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Abstract  

Humans are highly skilled in social reasoning, e.g., inferring thoughts of others. This mentalizing ability 

systematically recruits brain regions such as Temporo-Parietal Junction (TPJ), Precuneus (PC) and medial 

Prefrontal Cortex (mPFC). Further, posterior mPFC is associated with allocentric mentalizing and conflict 

monitoring while anterior mPFC is associated with self-related mentalizing. Here we extend this work to 

how we reason not just about what one person thinks but about the abstract shared social norm. We apply 

functional magnetic resonance imaging to investigate neural representations  while participants judge the 

social congruency between emotional auditory in relation to visual scenes according to how ‘most people’ 

would perceive it. Behaviorally, judging according to a social norm increased the similarity of response 

patterns among participants. Multivoxel pattern analysis revealed that social congruency information was 

not represented in visual and auditory areas, but was clear in most parts of the mentalizing network: TPJ, 

PC and posterior (but not anterior) mPFC. Furthermore, interindividual variability in anterior mPFC 

representations was inversely related to the behavioral ability to adjust to the social norm. Our results 

suggest that social norm inferencing is associated with a distributed and partially individually specific 

representation of social congruency in the mentalizing network.  

 

Keywords: multisensory; multivoxel pattern analysis; social appropriateness; social reasoning; 

mentalizing  
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1. Introduction 

Humans have an extraordinary capacity to understand their conspecifics. This ‘social reading’ in natural 

environments involves the processing of visual cues – e.g., face expressions 
1
, auditory cues – e.g., 

prosody 
2,3

, and other sensory information that is usable to infer others’ feelings, desires and thoughts 
4–6

. 

Although our mentalizing capacity (or Theory of Mind) typically relies on sensory cues of concrete 

targets, it can also be performed with more abstract cues such as verbal information about a person
7
. 

Mentalizing tasks systematically activate the so-called mentalizing brain network, including the temporo-

parietal junction (TPJ), precuneus (PC) and medial prefrontal cortex (mPFC) 
4–6,8

. However it is unclear 

how the human brain mentalizes at a more abstract level, for instance, when targeting not only the 

thinking of one particular person but instead how the general population ‘thinks’? In other words, how 

does the human brain infer what ‘most people’ think, for instance concerning  appropriate social 

behavior?  

From a behavioral point of view, it is now known that the development of such abstract inferences of 

social norms relies on active learning during concrete social interactions at very early ages (at least 3 

years-old) 
9
 (but see also 

10
 for a passive social learning alternative). Learning social norms in a particular 

culture and in a particular family ultimately generates personal references of what most people think 

about appropriate reactions in different contexts (personal bias for social norms)
5,11,12

. Imagine for a 

moment that you are presenting your holiday pictures to an audience of relatives. Upon displaying a 

photograph of a beautiful scene, one observer reacts by expressing admiration using a vocal utterance 

(such as “uaaaauu”), whereas another expresses disgust (“uuuurg”). In this situation, the appropriateness 

of these two reactions will probably be perceived as congruent and incongruent, respectively, by most of 

us. Note however that in more nuanced or ambiguous situations, it can be challenging to judge social 
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congruency and to further estimate the ‘common sense’ or the ‘social norm’ (i.e., what most people would 

think about the social congruency), as it can be difficult to be detached from our own perspective.  

Here we present a new behavioral and neuroimaging paradigm which implements this latest example, 

requesting people to infer how most people would judge the congruency of vocal reactions to visual 

scenes. Here we will focus on the neural representations underlying this ‘social norm’ inferencing, an 

unexplored aspect in the social cognitive neuroscience literature.  

We expect to find social congruency information represented in the core mentalizing network but not in 

sensory areas in the visual or auditory systems. In addition, the mPFC might show further dissociations, 

as self-related mentalizing (egocentric) has been associated with brain activity in more anterior parts of 

mPFC, while mentalizing about others (allocentric) has been related to activity in more posterior parts of 

mPFC 
7,12,13

, as confirmed in a meta-analysis of more than 100 studies 
14

.  Furthermore, conflict 

monitoring is also hosted in posterior parts of mPFC 
15

. Thus, monitoring conflict of social congruency 

itself and/or between self-related and allocentric social norm responses, could also engage the posterior 

part of mPFC. We therefore predict to find stronger social congruency representations in posterior mPFC 

than in anterior mPFC.  

