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Abstract 

Intrinsic dynamics of chromatin contribute to gene regulation. How chromatin mobility responds to 

genomic processes and whether this response relies on coordinated movement is still unclear. Here, 

we introduce an approach called Dense Flow reConstruction and Correlation (DFCC) to quantify 

correlation of chromatin motion with sub-pixel sensitivity at the level of the whole nucleus. DFCC is 

based on reconstructing dense global flow fields of fluorescent images acquired in real-time. By 

simulating variations in microscopic and dynamic parameters, we demonstrate that our approach is 

robust and more accurate than other methods to estimate flow fields and spatial correlations of 

dense structures such as chromatin. We applied our approach to analyze stochastic movements of 

DNA and histones based on direction and magnitude at different time lags in human cells. We 

observe long-range correlations extending over several µm between coherently moving regions over 

the entire nucleus. Spatial correlation of global chromatin dynamics was reduced by inhibiting 

elongation by RNA polymerase II and abolished in quiescent cells. Furthermore, quantification of 

spatial smoothness over time intervals up to 30 seconds points to clear-cut boundaries between 

distinct regions, while smooth transitions in small (< 1µm) neighborhoods dominate for short time 

intervals. Clear transitions between regions of coherent motion indicate directed squeezing or 

stretching of chromatin boundaries suggestive of changes in local concentrations of actors regulating 

gene expression. The DFCC approach hence allows characterizing stochastically forming domains of 

specific nuclear activity. 
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Significance Statement 

Control of gene expression relies on modifications of chromatin structure and activity of the 

transcription machinery. However, how chromatin responds dynamically to this genomic process and 

whether this response is coordinated in space is still unclear. We introduce a novel approach called 

Dense Flow reConstruction and Correlation (DFCC) to characterize spatially correlated dynamics of 

chromatin in living cells at nanoscale resolution. DFCC allows us to detect chromatin domains in living 

cells with long range correlations over the entire nucleus. Furthermore, transitions between domains 

can be quantified by the newly introduced smoothness parameter of local chromatin motion. The 

DFCC approach permits characterizing stochastically forming domains of other DNA dependent 

activity in any cell type in real time imaging. 

Introduction 

The spatial organization of chromosomes is characterized by short- and long-range contacts bringing 

chromosome domains into spatial proximity and creating chromosome territories (CT) detectable by 

fluorescent in situ hybridization (FISH) (1, 2) and high-throughput chromosome conformation capture 

(Hi-C) (3) in human cells. Live cell imaging of CTs identified random and directed motion of sub-

chromosomal foci and suggested similarities in dynamic behavior between distinct CTs (4). On the 

time scale of several seconds, chromatin was shown to move coherently irrespective of CT 

boundaries implying a transient mechanical coupling between chromatin over a few microns (5, 6). 

Fluctuations in chromatin architecture occur over a large range of spatio-temporal scales during 

regulatory processes (3, 7, 8). This range of variations makes studying of molecular organization and 

dynamic processes of the whole genome challenging. In particular, actively transcribed genes depend 

on chromatin dynamics to fine-tune expression levels (9). Active genes sometimes gather 

dynamically to share the same transcription sites (10, 11) within which the range of chromatin 

movement is thought to correlate with mRNA production and enhancer activity (10). Coordinated 

relocalisation or extrusion of activated genes to the surface of CTs is coherent with the idea that this 

process allows reaching shared transcription factors (12–14). The mechanism of such movements is 

unknown.  

Chromatin motion during processes related to genome function in mammalian cells can be studied 

by fluorescence live imaging. Most of these studies rely on labeling single loci or arrays of repeated 

DNA sequences with assistance of gene editing techniques (15–20). Single particle tracking 

demonstrated that motion of the tagged DNA loci in cells is sub-diffusive although super-diffusive 

behavior was reported (18, 19). The heterogeneity in motion of telomeres is particularly striking (21, 

22). In agreement, large fluctuations in sub-diffusive behavior were also determined for H2B-GFP 
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imaged with sub-second time intervals (23, 24). To gain a true understanding of the physical nature 

of a long fiber structure such as genomic chromatin and how this fiber behaves on a global scale, 

chromatin has to be analyzed at a large scale across the entire nucleus. Recently, a dynamic analysis 

based on correlation spectroscopy of time-resolved imaging using particle imaging velocimetry (PIV) 

(6) reported a global view on the chromatin motions. However, a relatively large interrogation 

window size of more than one micrometer was set to estimate the displacement vectors. Dynamic 

changes within the set window cannot be considered, hence missing the contribution of genomic 

processes to local chromatin motion.  

