSD from ideal A-form, b) eRMSD from an intercalated conformation, ¢) distance distribution between
OP2in C3 and H5T in C1, and d) the « torsion angle of C2. Peaks in panels a-b can be associated to the structures shown in Fig. 1: A-form (eRMSD from A-form below 0.75),
Cé4-inverted (eRMSD from A-form 0.75-1.0), intercalated (¢eRMSD from intercalated <0.4), and intercalated with C2 unstacked (¢RMSD from intercalated 0.4-0.8). eRMSD
boundaries are shown as dashed lines.

statistical errors, as the number of effective frames contributing to the ensemble becomes very small (Fig.
S4). In order to strike a good balance between fit and proximity to the prior distribution, we scan different
values of 6 until a further decrease of this parameter leads to an increase in the relative entropy without
substantially improving the fit (4). While this procedure does not provide a unique 6, makes it possible to
identify a range of reasonable values (Fig. S4). We here use a pragmatic approach and set § = 2, the largest
value for which x? < 2 for all tetranucleotides and all types of experimental data. Scatter plots comparing
individual experimental averages against simulations before/after reweighting are shown in Fig. S5-S8.

D. Conformational ensemble of r(CCCC). The set of optimized weights can be now used to calculate the
full probability distribution of any observable (e.g. distances, torsion angles, etc.). In order to appreciate
the properties of the optimized ensemble it is again interesting to consider the distribution of the distance
from A-form (Fig. 3a). The original xor3-VdW-OPC MD ensemble consists of ~18% A-form structures
(eRMSD from A-form < 0.75), and 9% of structures with C4 either inverted or unstacked (eRMSD from
A-form in the 0.75-1.0 range). From the histogram of eRMSD relative to intercalated structure (Fig.3b),
the initial ensemble estimates a 53% population of intercalated structures, that can be subdivided into fully
stacked intercalation (13%, eRMSD < 0.4) and intercalated structures with C2 unstacked (=~ 40%, eRMSD
in the 0.4-0.8 range).

Upon reweighting, A-form represents the major conformation (54%), followed by C4 inverted (22%). The
population of intercalated structures is significantly reduced in the reweighted ensemble to ~7% (Fig. 3b).
This result is not surprising, as it is consistent with the picture proposed in the original experimental paper
(9). The ensemble obtained here, however, did not require expert interpretation of the individual NOE
distances. More importantly, the reweighting approach takes into account general properties encoded in
the force-field and makes it possible to monitor degrees of freedom that were not measured by NMR. Two
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significant examples are reported in Fig. 3c and d. Panel ¢ shows the distribution of the distance between
the atom OP2 in C3 and the hydrogen at the 5’ terminus in C1 (H5T), where we observe the presence
of a stable hydrogen bond between these two atoms (associated with the intercalated conformation) that
is almost absent after reweighting. The reweighting also dramatically affects the distribution of a angle
in C2, as we find that gauche™ (g) is the preferred rotameric state in the reweighted ensemble (Fig. 3d).
A similar behavior is observed for « in C3, ¢ in C2 and in C3 (Fig. S10), in accordance with previous
simulation studies that have shown the importance of these two torsion angles in tetranucleotides and
tetraloops simulations (19, 20). We highlight that the backbone 3J scalar couplings used in the reweighting
procedure report on € and 7 angles, but not on «/(.
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Fig. 4. Comparison between reweighted and unreweighted ensembles for r(AAAA), r(GACC) and r(UUUU) tetranucleotides. Left panels: agreement between calculated and
experimental averages for xoLs, xoLs-VdW-OPC, and reweighted xoL3-VdW-OPC simulations. Central panels: histogram of the eRMSD from ideal A-form. Right panels:
histogram of eRMSD from intercalated. The dashed lines indicate the tresholds used for calculating the percentage of A-form-like (middle) or intercalated structures (right)
upon reweighing.

E. Conformational ensemble of r(AAAA), r(GACC), and r(UUUU). The same procedure described above
was applied to r(AAAA), r(GACC), and r(UUUU) tetranucleotides. In all cases, xor3-VdW-OPC is
considerably better compared to xors force field (Fig.4, left panels). The reweighting procedure further
improves agreement with experimental data. However, we do observe a residual discrepancy in some cases
(x% > 1), that stems from predicted NOE distances falling outside the experimental range (Figs. S5-S8). In
the case of r(GACC), three NOEs reported in the original experimental work (10) were not satisfied in a
preliminary reweighting. After careful checking of the experimental data, we discovered two previously
undetected spectral overlaps. The corresponding NOEs were thus removed from the list of data points.
Evidently, the reweighting procedure can be used to highlight datapoints that are inconsistent with the
others and, as such, might require manual inspection. These cases can be treated by using error models
suitable to describe outliers (6, 21).

