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ABSTRACT: Adolescence is characterized by both maturation of brain structure and 
increased risk of negative outcomes from behaviors associated with impulsive decision-
making. One important index of impulsive choice is delay discounting (DD), which 
measures the tendency to prefer smaller rewards available soon over larger rewards 
delivered after a delay. However, it remains largely unknown how individual differences 
in structural brain development may be associated with impulsive choice during 
adolescence. Leveraging a unique large sample of 427 human youths (208 males and 
219 females) imaged as part of the Philadelphia Neurodevelopmental Cohort, we 
examined associations between delay discounting and cortical thickness within 
structural covariance networks. These structural networks were derived using non-
negative matrix factorization, an advanced multivariate technique for dimensionality 
reduction, and analyzed using generalized additive models with penalized splines to 
capture both linear and nonlinear developmental effects. We found that impulsive 
choice, as measured by greater discounting, was most strongly associated with 
diminished cortical thickness in structural brain networks that encompassed the 
ventromedial prefrontal cortex, orbitofrontal cortex, temporal pole, and temporoparietal 
junction. Furthermore, structural brain networks predicted DD above and beyond 
cognitive performance. Taken together, these results suggest that reduced cortical 
thickness in regions known to be involved in value-based decision-making is a marker 
of impulsive choice during the critical period of adolescence.  
 
SIGNIFICANCE: Risky behaviors during adolescence, such as initiation of substance 
use or reckless driving, are a major source of morbidity and mortality. In this study, we 
present evidence from a large sample of youths that diminished cortical thickness in 
specific structural brain networks is associated with impulsive choice. Notably, the 
strongest association between impulsive choice and brain structure was seen in regions 
implicated in value-based decision-making; namely, the ventromedial prefrontal and 
orbitofrontal cortices. Moving forward, such neuroanatomical markers of impulsivity may 
aid in the development of personalized interventions targeted to reduce risk of negative 
outcomes resulting from impulsivity during adolescence.   
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INTRODUCTION  

Adolescence is marked by an increased vulnerability to risky behaviors, such as 

tobacco, alcohol, and drug use, reckless driving, and unprotected sex (Eaton et al., 

2011). During this vulnerable period, the brain undergoes dramatic structural changes 

(Giedd et al., 1999; Sowell et al., 2004). Some evidence suggests that risk during 

adolescence is associated with differential maturation of brain regions related to reward 

processing (such as the orbitofrontal cortex and ventral striatum) and those necessary 

for cognitive control (such as the dorsolateral prefrontal cortex, dlPFC; Casey et al., 

2008; Van Leijenhorst et al., 2010). One of the most commonly used indices of 

impulsive choice is delay discounting (DD)— a behavioral measure of impulsivity where 

one chooses between a smaller reward delivered sooner, and a larger reward with a 

longer delay (Kirby and Maraković, 1995; Peters and Büchel, 2011; Kable, 2013). Delay 

discounting engages regions known to mature at different rates in adolescence, 

including dlPFC (Peters and Büchel, 2011), orbitofrontal cortex, and ventral striatum 

(Kable and Glimcher, 2007; Bartra et al., 2013). Increased DD has been proposed as a 

framework for understanding substance abuse and other risky decisions as reflecting 

impulsive choices of immediate rewards (Bickel et al., 2007). Indeed, studies of 

adolescents show that higher impulsivity, as indexed by higher discounting, is 

associated with increased smoking frequency (Reynolds, 2004), greater alcohol 

consumption (Field et al., 2007), and predicts longitudinal increase in both smoking 

(Audrain-McGovern et al., 2009) and alcohol use (Fernie et al., 2013).  

At present, it remains relatively unknown how individual differences in structural 

brain development may relate to DD in adolescents. Neuroanatomical studies in adults 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230888doi: bioRxiv preprint 

https://doi.org/10.1101/230888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

are more numerous, but have yielded inconsistent results, perhaps due to small 

samples and focused region-of-interest analyses (for a review see Kable and Levy, 

2015). For example, it has been reported that greater DD (more impulsive choice) is 

associated with reduced gray matter volume in lateral prefrontal cortex (Bjork et al., 

2009), superior frontal gyrus (Schwartz et al., 2010), and putamen (Dombrovski et al., 

2012; Cho et al., 2013). Furthermore, greater DD has been associated with larger 

volume of the ventral striatum and posterior cingulate cortex (PCC, Schwartz et al., 

2010), medial prefrontal regions and anterior cingulate cortex (ACC, Cho et al., 2013), 

as well as prefrontal cortex (Wang et al., 2016). One study of cortical thickness (CT) in 

adults revealed an association between higher DD and decreased CT in both medial 

prefrontal cortex and the ACC (Bernhardt et al., 2014). To our knowledge, there have 

been no neuroanatomical studies in adolescents that specifically examine the 

relationship between DD and cortical thickness. Notably, findings from adults may not 

necessarily extend to adolescents, given the dynamic re-modeling of brain structure that 

occurs during this critical period (Sowell et al., 2004).  

Accordingly, here we investigated how individual differences in DD may be 

associated with differences in brain structure during adolescence. To do this, we 

capitalized on a large sample of 427 youths imaged as part of the Philadelphia 

Neurodevelopmental Cohort (Satterthwaite et al., 2014a; 2016). We delineated 

covariance networks of cortical thickness using a recently-developed application of non-

negative matrix factorization for the multivariate analysis of high-dimensional 

neuroimaging data (Sotiras et al., 2015; 2017). We evaluated the association between 

DD and CT in each network, while specifically modeling both linear and nonlinear 
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developmental effects using penalized splines. We hypothesized that we would find 

associations between DD and CT in brain regions associated with reward processing, 

such as the ventromedial prefrontal cortex (vmPFC; Kable and Glimcher, 2007; Bartra 

et al., 2013), as well as regions subserving cognitive control (e.g. dlPFC).  As described 

below, diminished CT in these as well as other networks was associated with impulsive 

choice, and predicted individual variation in DD above and beyond that explained by 

cognitive performance. 