Here, we introduce an approach called Dense Flow reConstruction and Correlation (DFCC) to quantify 

the correlation of chromatin motion with sub-pixel sensitivity at the level of the whole nucleus. DFCC 

provides sub-diffraction vectorial information, based on reconstructed dense global flow fields of a 

series of diffraction limited fluorescent images. The sample pixel size defines the dynamic resolution 

of the results independently of its dimensions (here down to 65 nm). We use Optical Flow (OF) to 

estimate the direction and amplitude of the motion of fluorescent labeled DNA and histones over a 

30 second time interval at 5 fps, and confirm that an OF formulation is more sensitive than PIV for 

studying the motion of intracellular objects (25). We calculate the spatial and temporal correlation 

based on both direction and amplitude of each displacement vector, and quantify characteristic 

length scales of correlated motion with nano-scale resolution. Estimation of the smoothness of flow 

fields across the whole nucleus at different transcriptional stages reveals coherently moving 

chromatin domains.  

 

Results and discussion 

Comparison of Optical Flow methods for precise estimation of chromatin dynamics by simulations: 

In order to evaluate the accuracy of different OF methods quantitatively for chromatin motion, 

ground truth data is required, but unavailable for biological systems. To overcome this lack we 

simulated images recapitulating our experimental conditions with a range of microscopic (labeling 

density, Signal-to-Noise ratio (SNR)) and dynamic (diffusion coefficient, number of independently 

moving domains) parameters. In this study, we considered five Optical Flow methods that cover four 

types of OF, namely differential methods (Horn and Schunck (HS); Lucas and Kanade (LK) 

formulations) (26, 27), region-based matching (hereafter Particle Image Velocimetry – PIV) (28), 

phase-based methods (29) and SIFT-based methods (30). Details of all the tested algorithms can be 

found in Supplementary Note 1. We evaluated the performance of the different methods by 

determining the angular error (AE) and the endpoint error (EE) in simulated data sets (Materials and 
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Methods). The simulation of data samples was carried out by randomly placing emitters with a 

defined density in a given volume with varying SNR as described in (Supplementary Note 1, 

Supplementary Figure S1). A series of two images was simulated where emitters undergo Brownian 

diffusion and therefore are displaced from one image to another. We simulated a density ranging 

from 0.02 to 2.5 emitters per pixel representing the spatial variation of chromatin compactness 

within hetero- and euchromatin (23) (Supplementary FigureS1a-c). Further, we varied the particles’ 

diffusion coefficient as well as the number of coherently moving domains which could potentially 

reflect chromatin motion at different length scales (Supplementary FigureS1f-g). The images were 

then subjected to OF algorithms in order to reconstruct the direction and magnitude of the emitters’ 

movements. Regions within the emitters are forced to undergo coherent motion were superimposed 

as described in (Supplementary Note 1).  

First we tested the impact of labeling density on the accuracy of the methods to define vectors` AE 

and EE. We noticed that by increasing labeling density, error measures increased for all methods. A 

jump was seen in the EE of the HS formulation once the density approaches~1/𝑝𝑥. Our simulations 

showed that, even with labeling density increasing 150-fold, the AE maximally increased 3.9-fold and 

EE increased 3.4-fold (Figure 1). The tested methods therefore did not scale linearly with increasing 

density but were robust with respect to varying emitter densities. Although HS and PIV (window size 

16×16 pixels) performed best, HS had the lowest AE (˂10 deg), 2-fold better than PIV (16×16 pixels). 

Next, we considered variations in SNR due to characteristics of the specimen and intrinsic signal-

dependent Poisson noise (Supplementary Figure S1d-e). Figure 1 shows that the accuracy of all 

methods decreases with noise and a characteristic step at 𝑆𝑁𝑅 ≈ 90 can be observed. The EE of PIV 

methods using a small window size (8x8 pixels or smaller) was particularly sensitive to a low SNR 

because cross-correlation methods strongly respond to noise. When the noise levels are high, a 

displacement peak may become smaller than surrounding noise peaks and the probability increases 

that an erroneous noise peak is chosen (31). Especially for small displacements, this results in a bias 

towards larger displacements and therefore an increase in the EE. 

Optical Flow methods should be sensitive to displacement magnitude in order to capture the 

temporal and spatial amplitude of chromatin dynamics, typically characterized by diffusion 

coefficients ranging from10−2 to10−3 μm2/s (6, 23). Increasing the emitters’ diffusion coefficient, 

i.e. increasing the distance by which each emitter is allowed to move per time step, enhanced the 

accuracy in determining the direction of displacement. OF methods using coarse-to-fine estimation 

schemes did not show substantially different trends than methods without a pyramidal structure 

(Figure 1). For the SIFT-based method, the magnitude of estimated vectors is unrestricted, and 
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therefore displacements investigated in this study did not impose limitations on the method. 

