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Abstract  48 

Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human 49 
GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene 50 
expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and 51 
gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains 52 
(LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two 53 
founder strains to obtain genotypes at 4.3M SNPs. As expected, all alleles were common (mean MAF=0.35) and 54 
linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We 55 
identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 56 
trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified 57 
using an earlier generation of this intercross, including an association between locomotor activity and a locus 58 
containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. 59 
Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of 60 
replication in an independent cohort, which is customary in human genetics, and replication by experimental 61 
manipulation, which is a unique advantage of model organisms. 62 

Introduction 63 

Genome-wide association studies (GWAS) have revolutionized psychiatric genetics; however, they have also 64 
presented numerous challenges. Some of these challenges can be addressed by using model organisms. For 65 
example, human GWAS are confounded by environmental variables, such as childhood trauma, which can reduce 66 
power to detect genetic associations. In model organisms, environmental variables can be carefully controlled. 67 
Furthermore, it has become clear that phenotypic variation in humans is due to numerous common and rare variants of 68 
small effect. In model organisms, genetic diversity can be controlled such that all variants are common. In addition, 69 
allelic effect sizes in model organisms are dramatically larger than in humans1,2. Furthermore, because the majority of 70 
associated loci are in noncoding regions, expression quantitative trait loci (eQTLs) are useful for elucidating underlying 71 
molecular mechanisms3,4. However, it remains challenging to obtain large, high quality samples of human tissue, 72 
particularly from the brain. In contrast, tissue for gene expression studies can be collected from model organisms 73 
under optimal conditions. Finally, the genomes of model organisms can be edited to assess the functional 74 
consequences of specific mutations.  75 
 76 
Model organism GWAS often employ multigenerational intercrosses because they promote recombination of ancestral 77 
haplotypes. We used an advanced intercross line (AIL) of mice, which is the simplest possible multigenerational 78 
intercross. AILs, originally proposed by Darvasi and Soller in 1995 (ref. 5), are produced by intercrossing two inbred 79 
strains beyond the F2 generation. Because the two inbred strains contribute equally to an AIL, all variants are 80 
common, and alleles that are identical by state are necessarily identical by descent (IBD), which greatly simplifies 81 
phasing and imputation. We performed a GWAS using the world’s most advanced mouse AIL, which was created over 82 
50 generations ago by crossing the LG/J (LG) and SM/J (SM) inbred strains6. We investigated over 100 traits using 83 
mice from generations 50-56 (G50-56), including locomotor activity, response to methamphetamine, prepulse inhibition 84 
(PPI), body weight, and various muscle and bone phenotypes. We also sequenced mRNA from three brain regions 85 
and used those data to map eQTLs and identify quantitative trait genes (QTGs) at each locus. Finally, we explored 86 
replication of previous associations identified in LG x SM G347–11 and used mutant mice to test one of our strongest 87 
candidate QTGs.  88 

Results 89 

We used genotyping by sequencing (GBS) to genotype 1,063 of the 1,123 mice that were phenotyped (60 were not 90 
successfully genotyped for technical reasons described in the Supplementary Note). After quality control, GBS 91 
yielded 38,238 autosomal SNPs. In the 24 AIL mice that were also genotyped on the Giga Mouse Universal 92 
Genotyping Array (GigaMUGA)12, only 24,934 markers were polymorphic in LG and SM (Supplementary Fig.1). LG 93 
and SM have been re-sequenced13, which allowed us to impute AIL genotypes at ~4.3 million single nucleotide 94 
polymorphisms (SNPs; Fig. 1a). Consistent with the expectation for an AIL, the average minor allele frequency (MAF) 95 
was high (Fig. 1b). Linkage disequilibrium (LD) decay, which is critical to mapping resolution, has improved since LG x 96 
SM G34 (Fig. 1c)7.   97 
 98 
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 99 
Figure 1. SNPs, minor allele frequencies (MAFs) and linkage disequilibrium (LD) decay in the LG x SM AIL. Imputation 100 
provided ~4.3 million SNPs. Filtering for LD (r2 ≥ 0.95), MAF < 0.1, and HWE (p ≤ 7.62x10-6) resulted in 523,028 SNPs for GWAS. 101 
(a) SNP distribution and density of GWAS SNPs are plotted in 500 kb windows for each chromosome. As shown in Supplementary 102 
Fig. 1, regions with low SNP density correspond to regions predicted to be nearly IBD in LG and SM (Nikolskiy et al. 2015). (b) MAF 103 
distributions are shown for ~4.3 million imputed SNPs (gold; unfiltered) and for the 523,028 SNPs used for GWAS (orange; filtered). 104 
Mean MAF is the same in both SNP sets. (c) Comparison of LD decay in G50-56 (dark purple) and G34 (light purple) of the LG x 105 
SM AIL. Each curve was plotted using the 95th percentile of r2 values for SNPs spaced up to 5 Mb apart. 106 