 

MATERIALS AND METHODS 

Participants and sample construction 

 Participants were a subsample of 1,601 youths recruited as part of the 

Philadelphia Neurodevelopmental Cohort (PNC) who underwent neurocognitive 

assessment (Gur et al., 2010; 2012), as well as neuroimaging (Satterthwaite et al., 

2014a; 2016). A sub-sample of PNC participants (n = 453) completed the delay 

discounting (DD) task. Of those, n = 2 did not pass the quality control criteria for the task 

(described below). Additionally, n = 24 participants were excluded for the following 

reasons: health conditions that could impact brain structure (n = 19), scanning 

performed more than 12 months from DD testing (n = 1), inadequate structural image 

quality (n = 3) or missing imaging data (n = 1). The remaining n = 427 participants 

constituted our final sample for analysis (mean age at scanning: 17.0 ± 3.2 years, age 

range: 9.3–24.3 years; 48.7%, n = 208 males). 

 

Delay discounting task 
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 The DD task consisted of 34 self-paced questions where the participant chose 

between a smaller amount of money available immediately or a larger amount available 

after a delay. This task was modeled after the work of Senecal et al. (2012). The 

smaller, immediate rewards ranged between $10 and $34 and were always displayed at 

the top of the computer screen. The larger, delayed rewards were fixed at $25, $30, or 

$35, with the delays ranging between 1 and 171 days. Larger, delayed rewards were 

always displayed on the bottom of the screen. All rewards were hypothetical but 

participants were instructed to make decisions as if the choices were real. Discount 

rates based on hypothetical choices have shown no systematic differences from 

discount rates based on real rewards, in the same participants (Johnson and Bickel, 

2002). The set of choices was identical in content and order for all participants. The DD 

task was administered as part of an hour-long web-based battery of neurocognitive 

tests (Computerized Neurocognitive Battery, described below), on a separate day from 

the imaging session. The mean interval between the DD task and imaging was 0.44 

months with a SD of 1 month (range 0–8 months). 

 Discount rates from the delay discounting task were calculated assuming a 

hyperbolic discounting model of the form: SV = A/(1+kD), where SV is the subjective 

value of the delayed reward, A is amount of the delayed reward, D is the delay in days, 

and k is the subject-specific discount rate (Mazur, 1987). We used the fmincon 

optimization algorithm in MATLAB (Mathworks, Natick, MA; RRID:SCR_001622) to 

estimate the best-fitting k from each participant’s choice data. A higher k value indicates 

steeper discounting of delayed rewards and thus more impulsive choices. As the 
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distribution of discount rates is highly right-skewed, we used log-transformed k (log k) in 

all analyses. 

 We performed quality control to ensure that participants were not responding 

randomly, and verified that their responses were a function of task variables which 

should be relevant to the choice. Although a hyperbolic discounting model has been 

shown to fit discounting data better than an exponential model (Kirby and Maraković, 

1995), quality control was performed independently of assumptions about the shape of 

the discount function. Specifically, each participant’s responses were fit using a logistic 

regression model, with predictors including the immediate amount, delayed amount, 

delay, their respective squared terms, and two-way interaction terms. We assessed 

goodness of fit of this model using the coefficient of discrimination (Tjur, 2009), and 

discarded DD data from any participant who had a value of less than 0.20.  

 

Neurocognitive battery  

 Cognition was assessed using the University of Pennsylvania Computerized 

Neurocognitive Battery (Penn CNB, Gur et al., 2010; 2012) during the same session 

that delay discounting was evaluated. Briefly, this hour-long battery consisted of 14 

tests administered in a fixed order, evaluating aspects of cognition, including executive 

control, episodic memory, complex reasoning, social cognition, and sensorimotor and 

motor speed. Except for the motor tests that only measure speed, each test provides 

measures of both accuracy and speed. Performance on the tests for each domain is 

summarized as cognitive factors obtained with exploratory factor analysis with an 

oblique rotation (Moore et al., 2015). Prior work has demonstrated that accuracy on this 
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battery can be parsimoniously summarized as either one overall cognitive performance 

factor or three domain-specific factors, including executive function and complex 

reasoning combined, social cognition, and episodic memory (Moore et al., 2015). 

Associations between DD and factor scores for each of these dimensions were 

analyzed, as described below.  

 

Image acquisition and quality assurance  

 Image acquisition and processing are reported in detail elsewhere (Satterthwaite 

et al., 2014a; 2016). Briefly, all data were acquired on a single scanner (Siemens TIM 

Trio 3 Tesla, Erlangen, Germany; 32-channel head coil) using the same imaging 

sequences for all participants. Structural brain scanning was completed using a 

magnetization‐prepared, rapid acquisition gradient‐echo (MPRAGE) T1‐weighted 

image with the following parameters: TR 1810 ms; TE 3.51 ms; FOV 180x240 mm; 

matrix 192x256; 160 slices; slice thickness/gap 1/0 mm; TI 1100 ms; flip angle 9 

degrees; effective voxel resolution of 0.93 x 0.93 x 1.00 mm; total acquisition time 3:28 

min.  