However, the EE of the LK formulation was substantially less robust against variations in the 

displacement’s magnitude than other formulations. 

Varying the number of independently moving domains showed that errors increased with greater 

complexity in motion independently of the method employed. For 10 domains and more, the LK-

based method outperformed the HS formulation in terms of AE. Nevertheless, if the accuracy of the 

method is assessed by EE, the HS method performed substantially better than all other methods. 

Note that results from the SIFT-based method were the most stable to variations in imaging 

conditions among all investigated methods. The local LK formulation displayed relatively a high EE for 

all simulation parameters. The formulation requires a Tikhonov regularization (32), which resulted in 

a bias towards smaller displacements and therefore increased the EE (Supplementary Note 1).  

Several PIV methods differing by their interrogation window size were tested. The accuracy achieved 

by these methods was dependent on the window size. Although the AE of PIV using a window size of 

16x16 pixels was as low as the one using the HS method, PIV failed to identify different domains of 

coherent motion. Based on our simulations, we determined that the interrogation window size used 

in PIV should be equal or larger than the expected maximal displacement. Otherwise, emitters 

moving out of the interrogation window create errors resulting from calculations of cross-correlation 

from signal loss. In the present study, the maximum distance was 4 px/frame, and therefore even PIV 

using the smallest window size of 4x4 pixels was capable to estimate direction of motion. Since the 

calculation of the cross-correlation largely depended on window size, the window-size must be 

carefully adjusted to the data. Multiple small independently moving objects within the same sub-

region might lead to erroneous results due to several independent motions within the pattern. 

Careful adjustment of the window size is particularly difficult when studying chromatin dynamics (6), 

where the expected density of emitters and their dynamic behavior is hard to predict.  

On average, the HS-based method outperformed all other methods and was thus chosen as the most 

reliable for the experimental analysis hereafter. In conclusion, our simulations show that the HS 

based OF method is appropriate for studying chromatin dynamics based on fluorescence imaging. 

Correlation modeling of dense motion fields: Vector fields produced by Optical Flow algorithms may 

be considered as two independent scalar fields representing direction and magnitude of the vector 

field. Each value in these fields can be described as a stochastic variable which led us to consider the 

scalar fields as random fields. This allows parametrization of the correlation of chromatin dynamics in 

each random field using the Whittle-Màtern (WM) model (33, 34):  
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Where, Γ(⋅) is the gamma function; 𝐾𝜈(⋅) is the modified Bessel function of the second type of 

order 𝜈, 𝜌𝑐 is the correlation length, and 𝜈 is a smoothness parameter (Supplementary Note 2). The 

WM model has important advantages for modeling spatial processes by including a parameter which 

characterizes the smoothness of the corresponding random fields. Large 𝜈 means that the underlying 

spatial process is smooth in space, whereas the process is considered as rough for small ν (35, 36) 

(Supplementary Note 2). An analogy between the smoothness of a random field and its 

differentiability can be drawn (provided 𝜈 ≥ 1) (37). The association of the smoothness parameter to 

the existence of directional derivatives gives rise to the concept that a smooth field does not exhibit 

singular points and is continuous in the domain of computation. Smooth fields are uncommon for 

natural processes, but the parametrization of smoothness allows identifying sharp transitions (e.g. 

object boundaries, singular points) in a quantified manner.  

Dense flow correlation of chromatin dynamics based on real time imaging in 2D: We determined 

flow fields of chromatin motion based on real time imaging (a series of 150 single plane images 

acquired at 5 fps) of a single U2OS nucleus expressing H2B-GFP (Figure 2a-b) and compared the 

response of the five methods under consideration. The empirical correlation was calculated and 

projected onto the one-dimensional space lag 𝜌 from two successive representative images (see 

Materials and Methods, Figure 2 c-d). We applied the WM model to extract the correlation length 

and smoothness parameter (Figure 2e). Figure 3 shows the mapped direction and magnitude of each 

single vector across a single entire nucleus (Figure 3a-b). In the flow field of the LK method, one could 

hardly observe large regions of coherent motion, both in direction and magnitude. The flow field was 

rough, showing many small areas and therefore correlation dropped right after the zero space lag 

