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Abstract 26 

Alu elements are a highly successful family of primate-specific retrotransposons that have 27 

fundamentally shaped primate evolution, including the evolution of our own species. Alus 28 

play critical roles in the formation of neurological networks and the epigenetic regulation of 29 

biochemical processes throughout the central nervous system (CNS), and thus are 30 

hypothesized to have contributed to the origin of human cognition. Despite the benefits that 31 

Alus provide, deleterious Alu activity is associated with a number of neurological and 32 

neurodegenerative disorders. In particular, neurological networks are potentially vulnerable 33 

to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded 34 

mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we 35 

highlight the beneficial neurological aspects of Alu elements as well as their potential to 36 

cause disease by disrupting key cellular processes across the CNS. We identify at least 37 37 

neurological and neurodegenerative disorders wherein deleterious Alu activity has been 38 

implicated as a contributing factor for the manifestation of disease and, for many of these 39 

disorders, this activity is operating on genes that are essential for proper mitochondrial 40 

function. We conclude that the epigenetic dysregulation of Alu elements can ultimately 41 

disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for 42 

the incipient neuronal stress that is consistently observed across a spectrum of sporadic 43 

neurological and neurodegenerative disorders.  44 
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List of Abbreviations: 51 

A-to-I: adenosine-to-inosine 52 

AD: Alzheimer’s Disease 53 

ADAR: adenosine deaminase acting on RNA 54 

ALS: Amyotrophic Lateral Sclerosis 55 

AMPA: α-amino-3-hydroxy-5methyl-4-isoxazole propionate 56 

APP: amyloid precursor protein 57 

circRNAs: circular RNAs 58 

CNS:  central nervous system 59 

FLAM: free left Alu monomer 60 

LINE: long interspersed element 61 

L1: long interspersed element-1 62 

LTR: long-terminal repeat 63 

mRNA: messenger RNA 64 

PD: Parkinson’s Disease 65 

pre-mRNA: precursor messenger RNA 66 

SEDs: super-enhancer domains 67 

SINE: short-interspersed element 68 

TADs: topologically associating domains 69 

TOMM: translocase of outer mitochondrial membrane 70 

 71 

Introduction 72 

Retrotransposons are mobile genetic elements that utilize an RNA intermediate to 73 

copy and paste themselves throughout the genome. There are two primary groups of 74 

retrotransposons, those having long-terminal repeats (LTRs) and those without (non-LTR) 75 
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(Cordaux and Batzer 2009). In the human genome, non-LTR retrotransposons consist of long 76 

interspersed elements (LINEs) and short interspersed elements (SINEs) and these collectively 77 

account for a remarkable ~33% of total genome sequence (Cordaux and Batzer 2009). Alu 78 

elements are primate-specific SINEs that are approximately 300 nucleotides in length and are 79 

abundant in the human genome, with over 1.3 million elements accounting for at least 11% of 80 

overall DNA sequence (Deininger et al. 2003; Hancks and Kazazian 2016). Although once 81 

considered to be useless ‘junk DNA’, the prevalence, diversity, and non-random distribution 82 

of Alu elements across primate genomes is suggestive of a functional advantage. Indeed, a 83 

large body of evidence documents that Alu elements have directly influenced primate 84 

evolution by facilitating genome innovation through: novel gene formation, elevated 85 

transcriptional diversity, long non-coding RNA and microRNA evolution (including circular 86 

RNAs), transcriptional regulation, and creation of novel response elements (Vansant and 87 

Reynolds 1995; Norris et al. 1995; Britten 1997; Lev-Maor et al. 2003; Polak and Domany 88 

2006; Laperriere et al. 2007; Lin et al. 2008, 2016; Lehnert et al. 2009; Cordaux and Batzer 89 

2009; Shen et al. 2011; Jeck et al. 2013; Töhönen et al. 2015; Luco 2016; Chen and Yang 90 

2017). Moreover, Alus fundamentally alter the three-dimensional architecture and spatial 91 

organization of primate genomes by defining the boundaries of chromatin interaction 92 

domains (i.e., topologically associating domains (TADs); Dixon et al. 2012). A growing body 93 

of evidence indicates that genome architecture has a direct influence on biological function, 94 

and the observation that Alus are enriched within both TADs and super-enhancer domains 95 

(SEDs) supports the hypothesis that Alus directly influence a wide range of critically 96 

important processes within primates across multiple levels, from overall genome stability to 97 

tissue-specific gene regulation (Huda et al. 2009; Dixon et al. 2012; Soibam 2017; Glinsky 98 

2018). In light of the functional benefits that Alus provide primates, it is interesting to note 99 

that Alu retrotransposition events occurred at an estimated 15-fold higher rate in the human, 100 
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chimpanzee, and bonobo lineage (as compared to other great apes) and a 2.2-fold higher rate 101 

in humans when compared to chimpanzee and bonobo (Hedges et al. 2004; Prüfer et al. 2012; 102 

Hormozdiari et al. 2013). These evolutionary patterns indicate that positive selection is acting 103 

to maintain Alu elements in primate genomes, especially within humans (Mattick and Mehler 104 

2008; Tsirigos and Rigoutsos 2009).  105 

One of the most fascinating and biologically important aspects of Alu elements is that 106 

they serve an important role in the formation and function of the brain connectome (Oliver 107 

and Greene 2011; Li and Church 2013; Smalheiser 2014; Sakurai et al. 2014; Prendergast et 108 

al. 2014; Linker et al. 2017; Bitar and Barry 2018). Many lines of evidence connect Alu 109 

elements with neurogenesis and critical neuronal biochemical processes, including: somatic 110 

retrotransposition in developing neurons (in parallel to L1 retrotransposition; Baillie et al. 111 

2011; Kurnosov et al. 2015), formation of regulatory circRNAs that are enriched in the 112 

central nervous system (CNS) and concentrated at synapses (Jeck et al. 2013; Rybak-Wolf et 113 

al. 2015; Chen and Schuman 2016; Floris et al. 2017), regulation of genes that are essential 114 

for proper neuron function (e.g. ACE, SMN1, SMN2, SLC6A4; Wu et al. 2013; Ottesen et al. 115 

2017; Schneider et al. 2017), and elevated adenosine-to-inosine (A-to-I) RNA editing in the 116 

brain (Mehler and Mattick 2007; Kurnosov et al. 2015; Behm and Öhman 2016). In 117 

particular, epigenetic A-to-I editing plays a significant role in mediating neuronal gene 118 

expression pathways (Tariq and Jantsch 2012) with Alus serving as the primary target for 119 