 

Image quality assurance 

T1 image quality was independently assessed by three expert image analysts; 

for full details of this procedure see Rosen et al. (2017). Briefly, prior to rating images, 

all three raters were trained to >85% concordance with faculty consensus rating on an 

independent training sample of 100 images. Each rater evaluated every raw T1 image 

on a 0—2 Likert scale, where unusable images were coded as “0”, usable images with 
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some artifact were coded as “1”, and images with none or almost no artifact were coded 

as “2”. All images with an average rating of 0 were excluded from analyses (n = 3); of 

the remaining images in the final sample n = 2 had an average manual rating of 0.67, n 

= 16 were rated as 1, n = 16 were rated as 1.33, n = 35 were rated as 1.67, and the 

remaining n = 358 had an average rating of 2. As described below, these average 

manual quality ratings were included in sensitivity analyses. In addition, we examined 

the distribution of cortical thickness values within anatomically defined regions created 

using a multi-atlas labeling technique (see below). For each region, we created a 

distribution of thickness values; subjects with a cortical thickness value >2 SD from the 

mean were flagged for that region. This procedure was repeated for all 98 cortical 

regions, and the number of flags was summed across regions; this summarized the 

number of regions per subject that had an outlying value. Subjects with >2.5 S.D. 

number of regional outliers were flagged for manual re-evaluation. Notably, this 

extensive post-processing QA procedure did initially identify 1 subject who failed the 

ANTs CT procedure. For this subject, minor parameter adjustments were made and the 

procedure was re-run, resulting in no subjects with major processing errors that required 

exclusion. Beyond this participant, there was no other manual intervention into 

standardized image processing procedures.  

 

Image processing and cortical thickness estimation 

Structural image processing for estimating cortical thickness (CT) used tools 

included in Advanced Normalization Tools (ANTs, Tustison et al., 2014; 

RRID:SCR_004757). In order to avoid registration bias and maximize sensitivity to 
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detect regional effects that can be impacted by registration error, a custom adolescent 

template and tissue priors were created. Structural images were then processed and 

registered to this template using the ANTs CT pipeline (Tustison et al., 2014). This 

procedure includes brain extraction, N4 bias field correction (Tustison et al., 2010), 

Atropos probabilistic tissue segmentation (Avants et al., 2011a), the top-performing SyN 

diffeomorphic registration method (Klein et al., 2010; Avants et al., 2011b; 

RRID:SCR_004757), and direct estimation of cortical thickness in volumetric space 

(Das et al., 2009). Large-scale evaluation studies have shown that this highly accurate 

procedure for estimating CT is more sensitive to individual differences over the lifespan 

than comparable techniques (Tustison et al., 2014). CT images were down-sampled to 

2 mm voxels before applying non-negative matrix factorization, but no additional 

smoothing was performed. 

 

Non-negative matrix factorization  

Cortical thickness was estimated as described above over the entire cortical 

surface. We sought to reduce CT in our sample into fewer dimensions, for two reasons. 

First, an efficient summary of CT data would allow us to evaluate only a small number of 

associations, rather than conduct voxel-wise inference that may be vulnerable to 

substantial Type I error (Eklund et al., 2016). Second, and importantly, prior work has 

shown that there are inherent patterns of covariance in CT (Zielinski et al., 2010; 

Alexander-Bloch et al., 2013; Sotiras et al., 2015; 2017), and analyzing the data 

according to this covariance structure may enhance interpretability. 
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 Accordingly, we achieved both goals by using non-negative matrix factorization 

(NMF) to identify structural networks where cortical thickness co-varies consistently 

across individuals and brain regions (Sotiras et al., 2015). NMF has previously been 

shown to yield more interpretable and reproducible components than other 

decomposition techniques such as Principal Component Analysis or Independent 

Component Analysis (Sotiras et al., 2015; 2017). In contrast to the other techniques, 

NMF only yields compact networks with positive weights, which facilitates interpretation 

of effects.  

The NMF algorithm takes as input a matrix X containing voxel-wise CT estimates 

(dimensions: 128,155 voxels x 427 participants), and approximates that matrix as a 

product of two matrices with non-negative elements: X ≅ BC (Figure 1). The first matrix, 

B, is of size V x K and contains the estimated non-negative networks and their 

respective loadings on each of the V voxels, where K is the user-specified number of 

networks. The B matrix (“CT loadings”) is composed of coefficients that denote the 

relative contribution of each voxel to a given network. These non-negative coefficients 

of the decomposition by necessity represent the entirety of the brain as a subject-

specific addition of various parts. The second matrix, C, is of size K x N and contains 

subject-specific scores for each network. These subject-specific scores (“CT network 

scores”) indicate the contribution of each network in reconstructing the original CT map 

for each individual, and were evaluated for associations with DD as described below. 

We examined multiple NMF solutions ranging from 2 to 30 networks (in steps of 2) and 

calculated reconstruction error for each solution as the Frobenius norm between the CT 

data matrix and its NMF approximation (Sotiras et al., 2015; 2017). The optimal number 
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of components was chosen based on the elbow of the gradient of the reconstruction 

error, such that the solution is adequate to model the structure of the data without 

modeling random noise (Sotiras et al., 2017). Network loadings were visualized on the 

inflated Population-Average, Landmark-, and Surface-based (PALS) cortical surfaces 

(Van Essen, 2005; RRID:SCR_002099) using Caret software (Van Essen et al., 2001; 

RRID:SCR_006260).  