(Figure 3c). This behavior was seen in both direction and magnitude. Consistent with our simulations, 

the window size of PIV methods influenced their ability to distinguish between regions of coherent 

flow. PIV with a 16x16 pixel window size showed numerous small regions of coherent motion (in 

direction only) and did not show clear distinction between direction and magnitude of spatial 

correlation. Moreover, correlation dropped sharply after the zero space lag for both direction and 

magnitude. The fact that small regions arose by using the 16x16 pixel window size may be due to 

several independent motion areas within the interrogation window. Shifting the window from one 

pixel to another and including intensity information further apart from the vector to be estimated 

may therefore substantially influence vector estimation, even for adjacent pixels. In other words, 

averaging a vector over more than a micrometer for chromatin structures introduced errors in both 

direction and magnitude of the detected motion, and therefore led to inaccurate estimation of 
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motion and correlation as shown by simulating a high number of independently moving areas. The 

SIFT method showed great similarity between the correlation of direction and magnitude, which is 

likely due to vector quantization (integer values for the x and y-components are allowed only, see 

Supplementary Note 2). Only the HS based method was able to identify changes in correlation over 

several space lags, and to distinguish between direction and magnitude. 

Finally, the Whittle-Màtern model enabled quantification of the smoothness parameter. We 

illustrate the behavior of the smoothness parameter by means of estimated flow fields using HS and 

SIFT-based methods (Supplementary Note 2, Supplementary Figure S3). The variance of the 

horizontal and vertical gradient (directional) fields was calculated (Supplementary Figure S3b-c). 

Large gradients correspond to sharp transitions (recall e.g. the gradient of a step function) and small 

gradients correspond to domains separated by smooth transitions. Therefore, a decrease in the 

variance of the gradient fields corresponds to an increase of the smoothness parameter. The HS 

based method showed few large areas of coherent motion. Inside these regions, the field varied only 

slightly and the gradient within these areas was small. At motion boundaries, however, direction of 

vectors changed abruptly (Supplementary Figure S3b-c). This abrupt change in direction is likely due 

to changes in the chromatin surroundings and interactions, as for example those brought about by 

factors involved in gene expression.  

Chromatin dynamics at nano-scale resolution reveals transcription dependent long range 

correlation: We applied DFCC to analyze movements of chromatin in the entire nucleus and to assess 

whether chromatin dynamics were sensitive to transcriptional state. Correlation of coherent 

chromatin motion was calculated using two different fluorescent labels: DNA labeled SiR–Hoechst 

and H2B fused to GFP in human osteosarcoma U2OS cells. Images were recorded in cells grown in 

medium containing serum (actively transcribing state) and in cells starved in serum for 24H (inactive 

state). Analysis of chromatin motion in cells grown in medium containing serum showed that the 

correlation length for both DNA and H2B was time dependent, reaching a maximum correlation 

length (𝜌𝑐 ≈ 11μ𝑚) at 18.2s (Figures 4c-d, Figure 5c-d). Correlation over long range is consistent 

with the notion that active transcription occurs in numerous regions of decompacted, open 

chromatin (38). Interestingly, some regions of coherent motion comprise smaller areas of the scale of 

a few hundred nanometers within them, whose patterns deviate slightly from the direction of the 

bulk of the coherent domains (enlarged areas, Figures 4b and 5b) suggesting that territories of a 

single chromosome are not necessarily moving in the same direction or manner. This result concurs 

with previous observations that coherent regions of H2B-GFP movement spanned across several 

dNTP labeled CTs (6). Furthermore, flow fields comprised distinct regions of vortex-like motion of a 

few hundred nanometers length scale (Figure 6a, Supplementary Figure 6a-b), which might support 
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the hypothesis that genes are moving to share transcription factors within transcription factories or 

hubs (10, 11). The resolution afforded by our approach permits analysis of sub-micron motion within 

domains which may represent hubs of active DNA-associated processes. 

Quantification of spatial smoothness over large time intervals points to clear-cut boundaries 

between distinct regions, while smooth transitions in small neighborhoods dominate for short time 

intervals. These transitions between regions of distinct motion indicate directed squeezing or 

stretching of chromatin boundaries suggestive of changes in local concentrations of actors regulating 

gene expression (Figure 6b, Supplementary Figure 6c).  

In contrast, chromatin motion occurred in numerous small domains with smooth transitions in serum 

starved cells over 30 seconds (Figure 4c-d). The spatial correlation (both direction and magnitude) of 

SiR-labelled DNA showed almost no time dependence and fitting by the MW model yielded a 

correlation length of less than one micrometer (Figure 4c-d). The nearly constant spatial correlation 

is due to the fact that serum-starved cells are in quiescence, in which chromatin fibers are more 

compact (38, 39). In conclusion, short correlation length and comparably high smoothness of flow 

may be due to condensed chromatin regions (Figure 6c, Supplementary Figure 6d).  