 

2. Results 

2.1 Behavioral results during the fMRI 

During the experiment in the fMRI scanner, binary judgments of social congruency (i.e., congruent vs 

incongruent) relative to the inferred social norm were collected. For each participant and run, behavioral 

similarity matrices were created by pairwise comparing responses for the 96 Audio-Visual conditions (12 

visual X 8 auditory; see Fig.1A). The most common response across runs was calculated at the individual 
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level (Fig. 1B) and at the group level (Fig. 1A). The group level result reflects the ‘shared social norm’ 

pattern of response among participants and follows essentially (in 94 out of 96 conditions) a cross-modal 

valence congruency pattern, i.e., visual and auditory stimuli with the same valence (both positive or both 

negative) are considered congruent while different valences are considered incongruent. Further, the 

correlation of these similarity matrices across 144 recordings (24 subjects X 6 runs; one subject excluded 

for missing run) revealed higher within-subject correlations (Pearson’s r = .54) than between-subject 

correlations (r = 0.29) (paired t-test: t(24) = 10.66; p < .0001). This result suggests that despite the fact 

that subjects were explicitly instructed to imagine ‘what most people would answer’, they were still more 

consistent with themselves than with others (personal bias). Importantly, there was a high degree of 

variability in the between-subject correlations, demonstrating that some participants were better than 

others in the ability to match the ‘shared social norm’ (see Figs. 1B and 3B). We will later use this 

between-subject variability in task performance to investigate interindividual differences in brain 

representations (see section 2.5). 

2.2 Behavioral results using a fine-grained scale (outside scanner) 

Outside the scanner, 2 runs of the same task were administered, but instead of binary responses 

(congruent vs incongruent), subjects used a finer-grained 9-level scale to rate the congruency level (see 

Methods). The same pattern of results was found, i.e., higher within-subject correlations than between-

subjects correlation (r = .67 vs .50 respectively; two-tailed paired t-test: t(24)= 6.67;  p < .0001), again 

with variations between subjects in how much they correlate with other subjects in terms of which 

congruency responses they give to specific visual-auditory stimulus combinations. Thus, both using fine-

grained scales and binary decisions the pattern of result is the same. 

2.3 Behavioral validation of the social norm perspective relative to egocentric perspective 

We assumed here that between-subject correlations are a quantitative measure of the extent that individual 

participants can identify the shared social norm, which they were required to do through explicit task 
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instructions. We tested this assumption by asking an independent group of participants to perform the 

same task with the fine-grained rating scale but now judging according to their own perspective 

(egocentric perspective) (see Methods). Results revealed that within-subject correlations were equivalent 

to those in the social norm perspective task (r = .65 vs .67 respectively; t(43) = -0.3) (see Fig. 2). More 

importantly however, egocentric perspective responses showed significantly lower between-subject 

correlations than in the social norm perspective (r = .33 vs .50; t(43) -7.1; p< .0001). In other words, by 

comparing the two fine-grained tasks, we find an objective increase in the similarity of the response 

patterns among participants when they are requested to judge social congruency under the ‘social norm’ 

perspective relative to when they use their personal perspective. This result demonstrates the sensitivity of 

our paradigm for subjective changes in the adopted perspective.  

2.4 Neural representations of social norm processing 

We used correlational MVPA to investigate whether there is a systematic difference between the multi-

voxel pattern associated with congruent trials and the multi-voxel pattern associated with incongruent 

trials (see Methods), thus revealing a neural representation of (in)congruency with the social norm. We 

calculated the correlation between multi-voxel patterns elicited by the same condition, r(same) (e.g., 

correlating congruent with congruent), and compared it with the correlation between patterns from 

different conditions, r(diff) (e.g., correlating congruent with incongruent). As expected and shown in 

Figure 3A, most brain regions of the mentalizing network represent social congruency as revealed by 

r(same) being higher than r(diff): PC (p = .046; all p’s Bonferroni-corrected for multiple comparisons, 

i.e., the number of ROIs), TPJ (p = .01) and posterior mPFC (p = .009) (see Fig. 3A). However, this was 

not the case for the anterior mPFC (p >.9) nor for any of the sensory regions: EVC (p > .9), LOC (p > .9), 

EAC (p >.9), and TVA (p = .12). 