 

Regional parcellation using multi-atlas segmentation 

In order to demonstrate that our results are robust to methodological variation, 

we also derived CT estimates in anatomically-defined regions of interest. We used a 

top-performing multi-atlas labelling approach to parcellate the brain into anatomical 

regions. This procedure has proven advantages over standard single-atlas approaches 

and has won open analysis challenges (Wang et al., 2012).  Specifically, we used 24 

young adult T1 images from the OASIS dataset (Marcus et al., 2007; 

RRID:SCR_007385), which have been manually labeled by Neuromorphometrics, Inc. 

(http://Neuromorphometrics.com/; RRID:SCR_005656). These images were each 

registered to each participant’s T1 image again using the top-performing SyN 

diffeomorphic registration method included in ANTs (Klein et al., 2010; Avants et al., 

2011b; RRID:SCR_004757). Finally, a joint label fusion algorithm was used to 

synthesize the multiple warped atlas-labeled images into a final segmentation consisting 

of 98 gray matter regions (Wang et al., 2012). Mean thickness was calculated within 

each of these regions, and evaluated in group-level analyses identical to those 

conducted for NMF-derived networks, as described below.      
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Experimental design and statistical analysis  

To examine associations between DD and brain structure, we used a cross-

sectional sample of youths recruited as part of a large neurodevelopmental study. Brain 

development is frequently a nonlinear process (Giedd et al., 1999; Lenroot et al., 2007; 

Satterthwaite et al., 2014b). In order to capture both linear and nonlinear age effects, we 

modeled age with a penalized spline within Generalized Additive Models (GAMs; Wood, 

2004; 2011; Vandekar et al., 2015). In this type of model, a penalty is assessed on 

nonlinearity using restricted maximum likelihood in order to avoid overfitting. GAMs 

were implemented in the R package ‘mgcv’  

(https://cran.r-project.org/web/packages/mgcv/index.html; RRID:SCR_001905).  

 GAMs were first used to test for associations between DD and demographic 

variables such as age and sex. Next, we evaluated the association between DD and 

cognitive performance (as summarized by the overall cognitive performance factor and 

three domain-specific factor scores described above), while co-varying for sex and age. 

In both sets of analyses, DD was used as the dependent variable. Finally, univariate 

associations between DD and NMF-derived structural covariance networks were 

evaluated, with CT scores as the dependent variables and controlling for sex and age. 

Interactions between DD and age were evaluated but were not found to be significant, 

and were thus not included in the univariate models. To control multiple testing across 

either cognitive factors or structural covariance networks, we used the False Discovery 

Rate (FDR, Q<0.05; Benjamini and Hochberg, 1995). 
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 In order to ensure that our results were not driven by potentially confounding 

factors, we conducted several sensitivity analyses. First, to ensure that our results were 

not driven by socio-economic status (SES), non-specific neurostructural effects, data 

quality or general cognitive abilities, we repeated these analyses while including 

maternal education, total brain volume, mean image quality rating, and the overall 

cognitive performance factor as model covariates in separate models. Second, we 

repeated our analyses while excluding participants who were taking a psychotropic 

medication at the time of scan (n = 52) or for whom medication data was not available 

(n = 3) to ensure that these participants did not bias the observed results.   

 

Multivariate analyses 

The analyses described above examined univariate associations between each 

structural covariance network and DD. As a final step, we also investigated the 

multivariate predictive power of all cortical networks considered simultaneously, over 

and above that of two reduced models that included only demographics and non-neural 

correlates of DD (specifically, cognitive performance or maternal education).  The first 

full model predicted DD using all 19 NMF networks, as well as age, sex, and the 

cognitive factors that were significantly associated with DD. The second full model 

predicted DD using all 19 NMF networks, as well as demographic variables including 

age, sex, and maternal education. These full models were compared to the reduced 

models (without the CT networks) using F-tests. 
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RESULTS 

Impulsive choice is associated with reduced cognitive performance 

Mean discount rate in our sample was 0.073 ± 0.088. Delay discounting was not 

related to demographic variables including age (p = 0.387). There was a non-significant 

trend toward more impulsive discounting in males (p = 0.07), and this trend was most 

prominent at younger ages (age by sex interaction: p = 0.09). In contrast, delay 

discounting was significantly associated with cognitive performance: youth who had 

higher discount rates also tended to have lower overall cognitive performance (partial r 

= -0.26, p < 0.0001). Follow-up analyses with a three-factor model describing specific 

cognitive domains revealed that this effect was driven primarily by an association with a 

combined executive functioning and complex reasoning factor (partial r = -0.29, p < 

0.0001). Greater discounting was also associated with diminished memory accuracy 

(partial r = -0.20, p < 0.0001), whereas there was no significant relationship between DD 

and social cognition (partial r = -0.08, p = 0.10).  

 

Non-negative matrix factorization identifies structural covariance networks 

Next, we sought to identify structural covariance networks in CT using NMF. 

NMF provides a data-driven way to identify structural covariance networks, where 

cortical thickness varies in a consistent way across individuals. As NMF identifies 

structural networks at a resolution set by the user, we examined solutions ranging from 

2 to 30 networks (in steps of 2). As expected, reconstruction error consistently 

decreased as the number of networks increased. Similar to previous applications of this 
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method (Sotiras et al., 2015), reconstruction error stabilized at 20 networks (Figure 2). 

Accordingly, the 20-network solution was used for all subsequent analyses (Figure 3). 