However, motion of H2B-GFP in starved cells yielded a maximum directional correlation length of 

𝜌𝑐 ≈ 7 μ𝑚, half the length calculated in cells with serum stimulation (Figure 5c-d), but greater than 

for motion of SiR-labelled DNA. Differences in the amplitude of correlation between SiR-labelled DNA 

and H2B-GFP might be due to variations in the labeling density affecting determination of domains 

and consequently correlation length calculations. In other words, only 10-20 % of chromatin contains 

labelled H2B-GFP (40) may represent the least compacted fraction of total chromatin characterized 

by greater correlation length and rougher of flow. The correlation in serum starved cells could stem 

from free H2B-GFP molecules not incorporated into chromatin.  

Coordinated movements within domains correlate with RNA polymerase II activity: We further 

assessed the effect of transcription inhibitors on initiation or elongation of transcription by 

pretreating the cells with 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and Triptolide (TPL), 

respectively. Inhibition of RNA polymerase II (RNA pol II) had greater and more diverse effects 

imaging SiR-labelled DNA than H2B-GFP (Figure 4c-d). Correlation length and magnitude of DNA 

motion was reduced in cells treated with DRB and only slightly affected by TPL compared to cells 

grown in serum, suggesting that elongation maintains dynamic transitions (Figure 4c-d). The relative 

smoothness of motion, however, remained similar to the one determined when cells were grown in 

serum, demonstrating that rough boundaries correspond to the presence of RNA pol II and cofactors 

in certain domains of the nucleus. Correlation length and relative smoothness of the motion of H2B-
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GFP upon RNA pol II inhibition were indistinguishable from the values determined in serum starved 

cells reinforcing the idea that active transcription drives H2B-GFP nuclear domain formation (Figure 

5c-d). The magnitude of correlation increased at longer time intervals in inhibitors treated nuclei but 

did not reach values determined in serum starved conditions. Hence, the remaining association of 

polymerases and cofactors during initiation (DRB causes RNA pol II  to detach within the first exon 

(41)) or remaining elongation (TPL precludes RNA pol II  from binding to the promoter but RNA pol II  

still elongating after 15 min treatment will proceed (42)) and possibly the presence of nascent mRNA 

influences dynamic behavior of chromatin. 

The clear difference of coordinated movements between labelled DNA and H2B-GFP may also be 

exacerbated by loss of histones resulting from starvation- or inhibitor- induced stress (43). Our 

results showed similarities between actively transcribed (+serum) and initiation halted chromatin, 

where long scale correlation was seemingly due to chromatin compaction. Given that neither TPL nor 

DRB block RNA polymerase activity completely within the 15 min of our experiment, these 

observations strongly suggest that pausing transcription at an early stage does not abolish loop 

formation or long range contacts and coordinated motion of RNA pol II bound chromatin domains. 

 
Conclusions 

By using Optical Flow, we detected coordinated domains of chromatin motion in living human cells 

with nano-scale sensitivity. Chromatin domains of coherent motion exhibit long range correlation 

over the entire nucleus. In the absence of transcriptional activity, chromatin movements were no 

longer correlated independently of their constant, but small correlation length. Because protein and 

mRNA concentration as well as transient contacts and looping change during transcription, they also 

affect the mechanical properties of the chromatin fiber (20, 44, 45).  

Notably, direction and magnitude of correlation length of DNA significantly differed from H2B-GFP. 

Despite absence of apparent defects in cell proliferation, we cannot exclude that the SiR Hoechst dye 

alters chromatin diffusive behavior, nor can we ascertain that the extra bulk imposed on the 

nucleosomes by incorporating H2B fused to GFP (a 12% or 25% increase in molecular weight of the 

octamer for homo- and heterotypic nucleosomes respectively) affects the analysis. Numerous 

previous studies suggest that the consequences should be negligible (6, 23, 24). We can, however, 

explain the differences in our results by a difference in labeling density and preferential 

incorporation of H2B-GFP into more open region of chromatin. Hence, analyzing DNA provides a 

more general, possibly more precise, picture with greater amplitudes between different chromatin 
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states including inactive, dense chromatin domains, where H2B-GFP mostly informs on the behavior 

of more accessible chromatin.  