2.5 Correlation between Neural x Behavioral data  
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The dissociation between posterior and anterior mPFC is directly relevant with regard to the perspective 

taken by our participants during the social congruency task. Previous studies have related allocentric 

perspective-taking with activity in posterior mPFC, and egocentric perspective taken with activity in 

anterior mPFC 
7,12–14

. We asked subjects to take an allocentric perspective, which might be the 

explanation for the presence of the neural representation in posterior mPFC and not in anterior mPFC. 

However, not all subjects performed this task in the same manner. As mentioned before, the size of 

between-subject correlations in behavioral response patterns, which we have shown to be modulated by 

the adoption of a social norm vs egocentric perspective (see Section 2.3), showed a lot of inter-subject 

variability. Hence, we wondered whether participants who were less able to adopt the requested 

allocentric social norm perspective may show a stronger (egocentric) congruence representation in 

anterior mPFC? To test this hypothesis, we computed a behavioral index quantifying to what extent the 

response pattern of a particular subject is similar to the other participants relative to him/herself: a 

between/within subject correlations ratio. A lower ratio indicates that a participant was less able to 

incorporate the shared social norm response.  Results indeed revealed the predicted direction of the 

association: a negative correlation between social congruency information in anterior mPFC and the 

behavioral index of social norm inference: Pearson’s r = -.44; one-tailed p = .021 (Fig. 3C). In contrast, 

posterior mPFC shows a nonsignificant trend in the opposite direction (r = .24; p = .126). Comparing the 

differences in correlation between anterior and posterior mPFC, we found a significant difference (Z = -

2.89; p = 0.002).    

 

3. Discussion:  

To shed light upon the neural basis of ‘social norm’ inferences, we used a naturalistic audio-visual fMRI 

paradigm that mimics social reactions (vocalizations) in different visual contexts while asking subjects to 

imagine what most people would answer concerning the social congruency.  
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Behavioral data enabled us to (1) assess to what extent our paradigm is sensitive to the adopted 

perspective, with reference to an allocentric “social norm” versus an egocentric perspective, and (2) 

quantify the degree to which individual participants adhere to the shared social norm. First, behavioral 

response patterns revealed that when using the social norm perspective, participants objectively show 

higher between-subject correlations than when an egocentric perspective was adopted (Fig. 2),. Further, 

as there is no unequivocal ‘correct response’ on these subjective judgments of social congruency, 

similarity of response patterns across subjects was used to quantify task ‘performance’, i.e., the ability of 

each participant to match to the shared social norm (Fig. 1), revealing a good degree of variability across 

subjects (Fig. 3B). Importantly, within-subject correlations were higher than between-subject correlations 

in both social norm and self-related tasks and presented the same correlation level across the two tasks 

(Fig. 2).  

 At the brain level, we found that social congruency processing was not hosted in low and high-level 

visual and auditory sensory areas. In contrast, three of the core regions of the so-called mentalizing 

network 
4–6,8

 were engaged: Precuneus (PC), Temporo Parietal Junction (TPJ) and medial Prefrontal 

Cortex (posterior but not anterior part). Our allocentric mentalizing task could have favored the posterior 

instead of the anterior mPFC site for social information processing. Accordingly, previous work have 

shown a dissociation between egocentric and allocentric mentalizing processing in anterior and posterior 

mPFC respectively 
7,12–14

. Taken together, the recruitment of the core mentalizing network and the 

dissociation in mPFC suggests that largely the same neural mechanisms are used for mentalizing about a 

concrete single person and for more abstract general population mentalizing.   