RNA editing in primates (Picardi et al. 2015; Behm and Öhman 2016). Beyond RNA editing 120 

mechanisms, human neuronal gene pathways are regulated by noncoding RNAs originating 121 

from Alu elements (e.g., BC200 and NDM29) and specific Alu subfamilies contain retinoic 122 

acid response elements which help to regulate neural patterning, differentiation, and axon 123 

outgrowth (Vansant and Reynolds 1995; Laperriere et al. 2007; Maden 2007; Castelnuovo et 124 

al. 2010; Smalheiser 2014). Moreover, recent discoveries indicate Alu elements underlie the 125 
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formation of a vast number of human-specific circRNAs that are hypothesized to play 126 

important roles in neurological gene expression pathways (Jeck et al. 2013; Rybak-Wolf et al. 127 

2015; Chen and Schuman 2016; Dong et al. 2017). There is a deep connection between Alus 128 

and the formation and function of primate neurological networks, and this has led to the 129 

hypothesis that Alu elements were essential for development of the transcriptional diversity 130 

and regulation required for the genesis of human cognitive function (Mattick and Mehler 131 

2008; Oliver and Greene 2011; Li and Church 2013; Sakurai et al. 2014).  132 

  Despite the functional benefits that Alus have provided primate genomes, Alu 133 

elements can disrupt gene expression and function through many pathways (Figure 1; 134 

Deininger and Batzer 1999; Deininger 2011; Tarallo et al. 2012; Ade et al. 2013; Elbarbary et 135 

al. 2016; Varizhuk et al. 2016). For this reason, the genome tightly regulates Alus using both 136 

DNA methylation and histone (H3K9 methylation) modification in order to control their 137 

expression and de novo retrotransposition (Varshney et al. 2015; Elbarbary et al. 2016; Mita 138 

and Boeke 2016) and there is mounting evidence indicating that the loss of these epigenetic 139 

control mechanisms (due to aging, cellular senescence, environmental factors and stress) 140 

contributes to many forms of cancer, diabetes, osteoporosis, and several mental and 141 

neurodegenerative disorders (Szpakowski et al. 2009; Belancio et al. 2010; Muotri et al. 142 

2010; Jintaridth et al. 2013; Dannlowski et al. 2014; Erwin et al. 2014; Bundo et al. 2014; 143 

Sun et al. 2014; Goodier 2016; Neven et al. 2016; Bedrosian et al. 2016; Shpyleva et al. 144 

2017; Thongsroy et al. 2017). With respect to deleterious Alu pathways and neurological 145 

disease, there are at least 37 mental and neurodegenerative disorders wherein Alu elements 146 

are hypothesized to disrupt key cellular processes, thereby resulting in or contributing to the 147 

diseased state (Table 1). 148 

Given the tight connection between Alu elements and the formation and function of 149 

the nervous system, it is likely that the dysregulation of Alu elements contributes to many 150 
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sporadic or idiopathic neurological disorders observed across the global human population 151 

(Larsen et al. 2017). Here, we highlight both the beneficial neurological aspects of Alu 152 

elements as well as their potential to cause neurological disease. We focus on a novel 153 

hypothesis that identifies a potential epigenetic vulnerability to neurological networks that 154 

has likely escaped purifying selection. The Alu neurodegeneration hypothesis (sensu Larsen 155 

et al. 2017) posits that the epigenetic dysregulation of Alu elements ultimately serves to 156 

disrupt mitochondrial homeostasis in neurological networks, thereby setting the stage for 157 

increased neuronal stress and neurodegeneration. Given this hypothesis, it is noteworthy that 158 

many of the Alu-disrupted genes associated with neurological disorders are related to 159 

mitochondrial function and trafficking, including nuclear-encoded mitochondrial genes (i.e., 160 

mitonuclear) which help to regulate oxidative stress and metabolic processes in the CNS 161 

(Table 1). Mitochondrial dysfunction is implicated across the spectrum of neurological and 162 

neurodegenerative disorders that are observed in humans and this pattern is suggestive of a 163 

genetic vulnerability that has evolved in humans. Considering this, we begin by reviewing the 164 

integral role that Alu elements have played in human evolution through brain-specific 165 

epigenetic A-to-I RNA editing pathways and neurological network formation. Although these 166 

Alu-related processes are hypothesized to have contributed to the origin of human cognition, 167 

they are likely accompanied by age or stress-related epigenetic vulnerabilities to the CNS, 168 

with mitochondrial pathways being especially sensitive.   169 

 170 

Alu elements, A-to-I editing, and evolution of the human brain 171 

Alu elements are non-randomly distributed throughout the genome. They occur most 172 

frequently within introns and are enriched within genes involved in metabolic, mitochondrial, 173 

cellular transport, and binding pathways (Grover et al. 2003; de Andrade et al. 2011; Larsen 174 

et al. 2017). Alu nucleotide sequences and lengths (~300 bp) are generally conserved (Batzer 175 
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and Deininger 2002) and it is this seemingly simple aspect of Alu biology that is of 176 

monumental biological importance. When inserted within a gene at opposite orientations and 177 

at close proximity, Alus bind upon themselves post-transcriptionally, resulting in the 178 

formation of a duplex stem-loop structure that is stabilized by the Alu nucleotide sequence 179 

and length (Figure 2; Athanasiadis et al. 2004). These Alu-based secondary structures 180 

fundamentally alter the shape of pre-mRNA molecules and serve as the primary binding site 181 

for ADAR proteins, which bind to the double-stranded pre-mRNA duplex and edit adenosine 182 

(A) residues to inosine (I) thereby recoding pre-mRNAs (Figure 2). When operating in 183 

coding regions (either directly or indirectly), the translation machinery interprets the resulting 184 

I residues as guanosine (G) and this mechanism accounts, in part, for the incredible diversity 185 

observed in the human proteome that is not encoded within the original DNA sequence 186 

(Nishikura 2016). However, the vast majority of A-to-I editing operating on Alu elements 187 

occurs within pre-mRNA introns and 3’ UTRs and this can directly influence gene regulation 188 

and function in a surprising number of ways, including: the creation of novel splice donor 189 

and acceptor sites that result in Alu exonization and alternative gene splicing (Nishikura 190 