We further show that transcription dependent motion is characterized by the appearance of vortex-

like movements which are suggestive of nodes. Nodes are formed by accumulation of proteins and 

enzymes involved in a specific process, for example polycomb or chromatin remodelers regulating 

transcription (45–48). Enhancer-promoter looping or active pulling of DNA may result in vortex-like 

apparent motion at short time scales between domains. 

The smoothness parameter allows quantification of transitions in motion and provides insight into 

the origin of chromatin domains. Smoothness values are characteristic of transcription induced 

variations in chromatin compactness. The smoothness parameter can be interpreted as a measure of 

smooth or sharp transitions between adjacent regions of coherent flow and therefore provides 

insight into time dependent formation of dynamic regions and their boundaries. 

Chromatin conformation capture analysis have identified A and B compartment regrouping <10Mb 

domains of similar chromatin marks and compaction (3, 49). Blocks of several A or B compartments 

tend to interact but their assembly is stochastic and their boundaries cannot be assessed by 

population averaging Hi-C methods. Domains likely result from auto assembly (50) or phase 

separation-type physical processes driven by accumulation of proteins (51), such as for example RNA 

pol II  factories (52), HP1 droplets (53) or repeated elements (54). On the single cell level, sharp 

boundaries of compartments were also seen in snapshots using super-resolution microscopy (55). 

Hence, the rough domain boundaries observed in this study are reminiscent of phase transitions, as 

they separate domains of different dynamic behavior depending on transcriptional activity. Our 

approach allows seeing functional domains in nuclei of living cells in real time. 

 

Materials and Methods 

Cell Culture: A stable human osteosarcoma U2OS cell line (ATCC) stably expressing H2B-GFP was a 

gift from Sébastien Huet (Rennes, France). Cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) containing phenol red-free (Sigma-Aldrich) supplemented with 10% Fetal bovine serum 

(FBS), Glutamax containing 50 μg/ml gentamicin (Sigma-Aldrich), 1 mM sodium pyruvate (Sigma-

Aldrich) and G418 0.5 mg/ml (Sigma-Aldrich) at 37°C with 5% CO2. Cells were plated for 24 h on 35 

mm petri dishes with a #1.5 coverslip like bottom (μ-Dish, Ibidi, Biovalley) with a density of 100000 

cells/dish. 
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DNA staining: For DNA staining, the same cell line of U2OS was labeled by using SiR-DNA (SiR-

Hoechst) kit (Spirochrome AG). SiR-DNA is a far-red fluorophore that binds to the DNA minor groove 

with high specificity (56). Briefly, 1 mM stock solution was prepared by dissolving the content of the 

vial of SiR-DNA in 50 μl of anhydrous DMSO. This solution should be stored at -20°C. For labeling, we 

diluted the stock solution in cell culture medium to concentration of 2 μM and vortex briefly. On the 

day of the imaging, the culture medium was changed to medium containing SiR-fluorophores and 

incubated at 37°C for 30-60 minutes. Before imaging, the medium was replaced by L-15 medium 

(Liebovitz’s, Gibco). Cells were mounted on the microscope for live imaging in a custom-built 37°C 

microscope incubator. 

Cell starvation, stimulation and chemical treatment 

Transcription inhibition and stimulation: For cell starvation, the media were replaced with serum-

free medium (DMEM, Glutamax containing 50 μg/ml gentamicin, 1 mM sodium pyruvate, and G418 

0.5 mg/ml). The cells were incubated for 24 h in the 37°C incubator before imaging. Just before 

imaging, the medium was changed to L-15 medium. Cell starvation conditions were used for 

transcription inhibition mode. While for stimulation mode, cells were incubated with full medium 

containing 10% FBS, and imaged with 10% FBS in L-15 medium.  

Transcription blocking: To assess the impact of transcription initiation on chromatin motion in living 

cells, we added fresh L-15 medium containing 1 μM Triptolide (TPL, Sigma-Aldrich). To block the 

transcription elongation, 100 μM of 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB, Sigma-

Aldrich) was diluted in fresh L-15 medium and incubated under the microscope for 15 minutes before 

imaging.  

Microscopy and Image Acquisition  

SiR–Hoechst labeled DNA imaging: DNA images were acquired using a DMI8 inverted automated 

microscope (Leica Microsystems) featuring a confocal spinning disk unit (CSU-X1-M1N, Yokogawa). 