LOCO-LMM effectively reduces the type II error rate 107 

Linear mixed models (LMMs) are commonly used to perform GWAS in AILs and other populations that include close 108 
relatives14. SNP data are used to obtain a genetic relationship matrix (GRM); however, this can lead to an inflation of 109 
the type II error rate due to proximal contamination15,16. We previously proposed using a leave-one-chromosome-out 110 
LMM (LOCO-LMM) to address this issue15. To demonstrate the appropriateness of a LOCO-LMM, we performed a 111 
GWAS for albinism, which is a recessive Mendelian trait, using three approaches: a simple linear model, an LMM and 112 
a LOCO-LMM (Fig. 2). GWAS using a LOCO-LMM for albinism yielded an association on chromosome 7 (Fig. 2a); 113 
accurately identifying the albino locus (Tyr). As expected, p-values from a genome-wide scan using a linear model, 114 
which does not account for relatedness, appeared highly inflated (Fig. 2b). This inflation was greatly reduced by fitting 115 
a standard LMM, which included SNPs from chromosome 7 in both the fixed and random effects (Fig. 2c). The LOCO-116 
LMM, which does not include SNPs from the chromosome being tested in the GRM, showed an intermediate level of 117 
inflation (Fig. 2d). Was the inflation observed in Fig. 2b-d due to true signal, or uncontrolled population structure? To 118 
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address this question, we repeated these analyses after excluding SNPs on chromosome 7 from the fixed effect (Fig. 119 
2e-g). Even in the absence of the causal locus, the simple linear model showed substantial inflation, which can only be 120 
explained by population structure (Fig. 2e). The standard LMM appeared overly conservative, which we attributed to 121 
proximal contamination (Fig. 2f). The LOCO-LMM showed no inflation, consistent with the absence of Tyr and linked 122 
SNPs in the fixed effect (Fig. 2g). These results demonstrate the appropriateness of a LOCO-LMM. 123 

 124 
 125 

Figure 2. GWAS for albinism verifies that the LOCO-LMM effectively controls type I and type II error. We conducted a GWAS 126 
for albinism, a Mendelian trait caused by the Tyr locus on mouse chromosome 7, using three models: a linear model, an LMM, and 127 
a LOCO-LMM. We also repeated each scan after excluding SNPs on chromosome 7. A Manhattan plot of results from the LOCO-128 
LMM is shown in (a). Quantile-quantile plots of expected vs. observed p-values are shown for (b) a simple linear model that does 129 
not account for relatedness; (c) a standard LMM that includes all GWAS SNPs in the genetic relatedness matrix (GRM; i.e. the 130 
random effect); and (d) a LOCO-LMM whose GRM excludes SNPs located on the chromosome being tested. Plots (e-g) show 131 
results after excluding chromosome 7 from the GWAS.   132 

Genetic architecture of complex traits in the LG x SM AIL 133 

We used an LD-pruned set of 523,028 autosomal SNPs genotyped in 1,063 mice from LG x SM G50-56 to perform 134 
GWAS for 120 behavioral and physiological traits using a LOCO-LMM (Fig. 3a). We used permutation to define a 135 
significance threshold of p=8.06x10-6 (α=0.05). There were 52 loci associated with 33 behavioral traits and 74 loci 136 
associated with 17 physiological traits (Fig. 3a, Supplementary Table 1; Supplementary Fig. 2). 137 
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 138 
To estimate the heritability attributable to SNPs (‘SNP heritability’), we calculated the proportion of trait variance 139 
explained by the additive effects of 523,028 SNPs. In general, heritability estimates were larger for physiological traits 140 
than for behavioral traits (Fig. 3b, Supplementary Table 2), which is consistent with findings in other rodent GWAS17–141 
19. Mean heritability was 0.355 (se=0.045) for physiological traits and 0.168 (se=0.038) for behavioral traits 142 
(conditioned place preference, locomotor sensitization, and habituation to startle were not found to have a genetic 143 
component and were excluded from the mean). In general, traits with higher heritabilities yielded more associations 144 
(Supplementary Fig. 2). However, there was no significant relationship between heritability and effect size at 145 
individual loci (Supplementary Fig. 3), suggesting that high heritability does not reliably predict the presence of large-146 
effect alleles. 147 
 148 