As in prior work using NMF (Sotiras et al., 2017), the structural covariance 

networks identified were highly symmetric bilaterally. Networks included specific cortical 

regions that are relevant to reward processing and decision-making, such as 

ventromedial prefrontal cortex (vmPFC) and orbitofrontal cortex (OFC). Notably, when 

combined, several of the networks corresponded to aspects of functional brain 

networks. For example, networks 1 and 3 loaded on ACC and anterior insula, 

respectively, similar to the “salience network” (Seeley et al., 2007). Furthermore, 

specific networks defined lower-order systems, including motor (network 11) and visual 

(network 12) cortex. The 20-network solution also included a noise component (network 

17), which was subsequently excluded from all analyses, resulting in 19 networks 

evaluated in total. 

 

Greater delay discounting is associated with diminished cortical thickness  

Having identified 19 interpretable structural covariance networks using NMF, we 

next examined associations with DD while controlling for sex as well as linear and 

nonlinear age effects using penalized splines. Univariate analyses revealed that there 

was a significant association (after FDR correction) in eleven networks (Table 1). In 

each of these networks, impulsive choice, indicated by high discount rates, was 

associated with diminished cortical thickness. Notably, the strongest effects were found 

in two networks comprised of the ventromedial prefrontal cortex and orbitofrontal cortex, 

both regions known to be critical for reward-related decision-making. These two 
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networks also included parts of the temporal pole and temporoparietal junction, TPJ 

(networks 14 and 15; Figure 4). Other networks where DD was associated with reduced 

CT included the temporal poles (network 9), lateral (network 8) and posterior temporal 

(network 20) lobes, dorsolateral prefrontal cortex (network 18), insula (network 3), 

fusiform gyrus (network 7), fronto-parietal cortex (network 11), and visual cortex 

(network 12).  

 

Association between cortical thickness and delay discounting is independent of age-

related changes in cortical thickness 

 Having established that individual differences in DD are associated with CT, we 

next examined whether this effect was moderated by age. Notably, there was no 

significant age by DD interaction in any network (median p  = 0.77, range: 0.09—0.94). 

Thus, age-related changes in CT were similar in both high and low discounters, but 

those with higher discount rates had thinner cortex across the age range examined 

(Figure 5). 

 

Sensitivity analyses provide convergent results 

We conducted sensitivity analyses to evaluate potentially confounding variables 

including maternal education, total brain volume, image data quality, general cognitive 

abilities, and psychotropic medications. First, we examined if the results could be 

explained by differences in maternal education, a proxy of socioeconomic status. 

Discount rate was significantly associated with maternal education (partial r = -0.164, p 

= 0.0007), but including it in the model did not have a great impact on results. 
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Specifically, 7 of 11 networks found to be related to DD remained FDR-significant, 

including the vmPFC and OFC networks; the other 4 networks trended towards 

significance (pfdr < 0.067). Second, we examined the effect of total brain volume on our 

findings. After adding total brain volume as a covariate, 10 of 11 networks remained 

FDR-significant for association with DD, with the remaining network showing a trend 

towards FDR-significance (pfdr = 0.0762). Third, we included mean image quality rating 

(averaged across three expert raters) as a model covariate. Despite the fact that data 

quality was significantly related to discount rate (Spearman’s partial rho = -0.159, p = 

0.001), 7 of 11 networks continued to have an FDR-significant association after 

inclusion of this covariate (including the vmPFC and OFC networks), and 3 out of 11 

networks had FDR-corrected p-values of < 0.10. Fourth, we examined the effect of 

cognitive abilities, as measured by the overall cognitive performance factor. After 

including this variable as a covariate, 5 of 11 networks related to DD remained FDR-

significant, including networks spanning the vmPFC, OFC, insula, and inferior temporal 

lobe. Finally, we repeated this analysis after excluding 52 participants who were taking 

psychotropic medication at the time of scan and 3 participants for whom medication 

data were missing. Despite the reduced power of this smaller sample, 10 of 11 networks 

remained FDR-significant, with the final network showing a trend towards significance 

(pfdr  = 0.0503).  

 

Analyses with anatomically defined regions yield convergent results  

To evaluate the robustness of the relationship between DD and CT to 

methodological variation, we also examined associations within 98 anatomically-based 
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regions. Univariate analyses controlling for sex and age revealed significant negative 

associations between DD and CT in 24 of these regions (Figure 6). Consistent with the 

previously described NMF results, impulsive choice— indexed by greater discounting— 

was associated with diminished cortical thickness in medial frontal cortex, orbitofrontal 

cortex, fusiform gyrus, frontal and temporal poles, insular cortex, middle and superior 

temporal gyri, precentral gyrus, and occipital cortex.  

 

Covariance networks provide improved prediction of DD over demographic and 

cognitive data 

The univariate analyses described above demonstrated that reduced CT in 

several structural covariance networks is associated with impulsive choice. Next, we 

tested whether a multivariate model including all structural networks could accurately 

predict DD on an individual basis. Delay discounting predicted from a model of CT 

scores in all 19 networks, as well demographic data (age and sex), was significantly 

correlated with actual delay discounting behavior (r = 0.33, p < 0.0001; Figure 7). 

Adding CT scores to a reduced model with demographics alone improved model fit 

(F(405,424) = 2.37, p = 0.001); DD predicted from this reduced model with demographics 

only achieved a correlation of 0.097 (p = 0.043) with actual log k values.  