We further tested if the social norm perspective used during scanning would be related to the lack of 

social congruency information in anterior mPFC. If so, we would expect that participants who are less 

able to adopt an allocentric social norm perspective are the ones who show the strongest evidence for 

egocentric social congruency representations in anterior mPFC. And indeed, this is exactly the pattern that 

was observed in anterior mPFC (Fig. 3C). The pattern was clearly different in posterior mPFC.  
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We should acknowledge that the mere observation of a social congruency representation does not 

pinpoint which processes are reflected in this representation. For the same reason we cannot be sure to 

what extent the significant congruency representation in the three mentalizing regions reflects similar or 

different functions. As one example of potentially different functions, the posterior part of mPFC has also 

been associated with conflict monitoring 
15

, including conflict monitoring in the context of social 

information processing 
16–18

. Assuming that conflict monitoring would have played a role in posterior 

mPFC activity,  it remains unclear whether posterior mPFC may have tracked conflicts concerning the 

social congruency itself (congruent vs incongruent) or rather conflicts between self-related and social-

norm responses (or even both). Further investigations should clarify this issue. 

Taken together, the present results are compatible with the following interpretation: when inferring how 

most people would judge the appropriateness of social behavior, one engages the mentalizing network in 

the same way as when mentalizing about specific persons. During social norm mentalizing, three of the 

core mentalizing regions show a significant representation of social congruency. The fourth region, 

anterior mPFC, shows considerable inter-subject variability in this congruence representation which is 

related inversely to the ability to take the allocentric perspective.   

 

4. Material and Methods 

4.1 Participants: 

Twenty-five healthy subjects (7 female, 23.16 ± 3.32 years old, 7 left-handed) took part in the fMRI 

study. They all reported normal or corrected-to-normal vision, normal hearing and no neurological or 

psychiatric disorders. They received a financial compensation for their participation. The study was 

approved by the Medical Ethics Committee UZ/ KU Leuven University and all methods were performed 
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in accordance with the relevant guidelines and regulations. All participants provided written informed 

consent prior to scanning. 

4.2 Visual stimuli 

Twelve images were selected from the standardized and widely used emotional pictures set IAPS 

(International Affective Picture System) 
21

, based on extreme valence ratings (positive vs  negative) and 

on animacy categorization (animate vs inanimate). The six animate (e.g., humans, animals...) and the six 

non-animate pictures (e.g., landscapes, objects…) were orthogonal to the image valence, with half of 

them rated positively (e.g., happy baby), and half of them negatively (e.g., people being threatened with a 

gun). Based upon the quality of the brain responses evoked by a larger dataset of 24 IAPS images present 

in the pilot fMRI study (cf. infra), this final set of 12 images was selected: numbered 2341, 1710, 1750, 

5760, 5825, 7492, 3530, 1300, 1930, 9290, 9300, 9301 in the IAPS database. IAPS policy requests not to 

publish the original images.  

4.3 Auditory stimuli 

Eight different non-verbal vocal utterances were used, inspired by previous work 
22

. They express four 

different emotional reactions that could be more or less congruent with the pictures previously selected. 

Utterances expressing disgust, fear, admiration and cuteness, were recorded in an expressive but still 

natural manner (not an exaggerated caricature). Each emotional vocalization was performed by one male 

and one female actor. They were recorded in a sound-proof room at 96 kHz sampling rate and 32-bit 

resolution, and were down-sampled to 44 kHz and 16-bit mono-recordings to reduce the size of the audio 

files. All stimuli had a fixed duration of 700 ms and an equivalent total Root Mean Square (RMS) power 

(–17.4 +/- 0.17 dB). Stimuli were slightly manipulated in Cool Edit Pro software and Adobe Audition CC 

2015 software. Identical 600 ms silent periods were added before the onset of each auditory stimulus to 

create a natural delay from the visual stimulus onset, and a 100 ms silent period was added after the end 
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of the utterance to provide stable ending transitions. Stimuli can be found here: 

https://osf.io/t7xp9/?view_only=74aa08cefd634f09a70bac531ecf880e. 

4.4 Behavioral Task in the scanner 

Participants were lying in the scanner while watching a visual display and hearing auditory input through 

headphones. They were instructed to imagine they were seeing images (photographs) together with other 

unknown people. For each image, after a short delay, participants heard a vocal reaction (emotional 

utterance) that could be more or less congruent with the particular scene. The task was to evaluate the 

congruency of the vocal reaction in relation to the visual context. Yet, they did not have to judge this 

congruency from their own personal perspective, but instead they were explicitly instructed to evaluate 

whether most people would consider this vocal response appropriate or not (mentalizing the ‘social 

norm’) and respond accordingly. The two assigned buttons (congruent vs incongruent) were switched 

after 3 runs out of 6, and the assigned order was balanced across subjects.  