The r(AAAA) ensemble is composed by ~30% A-form like structures and 16% A4-inverted/unstacked
(Fig.4, central panel). In this case, the available experimental data could not rule out completely the
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Table 1. Percentage of C3’-endo (6 < 115°) and anti (x > 120°) of reweighted x o 3-VdW-OPC simulations. The
statistical error calculated using block averaging is below 1%.

Sequence N1 N2 N3 N4
S AAAA 706 751 845 66.3
& | cccc 907 889 885 717
9| GACC 89 871 883 711
® uuuu 61.4 495 505 632
= AAAA 652 965 984 97.8
& ccce 98.0 985 99.8 997
= | GACC 89.2 999 989 994
> uuuu 885 971 968 96.3

presence of intercalated structures, which represent the 13% of the optimized ensemble (Fig.4, right panel).
The remaining 40% is composed of other structures that exhibit one or more sugar puckers in C2’-endo
and/or the Al-x angle in syn conformation (Table 1 and Fig. S9).

r(GACC) behaves very similarly to r(CCCC), with ~ 60%A-form-like structures and 20% of C4-
inverted /unstacked. The similarity between r(GACC) and r(CCCC) can also be appreciated by considering
the sugar pucker and x angle preferences reported in Table 1 and Figs. S10-S11. Intercalation is almost
completely absent in the reweighted ensembles.

Among all the systems studied here, r(UUUU) has the lowest population of A-form-like structures (9%).
The rest of the ensemble is composed of a variety of diverse structures that cannot be easily clustered.
This can be seen from the low percentage of sugar pucker in C3’-endo conformation (Table 1 and Fig.
S12), and from the relatively flat distribution of eRMSD from A-form in Fig.4. Among this set of diverse
conformations, a very small fraction of intercalated structures are present.

Note that the percentages reported here depend on two important choices: on the reference structures
and on the choice of §. While the geometry of the ideal A-form can be unambiguously defined (22), the
intercalated structures are obtained by performing a cluster analysis of the xor3 simulation as described
previously (23). Although this choice has a degree of arbitrariness, we found it as a useful and intuitive
manner to define an order parameter complementary to the distance from A-form. As for 8, we verified
that the population of the different states do not depend critically on this parameter in the relevant range
2 <0 <5 (Fig. S13).

3. Discussion

In this paper we have described the structural ensembles of four RNA tetranucleotides at the atomistic
level. The characterization of these systems represents a first step in understanding the ensembles and
internal dynamics of larger oligonucleotides and other RNA molecules undergoing significant conformational
changes.

Due to their conformational heterogeneity, RNA oligonucleotides represent prototypical cases in which
NMR experimental data need to be interpreted as ensemble averages. As such, standard procedures for
NMR structure determination cannot be easily applied (24). Additionally, it is not possible to predict
the properties of these systems using simulations alone, because of known force-field inaccuracies (Fig.1).
Only the combination of experiment with computation makes it possible to provide an atomic-detailed
description of their conformational ensembles. In this context, the MaxFEnt/Bayesian approach serves as a
fundamental theoretical ingredient for using the two techniques in conjunction.

In a broad sense, this can be seen as a regularization problem in which a small set of experimental data
are used to gain insights into a highly dimensional, complex set of molecular conformations. The problem
is under-determined, and has to be regularized by using a suitable prior distribution, here provided by MD
simulations. This interpretation becomes transparent in the Bayesian ensemble refinement formulation
in Eq.2 (4, 18). The balance between fit quality (x?) and deviation from the prior distribution (Sgrgr,) is
tuned by a system-dependent confidence parameter, 6, that is not known a priori. The approach used here
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takes explicitly into account the uncertainty o on the experimental average. Since 6 is a global scaling
factor, the values of o allow the relative weight of different heterogeneous data to be accounted for. Note
that the calculation of the experimental observable from the atomic coordinates (i.e. the forward model)
introduces inaccuracies that can be larger than the experimental uncertainty. For example, 3J scalar
couplings calculated using Karplus relationships can introduce errors up to 2 Hz (Fig.S14). Care should be
also taken when calculating NOE intensities from proton-proton distances, as the simple r~% averaging
does not take spin-diffusion into account, and it is only valid in the limit of slow internal motion compared
to the tumbling time (25).

In a number of recent MaxEnt-inspired approaches a bias deriving from the experimental data is estimated
on-the-fly during the simulations (4, 6, 21, 26). These approaches have the advantage of enhancing the
sampling in relevant regions of the conformational space. On the other hand, the reweighting procedure
can be applied a posteriori to existing simulations whenever new experimental data are available (27).
Since reweighting only requires a cheap post-processing of existing trajectories, it is straightforward to
perform multiple cross validation tests. Additionally, reweighting is very convenient when the forward
model calculation is particularly demanding, since in biased methods the back-calculation of averages from
structures has to be performed at least every few time steps (28).