Integrated laser engine (ILE 400, Andor) with a selected wavelength of 647 nm (140mW) was used for 

the excitation. Samples were imaged with an oil immersion objective (Leica HCX-PL-APO 100x/1.4 

NA). Fluorescence emission of the SiR–Hoechst was filtered by a single-band bandpass filter (FF01-

650/13-25, Semrock, Inc.). Image series of 150 frames (5 fps) were acquired using Metamorph 

software (Molecular Devices), and detected using sCMOS cameras (ORCA-Flash4.0 V2) and (1×1 

binning), with sample pixel size of 65 nm. All series were recorded at 37°C and in a humid chamber 

by controlling the temperature and CO2 control flow using H201- couple with temperature and CO2 

units. 
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H2B-GFP imaging: Series of 150 frames were acquired with an exposure time of 200 ms using a 

Nipkow-disk confocal system (Revolution, Andor) featuring a confocal spinning disk unit (CSU22, 

Yokogawa). A diode-pumped solid-state laser with single laser line was used for excitation of GFP at 

488 nm (25mW; Coherent). Samples were imaged with an oil immersion objective (100X, Plan Apo 

1.42, Nikon) followed by 2x magnification and fluorescence was filtered with an emission filter 

(ET525/30-25, Semrock, Inc.). The fluorescent emission was detected on a cooled electron 

multiplying charge-coupled device camera (iXon Ultra 888), with sample pixel size of 88 nm. The 

system was controlled using the Revolution IQ software (Andor).  

Quantitative evaluation: A vector is determined by its direction and magnitude. The Angular Error 

(AE) and Endpoint Error (EE) are common measures used for performance evaluation of flow 

estimation methods. The Angular Error is the angle between the ground-truth vector 𝑉⃗ = (𝑢, 𝑣) and 

the corresponding estimated vector 𝑉⃗ ′ = (𝑢′, 𝑣 ′)  and is computed as the inverse cosine of the 

normalized dot-product of 𝑉⃗ = (𝑢, 𝑣) and 𝑉⃗ ′ = (𝑢′, 𝑣′) (57): 

 𝐴𝐸 = cos−1 (
𝑉⃗ 𝑉⃗ ′

|𝑉⃗ ||𝑉⃗ ′|
).  

As an angle between an arbitrary vector and the zero vector is not defined, we only take non-zero 

displacements into consideration. 

The angular error is a relative measure and penalizes discrepancies in the direction of ground-truth 

and estimated flow. The evaluation of errors in the magnitude is given by the absolute Endpoint Error 

(EE) (58). 

 𝐸𝐸 = |𝑉⃗ − 𝑉⃗ ′|.  

All calculations were carried out by using MATLAB (MATLAB Release 2017a, The MathWorks, Inc., 

Natick, Massachusetts, United States) on a 64-bit Intel Xeon CPUE5-2609 1.90 GHz workstation with 

64 GB RAM and running Microsoft Windows 10 Professional. 

Image processing and data analysis 

Denoising: Raw images are denoised using non-iterative bilateral filtering (59). While Gaussian 

blurring only accounts for the spatial distance of a pixel and its neighborhood, bilateral filtering 

additionally takes the difference in intensity values into account and is therefore an edge-preserving 

method. Abrupt transitions from high- to low-intensity regions (e.g. heterochromatin to 

euchromatin) are not over-smoothed. 
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Drift registration: Drift during image acquisition is determined by the cross correlation of the first 

image of the whole nucleus in the sequence and every following image. The position of the 

correlation peak is found with sub-pixel accuracy by a Gaussian approximation of the correlation 

peak. The distance of the correlation peak from the origin is the desired drift vector. The detected 

drift in all processed image sequences is in the range of less than 10 nm and is therefore negligible.  

Spatial correlation calculation: The spatial autocorrelation function 𝑟 of a scalar field γ(x, y) can be 

calculated efficiently by the use of Fast Fourier Transform algorithms and is given by (60): 

 𝑟(Δ𝑥, Δ𝑦) =  
ℱ−1[ℱ(𝛾) ⋅ ℱ∗(𝛾)]

〈𝛾〉〈𝛾〉
,   

where ℱ(⋅), ℱ−1(⋅), and ℱ∗(⋅) are the Fourier transformation, inverse Fourier transformation and 

the complex conjugate of the Fourier transformation, respectively. The two-dimensional 

autocorrelation function was calculated for horizontal and vertical space lag as denoted by 𝑟(Δ𝑥, Δ𝑦). 