4.5 Experimental fMRI runs 

The fMRI session consisted of 6 runs, each with 96 pseudo-randomly presented experimental trials, i.e., 

all 12 visual stimuli paired with all 8 auditory stimuli. Additionally, 10 silent fixation trials were included 

among them, as well as 3 initial and 3 final dummy trials, making a total of 112 trials, with 4.5 seconds of 

Stimulus Onset Asynchrony (SOA), summing to 504 seconds of duration per run. Each experimental trial 

started with a visual image for 2.5 secs during which an auditory utterance was played via headphones 

(from 0.6 to 1.3 secs relative to the onset of the visual image) to simulate a natural delay before the vocal 

reaction. A 2 secs fixation cross was then displayed until the end of the trial. Subjects could respond any 

time within the trial and were instructed to press the buttons as soon as they know the answer.  

4.6 fMRI data acquisition 
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Imaging data were acquired using a 3T Philips Ingenia CX scanner (Department of Radiology of the 

University of Leuven) with a 32-channel head coil. Each functional run consisted of T2*-weighted 

echoplanar images (EPIs), with voxel size = 2.52 x 2.58 x 2.5, interslice gap 0.2 mm, TR = 2550 ms, TE 

= 30 ms, matrix = 84x82, 45 slices, field of view (FOV) = 211 x 211 x 121. In addition to the functional 

images we collected a high-resolution T1-weighted anatomical scan for each participant (182 slices, voxel 

size = 0.98 x 0.98 x 1.2 mm, TR = 9.6 ms, TE = 4.6 ms, 256 x 256 acquisition matrix). Stimuli were 

presented using Psychtoolbox 3 (Brainard, 1997). Visual stimuli were displayed via an NEC projector 

with a NP21LP lamp that projected the image on a screen the participant viewed through a mirror. 

Viewing distance was approximately 64 cm.  Auditory stimuli were presented through headphones at a 

comfortable hearing level. 

 

4.7 fMRI preprocessing 

Imaging data were preprocessed and analyzed using the Statistical Parametrical Mapping software 

package (SPM 8, Welcome Department of Cognitive Neurology, London, UK) and MATLAB. 

Functional images underwent slice timing correction (ascending order; first image as reference), motion 

correction (3rd degree spline interpolation), co-registration (anatomical to functional images; mean 

functional image as reference), and spatial normalization to the standard MNI (Montreal Neurological 

Institute) brain space. Functional images were resampled to a voxel size of 2.2 x 2.2 x 2.7 mm and 

spatially smoothed by convolution of a Gaussian kernel of 5 mm full-width at half-maximum 
23

. One run 

of one subject was not considered due to excessive head movement (cut-off: 1 voxel size for two 

successive images). 

4.8 General Linear Model (GLM) 

We applied a general linear model focusing upon the representation of social congruence. For each 

participant and run, pre-processed images were modeled for each voxel using GLMs. They included 
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regressors for each experimental condition and the 6 motion correction parameters (x, y, z for translation 

and rotation). Each predictor’s time course was convolved with the canonical hemodynamic response 

function (HRF) in SPM. The social congruency GLM had two conditions (congruent vs incongruent) 

based on cross-modal valence congruency (e.g., a positive image combined with a negative utterance is 

considered ‘incongruent’). This approach guaranteed a perfect balance between ‘congruent’ and 

‘incongruent’ conditions, while avoiding potential visual or auditory biases, because all visual and 

auditory stimuli occurs an equal number of times for congruent and incongruent trials. As we used 

extreme ends of the valence continuum (very positive or very negative), both for the visual and auditory 

domains, we assumed that in binary choices this social congruency criterion would reflect quite well the 

participants’ responses. Indeed, group average responses showed a large overlap with this a priori 

definition of social congruency, as it was the most common response in 94 out of 96 A-V combinations 

(see Fig. 1A). Thus, this social congruency modeling also represents to a very large extent, the ‘shared 

social norm’ pattern, among the participant sample. The two social congruency conditions were modeled 

in relation to the time-window during which social congruency judgements could be performed, i.e., from 

the beginning of the auditory presentation (0.6 secs from trial onset) until the end of the trial (4.5 secs).  