In our work the reweighting approach is also used as a tool to help identify inaccuracies in molecular
dynamics force fields. Modern atomistic molecular mechanics force fields consist of hundreds of parameters,
and even finding the relevant interactions that can potentially improve their accuracy is a time consuming
and non-trivial task. The reweighting substantially simplifies this search (Fig. 3c-d), as the probability
distribution over any degree of freedom before and after reweighting can be readily compared. We find that
hydrogen bonds to non-bridging oxygens are significantly destabilized upon reweighting, in accordance with
previous simulation studies (10, 29). At the same time, the population of o and « torsion angles is in some
cases shifted from gauche™ to gauche™. As molecular mechanics force fields improve, the approach described
here should require less experimental data to provide reliable determination of structural ensembles (30).

Materials and Methods

MD simulations. We have performed MD simulations on r(AAAA), r(CCCC), r(UUUU), and r(GACC) tetranucleotides.
Each system was simulated with two different force-fields: i) the AMBER 99 force field (31) with parmbsc0 corrections
to /v (32) and the yOL corrections to x torsion angles (33) in TIP3P water (34). We refer to this combination as
XowLs- These simulations were taken from our previous studies (19, 35). ii) xorLswith corrections to Van der Waals
oxygen radii (15) and using the optimal 3-charge, 4 point (OPC) water model (16). We refer to this combination
as xor3- VAW-OPC. Parameters are available at http:/github.com/srnas/ff. Molecular dynamics simulations were
performed using the GROMACS 4.6.7 software package (36). Ideal A-form, fully stacked initial conformations were
generated using the Make-NA web server. The oligonucleotides were solvated in a truncated dodecahedric box and
neutralized by adding Nat counterions (37). Initial conformations were minimized in vacuum first, followed by
a minimization in water and equilibration in NPT ensemble at 300 K and 1 bar for 1 ns. Production runs were
performed in the canonical ensemble using stochastic velocity rescaling thermostat (38). All bonds were constrained
with the LINCS algorithm (39), equations of motion were integrated with a time step of 2 fs. Tetranucleotides were
simulated using temperature replica exchange (40) using 24 replicas in the temperature range 278 K-400 K for 1.0 us
per replica. All the analyses presented here were performed for the 300K replica and using 20000 frames. Averages
and standard errors of the mean are calculated using four blocks of 5000 samples each.

NMR data. Experimental NOE and scalar couplings have previously been published (9, 10). We use a Gaussian-
distributed experimental errors of 1.5Hz for scalar couplings (Fig. S14) and of 0.1A for unobserved NOE. The error
for NOE was estimated as min(rEXP — pEXP pEXP_ .BXPY “The number of experimental averages for each NMR
parameter and for each tetranucleotide sequence is reported in Table 2. The complete list of experimental data
is available as textfiles at https://github.com/sbottaro/tetranucleotides_data. NOE intensities from simulations are
calculated as averages over the N samples NOEcarc = (Ziv w;r; 6). 3] scalar couplings are calculated using the

Karplus relationships as described in Fig. S14 using the software baRNAba https://github.com/srnas/barnaba.
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Table 2. Number of experimental averages.

NOE 3J Sugar 3J Backbone uNOE

AAAA 36 1 17 243
CCCC 27 11 15 245
GACC 20 12 17 284
uuuu 9 10 15 282

Unobserved NOE. NMR spectra were inspected for the presence of NOESY cross-peaks between every pair of protons
in the tetramer. If no cross-peak is observed, then the potential contact is classified as an unobserved NOE. If
the spectral position of a potential cross-peak does not overlap any other observed cross-peak, then the minimum
detectable cross-peak volume is assumed to be two times the standard deviation of spectral noise, V. Scalar
coupling results in NOE cross-peaks that are split into multiplets of 2, 4, or more peaks, resulting in accordingly
reduced peak heights and increased minimum detectable volume. For a cross-peak consisting of M multiplets, the
minimum detectable volume is 2M V. Ve and a scaling factor, ¢, obtained in the original work (9, 10) from
NOESY spectra with 200 msec mixing time, are used to associate a distance,R, with the minimum detectable volume:
R = (¢/2MV,)"/®. The analysis of unobserved NOEs was carried out here with 800 msec NOESY spectra where
cross-peaks are typically 2.5 to 3-fold greater than at 200 msec, so the minimum detectable NOE volume was reduced
by a factor of 2.5 (after correcting for any difference in number of NMR scans). If the spectral position of a potential
cross-peak partially overlaps one or more observed cross-peaks, then the minimum detectable volume of the potential
cross-peak is determined by the magnitude of the observed cross-peak and exact details of the overlap (instead of
spectral noise). Typically, if the partially overlapped observed cross-peak is medium or weak, respectively, then a
potential cross-peak exhibiting no apparent intensity is classified as unobserved with a volume that corresponds to an
internuclear distance of greater than 3.3 or 4.0 A. If the overlapping observed cross-peak is strong or the potential
cross-peak is close to the diagonal, then the potential cross-peak is not classified as unobserved.
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