Importantly, CT data also improved prediction above and beyond that achieved 

by cognitive predictors: adding CT scores to a model with cognitive performance as well 

as demographics improved the model fit (F(403,422) = 1.63, p = 0.047). DD predicted from 

the reduced model with just demographics and cognition achieved a correlation of 0.31 

(p < 0.0001) between model-predicted and actual log k values, compared to a 
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correlation of 0.40 (p < 0.0001) from a complete model including CT data, cognitive 

data, and demographics. Furthermore, CT networks also improved prediction above 

and beyond that achieved by maternal education, a proxy of socioeconomic status, 

which was correlated with DD (F(401,420) = 1.97, p = 0.009). DD predicted from a model 

with demographic variables such as age, sex, and maternal education achieved a 

correlation of 0.19 (p < 0.0001) between predicted and actual k values, while k values 

estimated from the full model with CT data, demographics, and maternal education 

achieved a correlation of 0.34 (p < 0.0001) with actual k values. 

 

DISCUSSION  

We examined associations between delay discounting and cortical thickness 

networks in a large adolescent sample. More impulsive preferences, as indexed by 

higher discounting, were associated with diminished CT in multiple networks. The 

strongest effects were found in OFC, vmPFC, temporal pole, and the TPJ. Associations 

between DD and brain structure did not vary over the age range studied, and could not 

be explained by confounding variables. Furthermore, consideration of structural 

networks improved prediction of DD above and beyond demographic and cognitive 

variables. 

 

Structural covariance networks related to DD overlap with known functional networks  

Greater discounting was associated with decreased cortical thickness in multiple 

structural networks. Relative to previous reports of both neurofunctional and 

neurostructural correlates of DD (Peters and Büchel, 2011; Bernhardt et al., 2014; 
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Kable and Levy, 2015), the effects we observed were fairly widespread across the 

brain. Notably, many of the regions encompassed by these networks correspond to 

findings from previous studies in adults, including functional networks known to be 

involved in DD. As hypothesized, we found associations between DD and CT in central 

elements of the valuation network, namely vmPFC (Bartra et al., 2013), the cognitive 

control network, including dlPFC (Peters and Büchel, 2011; Stanger et al., 2013), and 

the prospection network, involving medial temporal cortex (Peters and Büchel, 2011). 

While DD and CT relationships have not previously been evaluated in adolescents, one 

prior study documented diminished thickness in the ACC and medial PFC in association 

with greater DD in adults (Bernhardt et al., 2014). In addition to hypothesized effects, 

we also found associations between DD and CT in motor, somatosensory, and both 

early and higher-order visual cortices. Notably, when these effects were evaluated 

jointly in a multivariate model, CT networks enhanced prediction of DD above and 

beyond demographic and cognitive variables. This result contributes to efforts in 

neuroeconomics to improve prediction of decision-making behavior using brain-based 

measures obtained independently of the behavior itself (Kable and Levy, 2015), and 

suggests that structural covariance networks may be a useful marker of impulsive 

choice in youth. 

 

Results converge with data from lesion and neuromodulation studies 

Although the negative associations between DD and CT were widespread and 

distributed, two structural covariance networks exhibited particularly strong associations 

with DD. Brain regions comprising these networks included vmPFC, OFC, temporal 
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pole, and the TPJ. As mentioned above, our findings in vmPFC were expected based 

on substantial evidence from fMRI studies that this region is implicated in DD (Kable 

and Glimcher, 2007; Ballard and Knutson, 2009; Bartra et al., 2013). Furthermore, 

activity in vmPFC when merely thinking about the future predicts DD, such that lower 

discounters show greater activity when thinking about the far future (Cooper et al., 

2013). Finally, consistent with our results, a study in adults reported that diminished CT 

in that region was associated with higher DD (Bernhardt et al., 2014). 

 Beyond the vmPFC, evidence suggests that regions including the OFC, temporal 

pole, and TPJ are both involved in and necessary for evaluating future outcomes in DD. 

First, lesion studies in patients with medial OFC damage show greater discounting of 

both primary and secondary rewards, compared to healthy controls and non-frontal 

damage patients (Sellitto et al., 2010), and this is the only region where injuries have 

been reported to increase discounting in humans. Notably, this relationship is dose-

dependent, such that larger frontal lesions are associated with steeper discounting. 

Second, patients with semantic dementia, a disorder characterized by anterior temporal 

lobe atrophy, show greater discounting than controls (Chiong et al., 2015). Third, while 

the TPJ has typically been implicated in social cognition and theory of mind, recent data 

suggests that it also plays a role in both monetary and social discounting (Strombach et 

al., 2015; Soutschek et al., 2016). Importantly, disrupting the TPJ in healthy adults using 

transcranial magnetic stimulation increases discounting (Soutschek et al., 2016). 

Collectively, this evidence suggests that the disruption of OFC, anterior temporal lobe, 

and TPJ may promote impulsive choice.   
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Associations with delay discounting are independent of age-related changes 

While we replicated prior findings of association between lower discounting and 

higher IQ (Shamosh and Gray, 2008) and working memory (Shamosh et al., 2008), we 

did not find significant associations between DD and age (Scheres et al., 2006; 

Steinberg et al., 2009). This may be due to differences in sample composition, including 

relatively less dense sampling of younger ages and use of a dimensional rather than a 

stratified design that compared older and younger age groups. However, the lack of 

observed age effect is consistent with a recent review noting that age effects on DD are 

inconsistent and of a relatively small effect size (Romer et al., 2017). Notably, the 

association between brain structure and DD was stable across the entire age range 

surveyed in our sample. This result is consistent with a prior study of DD in adolescents 

and white matter integrity assessed using diffusion imaging (Olson et al., 2009). 