4.9 Regions of Interest (ROIs): 

As primary ROIs we targeted the mentalizing neural network: medial Prefrontal Cortex (mPFC), 

Temporo-Parietal Junction (TPJ) and Precuneus (PC). Following the same approach as a recent meta-

analysis of different mentalizing tasks 
6
, we used the same parcels that were obtained in functional 

connectivity studies, both for mPFC 
28

 and TPJ 
29

. Note that only right hemisphere parcels are available 

for these two ROIs. Further, as we did not have particular hypotheses for the two subdivisions of TPJ 

(anterior and posterior parcels) we grouped them together in a single ROI. In contrast, for the mPFC, we 

kept this distinction as the literature shows a clear functional dissociation between anterior vs posterior 

parts for self-related vs others-related mentalizing processes respectively 
7,12–14

, by integrating the four 

original parcels into two. Finally, for PC, we used the anatomical mask in WFU Pickatlas (SPM).  
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In addition, we included two visual and two auditory ROIs as further control ROIs. Our approach was to 

select the best available templates to delineate brain areas corresponding to low-level as well as high-level 

processing in each modality, avoiding in that way both manual delineation of ROIs and the use of several 

functional localizers. Low-level processing is localized in primary sensory cortices, of which we know 

that anatomical landmarks provide a proper approximation. Thus, we used anatomical masks from the 

anatomical atlas WFU PickAtlas Toolbox (Wake Forrest University PickAtlas, 

http://fmri.wfubmc.edu/cms/software). The low level visual ROI (Early Visual Cortex-EVC) was defined 

based on Brodman’s areas (BA) 17 and 18 as they are widely accepted landmarks for low level visual 

processing. The low-level auditory ROI (Early Auditory Cortex- EAC) was composed by BA 41 and 42. 

The resulting EVC and EAC ROIs presented very thin configurations. This would lead to unrealistic 

delimitations of early processing cortex given the spatial uncertainty involved when comparing brains 

across subjects. We thus made them thicker by 1 voxel in all three directions to accommodate the spatial 

uncertainty in the probabilistic map. This procedure is nowadays already incorporated in PickAtlas 

through the 3D dilatation function.  

Pure anatomical delimitation is less appropriate for high-level sensory regions, thus we used functional 

parcels obtained independently by other laboratories. As a high-level visual ROI, a functional parcel of 

the Lateral Occipital Complex (LOC) from the Kanwisher lab was used 
24

. The high-level auditory ROI 

was based upon the ‘Temporal Voice Area’- TVA probabilistic map from Belin’s lab 
25

 concerning more 

than 200 subjects, available at neurovault (http://neurovault.org/collections/33/).  

These general masks were combined (by means of a conjunction analysis) with individual functional data 

that specify voxels modulated by our task: the F-contrast of all task trials against fixation trials, at a 

threshold of 0.0001 (uncorrected for multiple comparisons), using a separate ‘neutral GLM’ where all 

task trials were modeled as a single condition (fixation was implicitly modeled). ROIs with at least 20 

active voxels were included. If a given participant ROI did not meet these criteria, his/her data was not 

used in the group analysis for this ROI. This situation only took place for two subjects in the anterior 

mPFC. 
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To ensure that no overlap occurs between ROIs, we visually inspected ROI borders of each ROI pair and 

restricted the ROIs to avoid the overlap.  As a first measure, we restricted the TVA probabilistic map to 

the most significant voxels by imposing an arbitrary threshold of t = 50, which restricted the ROI to their 

classical temporal cortex disposition, and reduced considerably its overlap with other regions (e.g., TPJ). 

The resulting map was then transformed in a binary mask. As an additional measure, for this and all the 

other ROIs (all binary masks), we excluded the remaining overlapping voxels from the largest ROI of 

each pair. Only the following ROI intersections presented some overlap: EVC x LOC, EVC x PC, EAC x 

TVA, EAC x TPJ and TVA x TPJ (the first of each pair being the largest one). This procedure ensured a 

complete separation of the ROIs. 