One can project the two-dimensional correlation function onto one dimension using the space lag 

ρ2 = Δ𝑥2 + Δ𝑦2. The projection was carried out as a radial average and the correlation function 

becomes a function of the space lag only, i.e. 𝑟 = 𝑟(𝜌). 
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Figure Legends 

Figure 1: Performance of different Optical Flow methods. Angular and endpoint error for each 

method is shown under variation of static (labeling density and Signal-to-Noise ratio) and dynamic 

parameters (diffusion coefficient and number of domains). Angular error is shown in the left column, 

endpoint error in the right; parameters are shown in rows and vary from low to high values. The 

response of each method in terms of AE and EE is plotted (see Supplementary Table 1 and 

Supplementary Note 1). Error bars are symmetric and correspond to the standard deviation from 10 

simulations. Lower AE and EE mean more accurate estimates. 
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Figure 2: Schematic representation of the correlation analysis. a) Two microscopy images (U2OS cells 

expressing H2B-GFP) were acquired with temporal resolution 200 ms. Scale bar is 3 µm. b) The flow 

field between the input images was estimated by the Horn-Schunck formulation and color-coded as 

indicated in the lower right. Pixels in nucleoli appear empty due to the lack of intensity information. 

c) Correlation calculation in two dimensions. d) Empirical correlation (example shown for direction) 

was calculated as a function of space lag and fitted to the Whittle-Màtern correlation model. Flow 

fields were estimated at every accessible time lags within the image series and each of them was 

fitted (example time lags shown only). d) Correlation length 𝜌𝑐 and the smoothness parameter 𝜈 

were derived from the regression and shown over the time lag. The parameters were averaged for 

each time interval over all accessible time points. Note that with increasing time interval, less time 

points are available and therefore, the standard deviation (not shown) increases. 

Figure 3: Representative visualization of flow fields for the analysis of a single U2OS cell expressing 

H2B-GFP. Rows correspond to the different investigated methods. a) Flow fields are color-coded by 

the direction of displacement vectors. b) Magnitude of the corresponding flow vector color-coded 

from low to high as indicated by color bars. c) Empirical correlation for direction (blue) and 

magnitude (orange) and corresponding fits to the Whittle-Màtern model (solid lines) over space lags. 

Figure 4: Correlation length and smoothness in direction and magnitude of DNA in U2OS cells using 

the Whittle-Màtern model a) A fluorescence microscopy image of a nucleus where DNA was labeled 

using Sir-Hoechst; scale bar is 3 µm. b) Flow field for Δ𝑡 = 0.2 𝑠 and enlarged region (right) of the 

black rectangle; the field is color-coded according to the direction of the displacement. Scale bar is 3 

µm (left) and 1 µm (right). c) Correlation length (top) and smoothness parameter (bottom) calculated 

from regression of empirical correlation functions over time for directional correlation of flow fields. 

Different colors correspond to different conditions. Shaded error bars correspond to the standard 

deviation over 18 nuclei per condition. d) As c) for the vectors’ magnitude. 

Figure 5: Correlation length and smoothness in direction and magnitude of H2B-tagged GFP in U2OS 

cells using the Whittle-Màtern model. a) A fluorescence microscopy image of a nucleus expressing 

H2B-GFP; scale bar is 3 µm. b) Flow field for Δ𝑡 = 0.2 𝑠 and zoomed-in region (right) of the black 

rectangle; the field is color-coded according to the direction of the displacement. Scale bar is 3 µm 

(left) and 1 µm (right). c) Correlation length (top) and smoothness parameter (bottom) calculated 

from regression of empirical correlation functions over time lag for directional correlation of flow 

fields. Different colors correspond to different conditions. Shaded error bars correspond to the 

standard deviation over 19 nuclei per condition. d) As c) for the vectors’ magnitude. 
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Figure 6: Representative magnification of flow fields and models of proposed mechanisms. a) An 

example region of converging flow (vortex) observed in the mean direction over 30 s is enlarged 

(Supplementary Figure S4). In- and outward directed motion may be due to loop formation during 

the transcription cycle as illustrated. b) Visual change in flow smoothness. The observed change in 

smoothness between serum stimulation (b) and starvation (c) in case of DNA probing is visualized by 

representative regions (Supplementary Figure 4). The observed low smoothness in case of serum 

stimulation is due to chromatin decompaction as illustrated. Chromatin is able to move rather freely 

and RNA pol II as well as transcription factors can bind to DNA. Coherent motion and sharp motion 

boundaries were observed and indicate that local chromatin regions converge towards shared 

transcription factors. d)  In case of serum starvation, correlation drops and coherently moving 

regions seamlessly interrelate. An increase in chromatin compaction causes DNA-DNA interactions to 

occur more frequently which causes spatial transitions in directional chromatin motion to be smooth. 

Furthermore, chromatin compaction has an inhibiting effect on protein dynamics and protein binding 

to DNA is therefore hampered. Scale bars are 200 nm. 
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Figure 3 
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Figure 4 
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