Together, these results imply that individual differences in brain structure associated 

with impulsive choice do not emerge specifically during adolescence. These results may 

also suggest that such individual differences in brain structure may emerge early in 

development, consistent with literature describing the importance of structural brain 

development in utero, during the peri-natal period, and during early childhood 

(Thomason et al., 2013; Di Martino et al., 2014). While speculative, future research may 

reveal that individual differences in brain structure which emerge early in life may impact 

evolving patterns of value and cognitive control system function in adolescence which, 

in turn, may contribute to impulsivity during this critical period (Casey et al., 2008; Bjork 

et al., 2010).   
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Advantages of evaluating structural covariance networks in a large sample 

The greater spatial extent of observed significant associations between brain 

structure and DD compared to prior results may be due to several aspects of our study. 

First, the large sample size afforded greater statistical power, and thus greater 

sensitivity, to detect effects in multiple networks. While the effect sizes of these 

associations were small, research documenting inflation of effect sizes in small studies 

suggests that our results are more likely to be an accurate reflection of the true effect 

size than data from modest samples (Button et al., 2013). Second, structural covariance 

networks defined by NMF provided a parsimonious summary of the high-dimensional 

imaging data. In contrast to anatomic atlases based on sulcal folding patterns, NMF 

identifies structural networks based on patterns of covariance in the data itself. This 

concise summary of the data limited multiple comparisons: we only evaluated 19 

networks in our analyses, in contrast to the hundreds of thousands of voxels typically 

surveyed in mass-univariate voxel-based morphometry studies. This allowed us to use 

a rigorous FDR correction for all comparisons, rather than cluster-based inference that 

may produce substantial Type I error rates in many common implementations (Eklund 

et al., 2016).  

  

Limitations 

Certain limitations of this study should be noted. First, the observed effects were 

independent of age, suggesting that differences in brain structure associated with 

impulsive choice may emerge earlier than the examined age range. Future 

investigations should consider longitudinal designs including early childhood to precisely 
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capture the emergence of these effects. Second, we used hypothetical instead of real 

rewards in the DD task. However, prior studies have yielded similar results in both 

behavioral (Johnson and Bickel, 2002) and functional neuroimaging paradigms (Bickel 

et al., 2009). Third, we cannot completely rule out potential confounding variables which 

may be correlated with DD. Previous studies have described associations between CT 

and SES in adolescence (Mackey et al., 2015), though importantly our results remained 

largely unaffected after controlling for maternal education, a proxy of SES.  Fourth, 

while the ANTs DiReCT method of quantifying CT has been shown as highly accurate 

and more discriminative than comparable techniques in large-scale evaluation studies 

(Tustison et al., 2014), it does not allow high-resolution voxel-wise analyses or provide 

information (such as surface area) regarding potentially important subcortical structures.  

 

Conclusions and future directions 

Understanding impulsive choice in adolescence is important because impulsivity 

is associated with a host of risky behaviors and outcomes, such as tobacco use 

(Reynolds, 2004), alcohol use (Fernie et al., 2013), obesity (Fields et al., 2013), and 

early sexual initiation (Khurana et al., 2012), which lead to substantial morbidity and 

mortality during adolescence. Leveraging a large developmental sample and advanced 

analytics, we found that individual variability in brain structure explains differences in DD 

in adolescence. Taken together, our results indicate that higher DD in youth is 

associated with reduced cortical thickness in multiple networks, including those known 

to be essential for valuation. These results emphasize that risky behaviors in 

adolescents should be considered in the context of individual differences of structural 
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brain networks that are present early in life. Moving forward, such brain-based 

measures could potentially be used as biomarkers to identify youth at particularly high 

risk for negative outcomes. Future studies should evaluate associations between DD, 

brain structure, and psychopathology. Such efforts could potentially aid in stratifying 

youth within targeted clinical trials aiming to reduce impulsivity and risk-taking behaviors 

during this critical period.  
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TABLES 
 
Table 1. Association between delay discounting and NMF-derived structural 
covariance networks. β (unstandardized regression coefficient), SE (β’s standard 
error), t (t-value for testing β against 0, dfs = 423), p-value, and FDR-corrected p-values 
are obtained from separate general additive models run for each network. In this model, 
discount rate (log k) predicts cortical thickness scores, controlling for age (fit as a 
penalized spline) and sex. As an estimate of the linear effect size, r is the partial 
Pearson’s correlation coefficient between discount rate and CT scores in each network, 
while adjusting for linear age, quadratic age, and sex. FDR-significant p-values are 
indicated in bold.  
 

 
 
 
 
 
 