Given its role in emotional processing, we have also considered using an amygdala ROI. Yet, we are not 

confident that our standard imaging protocol at 3T was sensitive to pick up multi-voxel patterns in 

amygdala, which was further confirmed by null results in other (here unreported) analyses focusing upon 

other dimensions such as the properties of the visual/auditory stimuli. The ROI did not show any 

significant representation of social congruence, but given our doubts about the data quality in this ROI we 

do not think we can interpret this result and we preferred to not include the ROI further. 

 

4.10 Correlation-based multivoxel pattern analysis 

We used correlation-based multivoxel pattern analysis (MVPA) to explore how the spatial response 

pattern in individual ROIs differs between experimental conditions 
30

. For each participant, we extracted 

the parameter estimates (betas) for each condition (relative to baseline) in each voxel of the ROIs. These 

obtained values for each run were then normalized by subtracting the mean response across all conditions 

(for each voxel and run separately), to emphasize the relative contribution of each condition beyond 

global activation level, as previously done in the literature 
31,32

. The full dataset (6 runs) were randomly 

divided into two independent subsets of runs (using ‘randperm’ function in matlab). Thus, typically three 

runs were randomly assigned to set 1 and three other runs to the set 2 of the classification procedure. In 
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the single case of incomplete data (5 runs instead of 6), only two runs were assigned as set 1. The multi-

voxel patterns associated with each condition (congruent and incongruent) in set 1 (runs averaged) were 

pairwisely correlated with the activity patterns in set 2 (runs averaged) by using the ‘corrcoef’ function in 

matlab (Persons’ r correlation coefficient). This procedure of splitting the data in two parts followed by 

correlating the multi-voxel patterns was repeated 100 times. The final 2x2 neural similarity matrix for 

each ROI was obtained by averaging these 100 matrices.  

To test whether a certain region contained information about social congruency, we applied the following 

procedure. First, we calculated for each ROI, the mean correlations in the diagonal (correlation of the 

same condition across runs) and non-diagonal cells (correlation of different conditions across runs) of the 

neural similarity matrix.  Then, we performed a two sample two-tailed t-test across participants for 

diagonal vs non-diagonal mean correlations. This procedure is based on the fact that the same condition 

will typically show higher similarity across runs relative to different conditions, i.e., higher correlations 

for diagonal vs non-diagonal cells 
34

. Lastly, a Bonferroni correction for multiple comparisons (i.e., the 

number of ROIs) was applied. 

To investigate the potential relationship between brain information level of social congruency with 

behavioral ‘performance’ on the social norm inference task, i.e., the ability to match the response chosen 

by their peers, we performed a correlational analysis using a brain index (diagonal minus non-diagonal 

values) against a behavioral index (individual between/within subjects correlation ratio; see Fig. 3A).  

4.11 Searchlight MVPA analysis  

Searchlight MVPA analysis was used as a complementary way to check for potential missing anatomical 

areas outside our a priori ROIs. We used the searchlight scripts of the cosmo MVPA toolbox 
35

 to search 

for local neighborhoods that revealed significant congruence representations (diagonal > nondiagonal), 

using the default parameters (e.g., spherical neighborhood of 100 voxels). The searchlight analysis was 

performed for each individual participant, after which the results were smoothed to 8 mm full-width at 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230508doi: bioRxiv preprint 

https://doi.org/10.1101/230508


17 
 

half-maximum and a 2
nd

 level model was performed (both using SPM). One participant was excluded 

from this analysis because of a missing run (excluded for excessive movement). No extra brain region 

captured the social congruency information. 

4.12 Univariate analysis 

Correlations between activity patterns (MVPA) are not necessarily related to overall differences in 

activity level between conditions (univariate analysis). Nevertheless, it is relevant to know whether 

MVPA findings are found in the context of effects that can also be picked up by a univariate voxel-level 

difference in activity (FWE corrected at p < .05). There were no significant effects of social congruency 

(congruent trials higher or lower than incongruent trials) in a whole brain analysis.  