2016); recoding of exons immediately adjacent to Alus (Daniel et al. 2014); disruption of 191 

RNAi pathways (Chen and Carmichael 2008); production of novel micro-RNA regulatory 192 

sites (Borchert et al. 2009); and increased nuclear retention of promiscuously edited mRNAs 193 

(Chen and Carmichael 2008).  194 

Although A-to-I editing plays an essential role in generating transcriptional diversity 195 

across eukaryotes, Alu elements provide primate-specific RNA editing opportunities. An 196 

example of this is found when comparing the rodent-specific SINE B1 family to Alu. Both 197 

B1 and Alu SINE families originated from 7SL RNA (Ullu and Tschudi 1984; Vassetzky et 198 

al. 2003) yet rodent-specific B1 elements are approximately half the length (~140 bp) of 199 

primate Alus (~300 bp) and have greater levels of intra-nucleotide variation. When 200 
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considering the functional mechanics of A-to-I editing (Figure 2), the shorter lengths and 201 

more variable rodent B1 elements result in the formation of shorter and less-stable double-202 

stranded stem-loop structures in rodent pre-mRNAs. Thus, the molecular properties that 203 

separate rodent B1 from primate Alu translate to key functional genomic differences that have 204 

influenced evolutionary processes within each lineage (Eisenberg et al. 2005; Neeman et al. 205 

2006; Picardi et al. 2015; Tan et al. 2017).  206 

A-to-I editing associated with Alu elements is perhaps one of the most functionally 207 

important yet underappreciated aspect of Alu biology. Approximately 90% of A-to-I editing 208 

within primate gene networks centers on Alu elements and this has fundamentally shaped 209 

primate evolution, including the evolution of our own species where A-to-I editing is 210 

estimated to occur at over 100 million sites in the human transcriptome (Bazak et al. 2014). 211 

Moreover, recent data supports a connection between A-to-I editing and neurological 212 

network formation, with elevated editing levels occurring throughout neurogenesis (Behm 213 

and Öhman 2016). Genes encoding for key neurological proteins involved in 214 

neurotransmission, neurogenesis, gliogenesis, and synaptogenesis are subject to enhanced A-215 

to-I editing and thus a number of studies have hypothesized a strong link between A-to-I 216 

RNA editing pathways and brain development and function (Schmauss and Howe 2002; 217 

Mehler and Mattick 2007; Tan et al. 2009; Sakurai et al. 2014; Liscovitch et al. 2014; Behm 218 

and Öhman 2016; Hwang et al. 2016; Picardi et al. 2017b). A recent analysis of A-to-I 219 

editing in over 8,500 human samples identified tissue specific editing patterns with elevated 220 

editing levels in the brain, including unique patterns in the cerebellum (Tan et al. 2017). The 221 

vast majority of these neurologic A-to-I editing events are operating on Alu elements and, 222 

when combined with human-specific Alu evolution (Hedges et al. 2004; Cordaux and Batzer 223 

2009; Prüfer et al. 2012; Hormozdiari et al. 2013), this observation serves as the foundation 224 
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for the hypothesis that Alu elements and Alu-related pathways contributed to the evolution of 225 

enhanced human cognitive abilities (Mattick and Mehler 2008; Li and Church 2013).  226 

Given the relationship between Alu-centric A-to-I editing and the formation and 227 

function of the CNS, it is important to expand upon the neuro-specific functions of ADAR 228 

proteins. Three ADAR proteins are identified (ADAR1, ADAR2, and ADAR3) and these 229 

proteins have distinct tissue-specific expression patterns (Picardi et al. 2015; Tan et al. 2017). 230 

ADAR1 and ADAR2 co-opt to regulate neuronal activity by editing key neurotransmitter 231 

receptors and ion channels in the CNS (Hood and Emeson 2011). Interestingly, both ADAR2 232 

and ADAR3 have unique brain-specific expression patterns with ADAR2 being highly 233 

expressed in the brain and ADAR3 exclusively expressed in the brain (Mehler and Mattick 234 

2007). Until recently the functional role of the brain-specific ADAR3 protein was largely 235 

unknown, however, Oakes et al. (2017) discovered that ADAR3 competes with ADAR2 to 236 

regulate glutamate receptor subunit B (GRIA2) A-to-I editing. The GRIA2 protein forms a 237 

critical subunit of α-amino-3-hydroxy-5methyl-4-isoxazole propionate (AMPA) receptors, 238 

which regulate synaptic calcium and are involved with synaptic plasticity, memory, and 239 

learning (Wright and Vissel 2012). Remarkably, A-to-I editing of a specific adenosine 240 

nucleotide within GRIA2 results in an amino acid change that alters the GluR-2 protein 241 

conformation, thus disrupting calcium permeability of the AMPA receptor and potentially 242 

contributing to epilepsy, amyotrophic lateral sclerosis (ALS), and schizophrenia (see Oakes 243 

et al. 2017). In light of Oakes et al. (2017), the brain-specific expression pattern of ADAR3 244 

indicates that this protein helps to offset A-to-I editing by ADAR2, perhaps serving to 245 

mediate enhanced RNA editing processes throughout the CNS.  246 

Considering the essential role that A-to-I editing processes play in the CNS, the 247 

dysregulation of these processes can have a profound impact on the stability of neurological 248 

networks (Mehler and Mattick 2007; Rice et al. 2012; Hwang et al. 2016). With respect to 249 
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ADAR proteins, mutations within ADAR1 have been linked to Aicardi-Goutières syndrome 250 

(characterized by severe brain dysfunction; Rice et al. 2012) and Alu-related alternative 251 

splicing events of ADAR2 are linked to glioma (Li et al. 2015). Disruption of ADAR1 252 

editing increases production of unedited RNAs which interact with MAV proteins in the 253 

outer mitochondrial membrane, ultimately serving to activate inflammatory response 254 

pathways (Bajad et al. 2017; Gallo et al. 2017) and perhaps providing a mechanism for 255 

inflammatory diseases of the CNS (Hofer and Campbell 2016). ADAR2 knockout mice 256 

display epileptic seizures and neuronal death caused by an influx of calcium owing to the 257 

disruption of GRIA2 editing (see above). The interference of A-to-I editing processes 258 

associated with the KCNA1 gene (encoding a protein essential for potassium regulation and 259 

neuron excitability) is hypothesized to underlie Episodic Ataxia Type-1 disorder, a disease of 260 

the CNS characterized by seizures, stress-induced ataxia, and myokymia (Ferrick-Kiddie et 261 

al. 2017). Moreover, a reduction of A-to-I editing has been observed within hippocampal 262 

tissues of Alzheimer’s brains versus healthy controls (Khermesh et al. 2016). From a broader 263 

perspective, the disruption of A-to-I editing processes across the CNS has been linked to a 264 

wide variety of mental and neurodegenerative disorders including major depression and 265 

suicide, epilepsy, schizophrenia, Alzheimer’s disease (AD), and ALS (Gurevich et al. 2002; 266 