 149 
 150 
Figure 3. Manhattan plot and heritability for 120 traits measured in the LG x SM AIL. We identified 126 loci for behavioral and 151 
physiological traits using 1,063 mice from G50-56 of the LG x SM AIL. A Manhattan plot of GWAS results is shown in (a). 152 
Associations for related traits are grouped by color. For clarity, related traits that mapped to the same locus (Supplementary Table 153 
S1) are highlighted only once. The dashed line indicates a permutation-derived significance threshold of -log10(p)=5.09 (p=8.06x10-154 
6; α=0.05). (b) For a representative subset of traits, SNP heritability estimates (percent trait variance explained by 523,028 GWAS 155 
SNPs) for a subset of traits are shown. Precise estimates of heritability with standard error are provided for all traits in 156 
Supplementary Table 2.     157 

eQTLs 158 

For a subset of phenotyped and genotyped mice, we used RNA-sequencing (RNA-seq) to measure gene expression 159 
in the hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR) (α=0.05; Fig. 4, Supplementary Fig. 4). We 160 
identified 2,902 cis-eQTLs in HIP, 2,125 cis-eQTLs in PFC and 2,054 cis-eQTLs in STR; 1,087 cis-eQTLs were 161 
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significant in all three tissues (FDR<0.05; Supplementary Table 3). We also identified 562 HIP trans-eQTLs, 408 PFC 162 
trans-eQTLs and 506 STR trans-eQTLs (p<0.05; Supplementary Fig. 5; Supplementary Table 4). 163 
  164 
Previous studies in model organisms have identified trans-eQTLs that regulate the expression of many genes4,20,21; we 165 
refer to these as ‘master eQTLs’. We identified several master eQTLs, including one on chromosome 12 (70.19-73.72 166 
Mb) that was associated with the expression of 85 genes distributed throughout the genome (Fig. 4; Supplementary 167 
Table 4). This locus was present in HIP, but not in PFC or STR. 168 
 169 

 170 
 171 
Figure 4. eQTLs in hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR). We identified over 7,000 cis-eQTLs (FDR 172 
< 0.05) and over 1,400 trans-eQTLs (α=0.05) in HIP (n=208; outer red for cis-eQTLs, inner red for trans-eQTLs), PFC (n=185; outer 173 
black for cis-eQTLs, inner black for trans-eQTL) and STR (n=169; outer brown for cis-eQTLs, inner brown for trans-eQTLs). We 174 
also identified master eQTLs, which we defined as loci that regulate the expression of ten or more target eGenes in a given tissue 175 
(central lines link master eQTLs to eGenes).   176 
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Integration of eQTLs and behavioral GWAS results  177 

Based on results from human GWAS3,4, we hypothesized that most loci associated with behavior were due to gene 178 
expression differences. For example, four loci associated with locomotor behavior mapped to the same region on 179 
chromosome 17 (Supplementary Table 1; Supplementary Fig. 2). The narrowest of these (D1 side changes, 15-20 180 
min; p=3.60x10-6) identified a locus that contains a single gene, Crim1 (cysteine rich transmembrane BMP regulator 1), 181 
which had a significant cis-eQTL in HIP. It would be tempting to conclude that Crim1 is the best candidate to explain 182 
the associations with locomotor behavior; however, two nearby genes, Qpct (glutaminyl-peptide cyclotransferase) and 183 
Vit (vitrin), though physically located outside of the locus, also had cis-eQTLs within the locomotor-associated region 184 
(Supplementary Table 3). We therefore consider all three genes valid candidates to explain the association with 185 
locomotor behavior. 186 
 187 
One of the most significant loci we identified was an association with the startle response, also on chromosome 17 188 
(p=5.28x10-10; Fig. 3; Supplementary Fig. 2). This result replicated a previous association with startle from a prior 189 
study using G34 mice8. We performed a phenome-wide association analysis (PheWAS) which showed that this region 190 
pleiotropically affected multiple other traits, including locomotor activity following saline and methamphetamine 191 
administration (Supplementary Fig. 6). This region was also implicated in conditioned fear and anxiety in our prior 192 
studies of G34 mice9, demonstrating that it has extensive pleiotropic effects on behavior. Because the association with 193 
startle identifies a relatively large haplotype that includes over 25 eGenes, our data cannot clarify whether the 194 
pleiotropic effects are due to one or several genes in this interval.                                                                      195 
  196 
We also identified a 0.49-Mb locus on chromosome 8 that was associated with locomotor activity (Fig. 5a; 197 
Supplementary Table 1); this region was nominally associated with PPI and multiple other activity traits (Fig. 5b). The 198 
region identified in the present study (Fig. 5a-c) replicates a finding from our previous study using G34 mice7 (Fig. 5d). 199 
In both cases, the SM allele conferred increased activity (Fig. 5c,d) and the implicated locus contained only one gene: 200 
Csmd1 (CUB and sushi multiple domains 1; Fig. 5b; Supplementary Table 2); furthermore, the only cis-eQTL that 201 
mapped to this region was for Csmd1 (Supplementary Fig. 7). We obtained mice in which the first exon of Csmd1 202 
was deleted to test the hypothesis that Csmd1 is the QTG for this locus. Csmd1 mutant mice exhibited increased 203 
activity compared to heterozygous and wild-type mice (Fig. 5e), similar to the SM allele. This result is consistent with 204 
the hypothesis that Csmd1 is the causal gene. 205 
 206 