4.13 Outside the scanner 

Prior to scanning, participants performed valence rating judgments for the stimuli of each modality 

(visual and audio) separately, using a 9-level scale. This was used to familiarize participants with the 

stimuli set used in the fMRI runs and to create group averaged perceived valence models.  

Additionally, participants also performed two runs of the main task (as inside the scanning, i.e., using an 

allocentric ‘social norm’ perspective to judge congruency) but instead of binary responses (congruent vs 

incongruent) they used here a 9-level scale rating. One run was performed before and one after the fMRI 

scans. Beyond the familiarization with the task, this was helpful to check reproducibility of response 

patterns within and between-subjects, in a more fine-grained way.   

4.14 A behavioral control experiment: Allocentric perspective 

To validate the sensitivity of our behavioral paradigm to the ‘social norm’ perspective taken during the 

main behavioral and neuroimaging experiments, we compare these results with a behavioral control 

experiment. The control experiment included the same task but instead of asking participants to judge 

‘what most people would answer’ (allocentric perspective), they were instructed to answer as a function 
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of their own perspective (egocentric perspective). Twenty other subjects (age: 19.9 +/- 2.02 yrs old) 

performed this task with a 9 level rating of congruence. The visual stimulus set was larger (double) but 

the analysis presented here was restricted to the exact same stimulus set used in the main fMRI 

experiment and in the task performed outside the scanner previously described. The auditory set was 

perfectly equivalent at the perceptual level, but slightly differed in terms of low-level auditory features 

such as duration and total RMS. 

4.15 Data Availability 

The files needed to replicate the analyses will be made available on the Open Science Framework (e.g., 

ROI definitions and individual subject representational similarity matrices). Other aspects of the data (raw 

data files, other steps in the analyses) are available from the corresponding author on reasonable request.   
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Figure 1: Behavioral responses during the scanner.  Most frequent binary (congruent vs incongruent) 

response per Audio-Visual (A-V) stimuli combination (8 audio X 12 visual = 96) across the six runs, at 

the group level (A), representing thus the ‘shared social norm’ among participants, and at the individual 

level (B). Both for visual and auditory domains, half of the stimuli presented a positive valence and the 

other half a negative valence.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230508doi: bioRxiv preprint 

https://doi.org/10.1101/230508


24 
 

 

 

Figure 2: Behavioral responses outside the scanner using a fine-grained scale. A) Same task as in the 

scanner (social norm reference). Outside the scanner, subjects performed 2 runs of the same social norm 

perspective task but instead of binary responses, they used here a more fine-grained scale (9 levels). B)  

Control task (self-reference). A separate group of subjects performed a control task, where the 

judgements were based on their own perspective of social congruency, using again a 9 level scale (see 

Methods for details). C) Comparing self-reference versus ‘social norm’ reference judgements. 

Comparison of the results of the two tasks, so that each of the in total 45 participants is correlated with 

each of the other participants.   
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Figure 3: Social Congruency Brain Representations. Two conditions (congruent vs incongruent) were 

defined in a GLM model of the fMRI data and then 2 x 2 neural similarity matrices were created (inset). 

A) ROIs with social congruency information. None of the sensory areas (EVC = Early Visual Cortex; 

LOC = Lateral Occipital Complex; EAC = Early Auditory Cortex; TVA = Temporal Voice Area) show 

significant social congruency information content, while three of the mentalizing network ROIs did show 

(PC = Precuneus; TPJ = Temporo-Parietal Junction and mPFC = medial Prefrontal Cortex in its posterior 

part).   B) Behavioral response patterns across subjects. Similarity of behavioral responses for the 96 

audio-visual combination conditions, across runs and subjects (left panel) were calculated for each pair of 

subjects (Pearsons’ r correlations). Within and between subject correlations (cells in white; right panel) 

revealed higher within than between-subjects correlations, and an important variability across subjects. A 

behavioral indication of the ability to infer what most people would answer instead of oneself (a social 

norm mentalizing ‘performance’), was indexed by the individual between/within correlations ratio. C) 

Linking neural and behavioral data. To test if the social norm mentalizing performance (behavioral 

index) could be explained by differences in social congruency neural data in subparts of mPFC, brain x 

behavior correlations were performed. 
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