Kawahara et al. 2004; Kwak and Kawahara 2005; Maas et al. 2006; Kubota-Sakashita et al. 267 

2014; Khermesh et al. 2016; Weissmann et al. 2016; Gal-Mark et al. 2017). 268 

 269 

Alu elements, neurogenesis, and the human brain connectome 270 

There is a strong connection between Alu A-to-I editing and the development and 271 

function of the brain, therefore it is impossible to disentangle Alus from the formation and 272 

function of neurologic networks (Mehler and Mattick 2007; Tan et al. 2009; Behm and 273 

Öhman 2016). It is estimated that the human brain is comprised of over 100 billion neurons 274 
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that are organized into functional hubs or parcels collectively forming the brain connectome 275 

(Van Den Heuvel and Sporns 2013). Beyond major structures of the brain (e.g., cerebellum, 276 

frontal cortex, hippocampus, etc.), the existence of connectome parcels shared across 277 

unrelated individuals is indicative of an evolutionary conserved process underlying 278 

neurological network formation and operating throughout neurogenesis. For example, a 279 

recent study mapped the cerebral cortex using multi-modal magnetic resonance imaging and 280 

identified 180 connectome parcels that were largely shared across 210 healthy adults (Glasser 281 

et al. 2016). Understanding the molecular processes that contribute to the formation of the 282 

human brain connectome is essential for understanding the origin of human-specific 283 

neurological disorders and diseases observed across the global distribution of our species. 284 

This is especially true for neurodegenerative conditions that are hypothesized to originate in 285 

functional network hubs and progress along neuronal network connections (e.g., AD; Seeley 286 

2017; Cope et al. 2018).   287 

A growing body of evidence indicates that retrotransposons (including both LINEs 288 

and SINEs) are active throughout neurogenesis and contribute to mosaic neuron genomes that 289 

ultimately form the human brain connectome (Muotri et al. 2005; Erwin et al. 2014; 290 

Kurnosov et al. 2015; Evrony 2016; Paquola et al. 2016; Linker et al. 2017). Although 291 

somatic L1 retrotransposition events within developing neurons have received much 292 

attention, it is noteworthy that Alu retrotransposition occurs in parallel with L1 throughout 293 

neurogenesis (Baillie et al. 2011; Kurnosov et al. 2015), thus providing primate-specific 294 

aspects of neurologic network formation. Furthermore, there is evidence that unites Alu 295 

elements with retinoic acid regulation (Vansant and Reynolds 1995; Laperriere et al. 2007), 296 

which is essential for neuronal patterning and differentiation throughout neurogenesis and is 297 

a potential regulator of neuron regeneration (Maden 2007). Retinoic acid is vital for the 298 

establishment, maintenance, and repair of neuronal networks and, given the presence of 299 
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retinoic acid response elements in Alu elements, it is possible that Alu activity during 300 

neurogenesis is connected to retinoic acid signaling processes.  301 

Considering the Alu regulatory pathways discussed above, it is of great interest to 302 

note that retrotransposition of Alu elements is hypothesized to occur at elevated levels within 303 

the dentate gyrus of the hippocampus, the putative site of adult neurogenesis (Kurnosov et al. 304 

2015). Moreover, A-to-I editing levels steadily increase as neural progenitor cells develop 305 

into adult neurons (Behm and Öhman 2016). These data indicate that at least two 306 

retrotransposon-centric processes (somatic retrotransposition of both LINES and SINES and 307 

enhanced A-to-I editing operating primarily on Alu elements) are major contributors to 308 

neurogenesis, perhaps serving to establish the neuronal and biochemical diversity that 309 

underlies the ~100 billion neuron brain connectome. Remarkably, emerging data suggests 310 

that a third Alu-centric process is associated with the formation and function of neurological 311 

networks, this being the production of circRNAs that are enriched in the brain and 312 

concentrated at synaptic junctions (Jeck et al. 2013; Rybak-Wolf et al. 2015; Chen and 313 

Schuman 2016). Identifying vulnerabilities to each of these retrotransposon-centric processes 314 

will likely contribute to the identification of novel mechanisms underlying mental disorders 315 

and neurologic disease and could lead to novel therapeutic interventions.    316 

 317 

Pathways to incipient neuronal stress and neurological disease 318 

The disruption of Alu-centric epigenetic RNA editing processes is implicated across 319 

the entire spectrum of neurologic disorders (see above). In light of this observation, it is 320 

interesting to note that another, seemingly unrelated, feature of many neurological disorders 321 

is mitochondrial dysfunction (Lin and Beal 2006; Rugarli and Langer 2012; Gottschalk et al. 322 

2014; Petschner et al. 2017). However, we have previously shown that mitonuclear genes are 323 

enriched with Alu elements when compared to random (Larsen et al. 2017), which is 324 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 11, 2018. ; https://doi.org/10.1101/230367doi: bioRxiv preprint 

https://doi.org/10.1101/230367


	 14 

consistent with earlier observations regarding the non-random insertion of Alu elements into 325 

genes associated with transcriptionally active regions of the genome (Grover et al. 2003; de 326 

Andrade et al. 2011). Thus, it is likely that Alu-mediated gene regulatory processes are 327 

actively influencing mitonuclear gene expression, regulation, and protein function through 328 

the pathways discussed above and reviewed in Chen and Yang (2017). Knowing this, the 329 

dysregulation of epigenetic Alu regulatory pathways is a plausible source for mitochondrial 330 

stress and dysfunction, with the CNS being particularly vulnerable (Larsen et al. 2017). Such 331 

a mechanism could contribute to the initial activation of complex mitochondrial stress 332 

pathways and incipient neuronal stress associated with sporadic neurologic disorders (e.g., 333 

inflammation, immune response, mitophagy, etc.). Importantly, these processes would 334 

precede macroscopic pathologies such as protein aggregation and neuronal atrophy observed 335 

in neurodegenerative diseases (Swerdlow et al. 2010; Larsen et al. 2017; Swerdlow 2017).  336 