Network ß SE t p FDR-p r 

Ntwk 1 -0.649 0.3946 -1.64 0.101 0.137 -0.080 

Ntwk 2 -0.0138 0.4217 -0.03 0.974 0.974 0.002 

Ntwk 3 -1.5868 0.5606 -2.83 0.005 0.019 -0.136 

Ntwk 4 -0.4337 0.6414 -0.68 0.499 0.527 -0.033 

Ntwk 5 -0.9959 0.4811 -2.07 0.039 0.062 -0.100 

Ntwk 6 -0.8277 0.5337 -1.55 0.122 0.154 -0.075 

Ntwk 7 -1.1428 0.4359 -2.62 0.009 0.024 -0.126 

Ntwk 8 -1.1598 0.4562 -2.54 0.011 0.024 -0.123 

Ntwk 9 -0.7926 0.3580 -2.21 0.027 0.047 -0.110 

Ntwk 10 -0.3748 0.3055 -1.23 0.221 0.262 -0.060 

Ntwk 11 -1.1527 0.4669 -2.47 0.014 0.027 -0.119 

Ntwk 12 -1.5839 0.6164 -2.57 0.011 0.024 -0.124 

Ntwk 13 -1.173 0.4283 -2.74 0.006 0.02 -0.132 

Ntwk 14 -2.019 0.4241 -4.76 <0.0001 <0.0001 -0.225 

Ntwk 15 -1.257 0.3036 -4.14 <0.0001 <0.0001 -0.200 

Ntwk 16 -0.4404 0.4371 -1.01 0.314 0.351 -0.050 

Ntwk 18 -1.252 0.4305 -2.91 0.004 0.018 -0.140 

Ntwk 19 -0.7172 0.3713 -1.93 0.054 0.079 -0.094 

Ntwk 20 -0.8778 0.3014 -2.91 0.004 0.018 -0.140 

!
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FIGURES 

 
Figure 1. Schematic of non-negative matrix factorization and example data for 
each matrix. The X matrix represents the cortical thickness data (columns) for all 
subjects (rows); the CT map shows example CT data from one participant, and 
corresponds to a column in the X matrix. The B matrix represents estimated networks 
(columns) and their loadings on each voxel (rows); the example map shows loadings 
from one network, and corresponds to a column in the B matrix. The C matrix provides 
the subject-specific weights (columns) for each network (rows); the histogram shows CT 
scores in a single network, and corresponds to a row in the C matrix. Matrix sizes are 
shown with following dimensions: V = number of cortical thickness voxels, N = number 
of participants; K = number of networks.  
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Figure 2. NMF reconstruction error identifies 20 cortical networks as the optimal 
resolution for cortical thickness data. Plot of reconstruction error gradient for NMF at 
multiple resolutions; the gradient is the difference in reconstruction error as the NMF 
solution increases by 2 networks. Blue circle indicates selected NMF solution of 20 
networks.  
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Figure 3. Structural covariance networks delineated by NMF. Visualization of 
structural covariance networks from the 20-network NMF solution. The spatial 
distribution of each network is indicated by loadings at each voxel in arbitrary units (from 
B matrix in NMF factorization); warmer colors represent higher loadings. For each 
network, we show one view that best captures the main area(s) of coverage. 
Approximate anatomical coverage of each structural covariance network: 1) medial 
prefrontal cortex and cingulate cortex; 2) medial temporal lobe; 3) insula; 4) medial 
posterior parietal cortex, including the precuneus; 5) temporo-occipital cortex; 6) 
dorsolateral prefrontal cortex (dlPFC); 7) fusiform gyrus; 8) lateral temporal lobe; 9) 
lateral temporal lobe and temporal pole; 10) posterior cingulate cortex and temporal 
lobe; 11) frontal and parietal cortex, including primary motor and somatosensory 
cortices; 12) occipital cortex; 13) medial temporal cortex, anterior cingulate cortex 
(ACC) and posterior cingulate cortex (PCC); 14) orbitofrontal cortex (OFC), frontal and 
temporal poles; 15) ventromedial prefrontal cortex (vmPFC), inferior temporal lobe, 
auditory cortex, temporoparietal junction (TPJ); 16) dorsal OFC; 17) the dura matter, a 
noise component that was not evaluated further; 18) dlPFC; 19) angular and 
supramarginal gyri; 20) posterior inferior temporal lobe.  
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Figure 4. Higher discounting is associated with diminished cortical thickness in 
frontal, temporal, and parietal areas. Regions of FDR-significant association between 
log k and structural covariance networks. The composite network visualization was 
obtained by assigning each voxel to the network which has the highest loading for that 
voxel (from the B matrix), across all 19 networks. Maximal effects were observed in 
Networks 14 and 15, which included orbitofrontal cortex and ventromedial prefrontal 
cortex. Scatterplots for log k-CT association in these networks are shown, while 
adjusting for model covariates. Gray envelope represents the 95% confidence interval. 
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Figure 5. Association between cortical thickness and delay discounting is 
independent of age. Scatterplots for relationship between age and CT in networks 14 
and 15, separated by top (Q4) and bottom (Q1) quartiles of log k. The Q4 quartile group 
contains participants with the most impulsive preferences. For each quartile, the age-CT 
relationship is shown after adjusting for model covariates, and includes the 95% 
confidence intervals (gray envelopes).   
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Figure 6. Higher discounting is associated with diminished regional cortical 
thickness in frontal and temporal regions. FDR-significant associations between log 
k and CT estimated in anatomically-defined regions. Significant regions include the 
following: left frontal pole (1); left medial orbital gyrus (2); left orbital part of the inferior 
frontal gyrus (3); left posterior orbital gyrus (4); left precentral gyrus (5); left central 
operculum (6); left temporal pole (7); left superior temporal gyrus (8); left superior frontal 
gyrus, medial segment (9); left medial frontal cortex (10); left gyrus rectus (11); left 
fusiform gyrus (12); left planum polare (13); right frontal pole (14); right medial orbital 
gyrus (15); right central operculum (16); right temporal pole (17); right superior temporal 
gyrus (18); middle temporal gyrus (19); right inferior occipital gyrus (20); right precentral 
gyrus, medial segment (21); right cuneus (22); right posterior insula (23); right planum 
temporale (24). 
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Figure 7. CT data from structural covariance networks predicts delay discounting. 
Scatterplot for relationship between actual log k values and predicted log k from 
multivariate CT prediction. Multivariate prediction is based on CT scores from all 
structural covariance networks plus demographic variables: sex and age. Scatterplots 
include line of best fit for this association with a 95% confidence interval (gray 
envelope). 
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