 207 

 208 
Figure 5. Replication of an association between Csmd1 and locomotor activity. (a) ) Regional plot drawn from all 4.3M SNPs 209 
showing the association between rs33436747 and D5 activity levels. The location of Csmd1, 1.5-LOD interval (gold bar), areas of 210 
elevated recombination from Brunschwig et al. (ref. 22) (green plus symbols), regions predicted by Nikolskiy et al. (ref. 13) to be 211 
nearly IBD between LG and SM (grey bars), and SNP MAFs (grey heatmap) are indicated. Points are colored by LD (r2) with 212 
rs33436747. The dashed line indicates a significance threshold of -log10(p)=5.09 (α=0.05). (b) PheWAS plot of associations 213 
between rs33436747 and other behavioral traits measured in G50-56 mice. (b) Bar plot of quantile-normalized residuals of 214 
locomotor activity at the Csmd1 locus are plotted for G50-56 mice. (c) Bar plot of quantile-normalized residuals of locomotor activity 215 
at the Csmd1 locus for G34 mice from Cheng et al. (ref. 7). rs33436747 was not genotyped in G34; therefore, we plotted activity by 216 
genotype at the nearest SNP (rs33014260; 6,764 bp upstream of rs33436747). (e) Bar plot of locomotor activity data (distance 217 
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traveled in 0-30 min) for Csmd1 mutant mice. In panels c-e the number of mice in each genotype class is shown below the 218 
corresponding bar. ANOVA and two-sided t-test (95% confidence level) p-values are shown for each comparison. 219 
 220 
We identified seven overlapping loci for locomotor activity on chromosome 4 (Supplementary Table 1; 221 
Supplementary Fig. 2). The strongest locus (D5 activity, 0-30 min; p=6.75x10-9) spanned 2.31 Mb and completely 222 
encompassed the narrowest locus, which spanned 0.74 Mb (D5 activity, 25-30 min; p=4.66x10-8); therefore, we 223 
focused on the smaller region. Oprd1 (opioid receptor delta-1) was a cis-eGene in all three brain regions; the SM allele 224 
conferred an increase in locomotor activity and was associated with decreased expression of Oprd1. Oprd1 knockout 225 
mice have been reported to display increased activity relative to wild-type mice23, suggesting that differential 226 
expression of Oprd1 could explain the locomotor effect at this locus. However, the presence of other genes and 227 
eGenes within the region make it difficult to determine whether Oprd1 is the only QTG. 228 
 229 
We identified an association with D1 locomotor behavior on chromosome 6 at rs108610974, which is located in an 230 
intron of Itpr1 (inositol 1,4,5-trisphosphate receptor type 1; Supplementary Fig. 8). This locus contained three cis-231 
eGenes and seven trans-eQTLs (Supplementary Fig. 8). One of the trans-eGenes targeted by the locus (Capn5; 232 
calpain 5) was most strongly associated with rs108610974 and may be the QTG (Supplementary Table 4). These 233 
results illustrate how the knowledge of both cis- and trans-eQTLs informed our search for QTGs. 234 

Pleiotropic effects on physiological traits 235 

Because LG and SM were created by selective breeding for large (LG) and small (SM) body size, this AIL is expected 236 
to segregate numerous body size alleles11,24. We measured body weight at ten timepoints throughout development and 237 
identified 46 associations. There was extensive pleiotropy among body weight, muscle mass, and bone length 238 
(Supplementary Table 1; Supplementary Fig. 9-12). Accounting for pleiotropic genetic architecture, eight major loci 239 
arose that influenced body weight at multiple timepoints (Fig. 3a; Supplementary Table 1). 240 
  241 
For example, eight body weight timepoints mapped to a region on chromosome 2, where the LG allele was associated 242 
with smaller body mass (Supplementary Table 1; Supplementary Fig. 2,9). The narrowest region spanned 0.08 Mb 243 
and did not contain any genes. However, the 0.08-Mb interval contained a cis-eQTL SNP for Nr4a2 (nuclear receptor 244 
subfamily 4, group A, member 2) in PFC. Mice lacking Nr4a2 in midbrain dopamine neurons exhibit a 40% reduction in 245 
body weight25. Consistent with this, the LG allele was associated with decreased expression of Nr4a2. 246 