The Alu neurodegeneration hypothesis (sensu Larsen et al. 2017) proposes a ‘double-337 

edged sword’, whereby the beneficial Alu-related processes that underlie neuron diversity and 338 

function also have the potential to disrupt mitochondrial homeostasis across neurological 339 

networks through deleterious cascade events that are facilitated by eroding tissue-specific Alu 340 

epigenetic control mechanisms. The stability of the brain’s connectome and the entire CNS 341 

depends on healthy mitochondrial populations within neurons, astrocytes, microglia and 342 

supporting cells (Cai et al. 2011; Viader et al. 2011; Schwarz 2013; Jackson and Robinson 343 

2017). Mitochondria play critical roles for a wide range of essential neuronal processes 344 

including glucose and lipid metabolism, metal ion biosynthesis, cellular trafficking along 345 

axons, neurotransmitter relay across synapses, and synaptic calcium homoeostasis (Schwarz 346 

2013; Harbauer et al. 2014). Therefore, molecular mechanisms that are known to disrupt gene 347 

expression and protein folding of genes that are essential for mitochondrial function can 348 

ultimately disrupt neurological function.  349 
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Interference of mitochondrial dynamics across the CNS is consistently hypothesized 350 

to occur during the earliest stages of mental, neurological, and neurodegenerative disorders 351 

ranging from depression, epilepsy, and schizophrenia to ALS, AD, and Parkinson’s disease 352 

(PD; Lu 2009; Rezin et al. 2009; Kim et al. 2010; Coskun et al. 2012; Martin 2012; 353 

Gottschalk et al. 2014; Larsen et al. 2017; Flippo and Strack 2017; Petschner et al. 2017). 354 

Collectively, these disorders are estimated to impact approximately 250 million people 355 

globally, accounting for at least 10.2% of the global disease burden (GBD 2015 Neurologic 356 

Disorders Collaborator Group 2017). The occurrence of sporadic forms of human-specific 357 

neurologic disorders (e.g. non-familial schizophrenia, ALS, late-onset AD, PD, etc.) across 358 

the entire distribution of our species is suggestive of a common yet complex genetic 359 

mechanism that evolved in primates and is amplified in humans (Larsen et al. 2017). 360 

Considering this, we expand on the mitocentric view of idiopathic neurologic disease 361 

manifestation by reviewing the evidence that unites primate-specific Alu activity with 362 

incipient neurologic mitochondrial dysfunction.  363 

Eukaryotic mitochondria are hypothesized to have originated from an endosymbiotic 364 

alphaproteobacterium which, over expansive evolutionary time, evolved in parallel with host 365 

genomes into the mitochondrial organelles that we observe today (Roger et al. 2017). The 366 

human mitochondrial genome encodes only 13 proteins yet it is estimated that human 367 

mitochondria depend on approximately ~2,000 genes encoded within the nuclear genome for 368 

their functionality (Calvo et al. 2015; Johnson et al. 2017). These mitonuclear genes are thus 369 

subject to deleterious Alu activity and Alu-related deleterious events have been linked to 370 

many neurologic and neurodegenerative disorders, including epilepsy, Wilson’s disease, 371 

Leigh syndrome, PD, ALS, and AD (Table 1 and references therein; Figure 3). When 372 

considering the incipient mitochondrial dysfunction observed across the spectrum of 373 

neurological neurodegenerative disorders, it is possible that tissue-specific epigenetic 374 
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dysregulation of Alu elements within the CNS can ultimately manifest into distinct disease 375 

phenotypes (Larsen et al. 2017).  376 

Several interesting patterns emerge when examining the key neurologic processes that 377 

are disrupted through deleterious Alu activity (Table 1). For example, mitochondria play an 378 

essential role in maintaining intra-cellular metal ion homeostasis (e.g., iron, copper, and 379 

zinc), the disruption of which can result in the increased production of free radicals that 380 

damage mitochondria and contribute to the increased production of reduced oxygen species 381 

(ROS; Rossi et al. 2004; Madsen and Gitlin 2007). The brain is especially sensitive to ROS 382 

production, and iron, copper, and zinc-related oxidative stress has been linked to many 383 

neurodegenerative disorders including AD, PD, and Wilson’s disease (Rossi et al. 2004; 384 

Madsen and Gitlin 2007). It is notable that deleterious Alu activity has been identified in 385 

several genes that are essential to maintaining proper iron and copper homeostasis, including 386 

FXN, ATP7A, ATP7B, HMBS, NDUFS2, SLC30A6, and PARK7 (DJ-1) (Table 1; Gu et al. 387 

2007; Kaler 2011; Girotto et al. 2014). Knowing this, it is possible that either global or tissue-388 

specific dysregulation of Alu elements within mitonuclear genes can alter mitochondrial 389 

metal ion processing pathways thereby contributing to increased ROS production leading to 390 

neurologic stress.  391 

A second interesting pattern with respect to deleterious neurologic Alu activity 392 

concerns metabolic pathways. The efficient processing of glucose and lipids across the CNS 393 

is critical for the stability and function of neurons, and the disruption of mitochondrial-394 

mediated metabolic pathways has been linked to many neurologic disorders including AD 395 

and peripheral neuropathies (Viader et al. 2013; De La Monte and Tong 2014). Deleterious 396 

Alu activity occurs in genes that are critical for glucose and lipid metabolism, including 397 

ABCD1, ACAT1, ALMS1, APOB, GK, GLA, HPRT, LPL, PDHA1, PMM2, PSEN1, SOD2 and 398 

SPAST (Table 1). Several of these genes encode for mitochondrial-related proteins that have 399 
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been implicated in metabolic diseases that directly, or indirectly, contribute to neurological 400 

dysfunction. The connection between Alu elements and metabolic pathways is consistent with 401 

the observation that Alu elements preferentially insert into metabolic genes, and this has led 402 

to the hypothesis that Alus regulate the expression of genes related to Type 1 Diabetes 403 

(Grover et al. 2003; Mirza et al. 2014; Kaur and Pociot 2015). Moreover, Alu RNAs act to 404 

suppress the expression of both endothelial nitric oxide synthase (eNOS) and superoxide 405 

dismutase 2 (SOD2) during hyperglycemic conditions (Wang et al. 2016), suggesting a 406 

regulatory role of Alu elements during oxidative stress and strengthening the link between 407 

Alu element activity and diabetes.  408 

There is growing evidence linking sporadic AD with dysfunctional metabolic 409 

pathways, leading some to consider AD as a ‘Type 3 Diabetes’ wherein glycolysis and lipid 410 

homeostasis is altered (Steen et al. 2005; De La Monte et al. 2006; De La Monte and Wands 411 

2008; De La Monte and Tong 2014; De Felice and Lourenco 2015; Mittal et al. 2016). The 412 

most well-documented risk factor for AD is a variant within APOE (APOE ε4), a gene which 413 

encodes for a glycoprotein that that mediates cholesterol and lipid transport (Saunders et al. 414 

1993; Strittmatter et al. 1993; Mahley and Rall 2000). The APOE ε4 allele is strongly 415 

associated with earlier onset of AD, and it is hypothesized that this is a result of the 416 

disruption of cholesterol processing and subsequent accumulation of amyloid precursor 417 

proteins (APP; i.e., the Amyloid cascade hypothesis). Although the ‘Amyloid cascade 418 

hypothesis’ has dominated Alzheimer’s research for decades (Hardy and Higgins 1992; 419 

Selkoe 2000; McKhann et al. 2011), the failure of multiple drug trials targeting amyloid 420 

pathways has led many in the Alzheimer’s research community to search for alternative 421 

hypotheses that can help explain the origin of neurodegenerative disease as well as novel 422 

molecular pathways with therapeutic potential (Herrup 2015).  423 
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It is of particular interest then to note that a second genetic risk factor for AD, 424 

TOMM40, is located immediately adjacent to APOE on human chromosome 19, and the two 425 

genes are in tight linkage disequilibrium (Lyall et al. 2014; Roses et al. 2016a). TOMM40 426 

encodes for a beta-barrel protein that ultimately forms a central pore in the outer 427 

mitochondrial membrane (Shiota et al. 2015) and, much like APOE, genetic variants of 428 

TOMM40 are linked to cognitive impairment and neurodegenerative disease (Roses 2010; 429 

Gottschalk et al. 2014; Greenbaum et al. 2014; Roses et al. 2016b; Arpawong et al. 2017). 430 

The most-well known of these TOMM40 variants is the rs10524523 (rs523) homopolymer 431 

repeat, a variable stretch of deoxythymidine (T) located within TOMM40 intron 6 (Roses 432 

2010). The rs523 poly-T varies in length from approximately 12 to 46 nucleotides, and the 433 

longer variants are statistically associated with thinning of the hippocampus (independent of 434 

the APOE ε4 allele; Burggren et al. 2017) and earlier onset of AD (Lutz et al. 2010; Roses et 435 

al. 2010). Interestingly, rs523 is embedded within tandemly repeated Alu elements and 436 

originated from an Alu insertion event (Larsen et al. 2017). At least 149 Alu A-to-I editing 437 

events are identified within TOMM40, the majority of which are associated with Alu elements 438 

surrounding the rs523 repeat and intron 9 (Picardi et al. 2017a).  439 

There is a potentially important link that unties APOE APP processing with the 440 

functional mechanics of pre-protein transport through the TOMM pore. It is possible that 441 

conformational changes of the Tom40 protein, potentially originating from Alu-mediated 442 

events (see above, reviewed in Elbarbary et al. 2016; Chen and Yang 2017; Larsen et al. 443 

2017), can ultimately serve to restrict the passage of lipids across the outer-mitochondrial 444 

membrane (Larsen et al. 2017). When combined with altered APP processing, this process 445 

could account for the initial site of intra-cellular protein accumulation that is hypothesized to 446 

precede extra-cellular plaque formation during very early stages of AD (Skovronsky et al. 447 

1998; D’Andrea et al. 2001; Takahashi et al. 2002). Consistent with this hypothesis is the 448 
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direct observation of APP accumulation at the TOMM pore (Devi et al. 2006) as well as 449 

functional tolerance of Tom40 conformational changes by mitochondria (Mager et al. 2011; 450 

Kuszak et al. 2015). Importantly, this mechanism could help to explain the common patterns 451 

of protein accumulation (e.g., amyloid plaques and alpha-synuclein Lewy bodies) observed 452 

across the spectrum of neurodegenerative disease, including ALS, AD, and PD (Ross and 453 

Poirier 2004; Gottschalk et al. 2014; Larsen et al. 2017). An age or stress-related component 454 

to Tom40 conformational changes comes with the epigenetic dysregulation of Alu elements 455 

associated with the aging process or traumatic stress (see Larsen et al. 2017). Whether or not 456 

these processes are directly mediated by deleterious Alu events remains to be tested, however, 457 

it is notable that Alu exons and Alu somatic retrotransposition events have been identified in 458 

several TOM genes that are required for the stability of the translocase of the outer 459 

mitochondrial membrane and pre-protein import, including TOMM5, TOMM7, TOMM22, 460 

TOMM40, and TOMM40L (Baillie et al. 2011; de Andrade et al. 2011; Lin et al. 2016).  461 

With respect to Alu elements, mitochondrial dysfunction, and the broader pathological 462 

scope of AD and other neurodegenerative diseases, there is evidence suggesting that Alu-463 

derived peptides interact with tau proteins, perhaps serving a regulatory role for tau 464 

phosphorylation (Hoenicka et al. 2002). Tau is a microtubule associated protein that 465 

functions to stabilize axonal microtubules and to transport mitochondria along axons, and 466 

taupathies (including tau hyperphosphorylation) are a characteristic feature of several 467 

neurodegenerative diseases including AD, progressive supranuclear palsy, corticobasal 468 

degeneration, and Pick’s disease (Ittner and Götz 2011; Khanna et al. 2016). The MAPT gene 469 

encodes for tau and alternative splicing events of MAPT result in multiple tau isoforms 470 

(Reddy 2011). Approximately 86 Alu elements (including FLAMs) are distributed throughout 471 

MAPT introns and A-to-I editing is occurring at 315 Alu related sites with elevated levels at 472 

the 3’ end of MAPT (REDIportal database; Picardi et al. 2017a). When considering the 473 
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potential for Alu structural variants of MAPT (including DNA and pre-mRNA secondary 474 

structures) and evidence of Alu RNAs interacting with tau proteins (Hoenicka et al. 2002), we 475 

recommend additional studies aimed at elucidating the regulatory impacts that Alu elements 476 

might have on MAPT gene expression and tau phosphorylation.   477 

 478 

A-to-I editing and the potential for mitochondrial stress 479 

Although several neurological disorders are hypothesized to be the result of disruptive 480 

A-to-I editing processes across the CNS (see above), it is presently unknown whether or not 481 

these processes are actively influencing mitochondrial function. What evidence is there 482 

indicating that post-transcriptional modification of mitonuclear genes can alter gene 483 

expression or function? Are there particular neurological or neurodegenerative disorders that 484 

are associated with mitonuclear genes that have elevated levels of A-to-I editing? To provide 485 

insights into these questions, we searched the REDIportal A-to-I editing database (Picardi et 486 

al. 2017a) for mitonuclear genes where 1) A-to-I editing has been identified within Alu 487 

elements in coding regions and 2) A-to-I editing has contributed to non-synonymous amino 488 

acid changes. We identified 57 mitonuclear genes with A-to-I editing occurring within 489 

putative Alu exons and in 52 of these genes the post-transcriptional modification resulted in 490 

nonsynonymous amino acid changes (Supplementary Table 1). Many of these genes are 491 

involved with essential neuronal processes including calcium binding and transport, zinc 492 

transport, apoptosis regulation, voltage-gated ion channels, and mitochondrial elongation 493 

with notable examples including ADSL, BAX, CASP2, COQ2, DFFB, FBXO18, LYRM4, 494 

PACRG, and SLC30A6 (Supplementary Table 1).  495 

From a broader perspective, we identified enhanced A-to-I editing across 134 496 

mitonuclear genes that are associated with a spectrum of neurologic and neurodegenerative 497 

disorders ranging from depression, tobacco use disorder, and bipolar disorder to ALS, Leigh 498 
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syndrome, PD, and AD (Supplementary Table 2). In light of these patterns, we hypothesize 499 

that system-wide or tissue-specific epigenetic dysregulation of Alu A-to-I editing within the 500 

CNS can serve to disrupt key mitochondrial biochemical processes, thus potentially 501 

contributing to incipient mitochondrial and neuronal stress (Figure 3).  502 

 503 

Conclusions 504 

Enhanced somatic retrotransposon throughout neurogenesis contributes to the mosaic 505 

brain, however, such activity likely contributes to mosaic pathways leading to disease (Erwin 506 

et al. 2014). Elucidating these pathways might ultimately provide insight into the sporadic 507 

nature of idiopathic diseases that are impacting the global human population. The disruption 508 

of Alu-mediated pathways that underlie gene regulation is a plausible mechanism for the 509 

origin of complex human-specific neurologic and neurodegenerative disorders. Although 510 

many of these disorders have similar phenotypes (e.g., mitochondrial dysfunction), it is 511 

possible that these phenotypes arise from deleterious activity operating across tissue-specific 512 

gene networks. If correlated with eroding or fluctuating epigenetic control mechanisms of 513 

retrotransposons that are associated with aging, cellular senescence, and/or cellular stress 514 

(Belancio et al. 2010; Pal and Tyler 2016; Schneider et al. 2017), then such mechanisms 515 

might largely escape purifying selection and would be difficult to detect using traditional 516 

methods (e.g., genome-wide association studies). It is important to note that the Alu-centric 517 

mechanisms discussed herein collectively provide a unified framework for multiple 518 

hypotheses that have been put forth regarding the origin of neurodegenerative disease 519 

including inflammation, oxidative-stress, metabolic dysfunction, and accumulation of protein 520 

bodies (see above).   521 

Alu elements have played a pivotal role in the evolution of the human epigenome 522 

(Prendergast et al. 2014), and both hyper- and hypomethylation of Alu elements have been 523 
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correlated with a number of age-related disorders including Alzheimer’s disease, multiple 524 

sclerosis, osteoporosis, and many forms of cancer (Bollati et al. 2009; Jintaridth and 525 

Mutirangura 2010; Belancio et al. 2010; Jintaridth et al. 2013; Neven et al. 2016).  In light of 526 

these patterns, as well as the newly discovered regulatory roles of Alu elements (Polak and 527 

Domany 2006; Chen and Carmichael 2008; Chen and Yang 2017), we recommend additional 528 

research that focuses on the epigenetic interplay between Alu elements and mitochondrial 529 

gene networks in the central nervous system.  530 

 531 

 532 
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Figure Legends 1137 

 1138 

Figure 1. Select mechanisms whereby Alu elements can alter gene expression and function 1139 

(also see Elbarbary et al. 2016). A: Sequence homology and orientation of Alu elements 1140 

contributes to the formation of distinct secondary structures in both DNA and RNA.  DNA 1141 

Alu G-quadruplex structures can alter transcription kinetics (Varizhuk et al. 2016) and pre-1142 

mRNA Alu binding forms stem-loop structures that are the primary site for A-to-I editing 1143 

(see Figure 2). B: Recombination of intra-gene Alu elements resulting in exon deletion. C: 1144 

Exonification of intronic Alus contributing to the production of alternative mRNAs. D: 1145 

Environmental or traumatic stress cascades resulting in increased expression of Alu RNAs 1146 
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that contribute to inflammation (Li and Schmid 2001; Tarallo et al. 2012; Hunter et al. 2015; 1147 

Lapp et al. 2016), the disruption of global gene transcription through Pol II binding (Mariner 1148 

et al. 2008), and an increase of H3K9 histone methylation that alters Alu epigenetic pathways 1149 

(Varshney et al. 2015; Lapp and Hunter 2016; Larsen et al. 2017).  1150 

 1151 

Figure 2. Intronic Alu elements located in close proximity (A) can bind to each other within 1152 

pre-mRNAs (B) thereby producing a stable stem-loop secondary structure that is the primary 1153 

substrate for A-to-I editing in primates.  ADAR proteins bind to pre-mRNA Alu structures 1154 

(C) and convert adenosine residues to inosine. If occurring in coding regions, the translation 1155 

machinery then interprets the inosine residues as guanosine and this can contribute to amino 1156 

acid changes and alternative protein conformations (D).  1157 

 1158 

Figure 3. Deleterious Alu activity operating on mitonuclear genes can disrupt mitochondrial 1159 

function in the CNS and contribute to a number of diseased phenotypes (see Table 1). The 1160 

type and severity of associated neurological and neurodegenerative disorders depends on the 1161 

deleterious Alu mechanism of action, the mitonuclear gene pathways involved, the time or 1162 

developmental stage of induction, level or severity of traumatic stress, and tissue specificity 1163 

(see Larsen et al. 2017). If operating across the suite of mitonuclear genes through epigenetic 1164 

pathways, the mechanism helps to explain the origin of incipient mitochondrial stress and 1165 

CNS connectome destabilization that is observed across the spectrum of neurological and 1166 

neurodegenerative disorders.   1167 

 1168 

  1169 

  1170 
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Figure 3. 1190 
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Table 1. Genes associated with neurological and neurodegenerative disorders wherein deleterious Alu activity has been documented 
experimentally or is hypothesized to disrupt gene function. Gene names in bold identify genes essential for mitochondrial function and transport 
and/or are associated with mitochondrial abnormalities (sensu Dawson et al. 1995, Calvo et al. 2015, Zempel and Mandelkow 2015, 
Bhattachargee et al. 2016, Chong-Chong et al. 2016, Checler et al. 2017, Johnson et al. 2017, Wang et al. 2013). For additional Alu associated 
diseases see Hancks and Kazazian (2016) and Payer et al. (2017). Asterisks identify genes where mutations result in dysregulation of Alu 
elements. 
	

Gene Name Disorder Alu Mechanism of Disruption Reference 

ABCD1 Adrenoleukodystrophy Deletion events Kutsche et al. 2002 

ACAT1 (T2) Mitochondrial acetoacetyl-CoA thiolase deficiency Deletion event Zhang et al. 2006 

ACE Alzheimer's disease Insertion events Wu et al. 2013 

ADAR2 Glioma Exonization Li et al. 2015 

ALDH7A1 Pyridoxine-dependent epilepsy Recombination Mefford et al. 2015 

ALMS1 Alström syndrome Insertion event  Taşkesen et al. 2012 

APOB Hypobetalipoproteinemia Recombination Huang et al. 1989 

ATP5J Alzheimer’s disease Duplication  Antonell et al. 2012 

ATP7A Menkes disease Insertion event  Gu et al. 2007; Bhattacharjee et al. 2016 

ATP7B Wilson's disease Alternative splicing Mameli et al. 2015 

C9orf72 ALS, FTLD Loss of epigenetic control, elevated Alu transcripts Prudencio et al. 2017 

CHD7 CHARGE syndrome Deletion Udaka et al. 2007 

CLN3 Batten disease Deletion Lerner et al. 1995 

COL4A5 Alport syndrome Deletion and exonization Nozu et al. 2014 

DICER1* Age-related macular degeneration Alu RNA build-up with reduced DICER1 activity Kaneko et al. 2011; Kim et al. 2014 

FXN Friedreich's Ataxia Alu repeat expansion, alternative splicing events Pandolfo 2006 

GK Glycerol kinase deficiency Insertion event  Zhang et al. 2000 

GLA Fabry disease Deletion event Dobrovolny et al. 2011 

HPRT Lesch-Nyhan disease Recombination Brooks et al. 2001 

HMBS Acute intermittent prophyria Insertion event  Mustajoki et al. 1999 

LPL Lipoprotein lipase deficiency Complex deletion-insertion Okubo et al. 2007 

MFN2 (CMT2a) Charcot-Marie-Tooth type 2A Copy number variants Pehlivan et al. 2016 

MPO Alzheimer’s disease Alu hormone response variant; estrogen dysregulation Reynolds et al. 1999 
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NDUFS2 Leigh Syndrome Exonization Larsen et al. 2017 

NF1 Neurofibromatosis type I Deletion and chimeric gene fusion Wimmer et al. 2011; Ferrari et al. 2017 

NFIX Marshall-Smith syndrome Deletions Schanze et al. 2014 

OPA1 Autosomal Dominant Optic Atrophy Alternative splicing events Gallus et al. 2010 

PARK2 Parkinson's disease Recombination Morais et al. 2016 

PARK7 (DJ-1) Parkinson's disease Deletion Bonifati et al. 2002 

PDHA1 Pyruvate Dehydrogenase Deficiency  Exonization Larsen et al. 2017 

PIGL CHIME syndrome Deletion Knight Johnson et al. 2017 

PMM2 Congenital disorders of glycosylation type Ia Complex deletion Schollen et al. 2007 

POMT1 Walker Warburg syndrome Insertion Bouchet et al. 2007 

PSEN1 Alzheimer’s disease Deletion Le Guennec et al. 2017 

PXMP2 (PMP22) Charcot-Marie-Tooth type 2A Alu-Alu-mediated rearrangement Choi et al. 2011; Gu et al. 2015 

RP2 (NUDT19) X-linked retinitis pigmentosa Alu-L1 recombination Schwahn et al. 1998, Jiang et al. 2017 

SLC6A4 Depression, reduced hippocampal volume Altered promoter methylation Dannlowski et al. 2014 

SLC25AC Intellectual disability Deletion Vandewalle et al. 2013 

SLC30A6 Alzheimer's disease, Dementia, ALS Gene fusion event Boone et al. 2014 

SMN1 Spinal muscular atrophy Exonization, deletion events, circularization  Ottesen et al. 2017 

SOD2 Hyperglycemia Repressed expression Wang et al. 2016 

SOX10 Waardenburg syndrome type 4 Deletion  Bondurand et al. 2012 

SPAST Autosomal-dominant spastic paraplegia 4 Deletions, CNVs, gene fusion events Boone et al. 2014 

SPG7 Hereditary spastic paraplegia Deletion, recombination Arnoldi et al. 2008; López et al. 2015 

SPG11 Hereditary spastic paraplegia Deletion  Conceição et al. 2012 

STAU1 Myotonic Dystrophy Type 1 Alternative splicing regulation Bondy-Chorney et al. 2016 

TDP-43 ALS, frontotemporal lobar degeneration Transposable element dysregulation Li et al. 2012 

TOMM40 Late-Onset Alzheimer's Disease Alu repeat expansion, putative alternative splicing events Larsen et al. 2017 

TRIM37 Mulibrey nanism Deletion events Jobic et al. 2017 
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