 247 
All body weight timepoints were associated with a locus on chromosome 7 (Supplementary Table 1; Supplementary 248 
Fig. 2). We also identified associations for tibialis anterior (TA), gastrocnemius, plantaris weight that partially 249 
overlapped this region (Supplementary Fig. 10). Although the most significant SNP associated with muscle weight 250 
was ~5 Mb downstream of the top body weight SNP, the LG allele was associated with greater weight at both loci 251 
(Supplementary Table 1). For eight out of ten body weight timepoints, the most significant association fell within Tpp1 252 
(tripeptidyl peptidase 1), which was a cis-eGene in all tissues and a trans-eGene targeted by the master HIP eQTL on 253 
chromosome 12 (Fig. 4). To our knowledge, Tpp1 has not been shown to affect body size in mice or humans; 254 
however, four other cis-eGenes in the region have been associated with human body mass index (Rpl27a, Stk33, 255 
Trim66, and Tub)26,27. Dysfunction of Tub (tubby bipartite transcription factor) causes late-onset obesity in mice, 256 
perhaps due to Tub’s role in insulin signaling28. In addition, several trans-eGenes map to this interval, including Gnb1 257 
(G protein subunit beta 1), which forms a complex with Tub29. Another trans-eGene associated with this interval, 258 
Crebbp (CREB binding protein), has been associated with juvenile obesity in human GWAS30. 259 

Multiple strong associations identified for muscle mass 260 

We examined five hind limb muscle traits, identifying 22 loci (Supplementary Table 1; Supplementary Fig. 2). No 261 
loci were identified for soleus weight. The strongest association we identified in this study was for extensor digitorum 262 
longus (EDL) weight (p=2.03x10-13; Supplementary Table 1; Supplementary Fig. 11). An association with 263 
gastrocnemius weight provided additional support for the region (p=2.56x10-7; Supplementary Fig. 11); in both cases, 264 
the SM allele was associated with increased muscle mass. Each locus spans less than 0.5 Mb and is flanked by 265 
regions of low polymorphism between LG and SM (Supplementary Fig. 11, Supplementary Table 1). Two cis-266 
eGenes within the region, Trappc13 (trafficking protein particle complex 13) and Nln (neurolysin), are differentially 267 
expressed in LG and SM soleus31 and TA32, with LG exhibiting increased expression of both genes. While there is no 268 
known relationship between Trappc13 and muscle, Nln has been shown to play a role in mouse skeletal muscle33. 269 
 270 
The LG allele was associated with greater EDL, plantaris, and TA weight at another locus on chromosome 4 271 
(Supplementary Table 1; Supplementary Fig. 12). The loci for EDL and plantaris spanned ~0.5 Mb, defining a region 272 
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that contained six genes (Supplementary Table 1). The top SNPs for EDL (rs239008301; p=7.88x10-13) and plantaris 273 
(rs246489756; p=2.25x10-6) were located in an intron of Astn2 (astrotactin 2), which is differentially expressed in LG 274 
and SM soleus31. SM, which exhibits lower expression of Astn2 in soleus relative to LG31, has a 16 bp insertion in an 275 
enhancer region 6.6 kb upstream of Astn2 (ENSMUSR00000192783)13. Two other genes in this region have been 276 
associated with muscle or bone phenotypes traits in the mouse: Tlr4 (toll-like receptor 4), which harbors one 277 
synonymous coding mutation on the SM background (rs13489095) and Trim32 (tripartite motif-containing 32), which 278 
contains no coding polymorphisms between the LG and SM strains.  279 

Discussion   280 

  281 
Crosses among well-characterized inbred strains are a mainstay of model organism genetics. In the present study, we 282 
used 1,063 male and female mice from LG x SM G50-56 to identify 126 loci for a variety of traits selected for their 283 
relevance to human psychiatric and metabolic diseases24,34,35 (Fig. 3; Supplementary Table 1; Supplementary Fig. 284 
2). Whereas our previous work established AILs as an effective tool for fine-mapping loci identified in F2 crosses7–285 
11,14,31, this study demonstrates that AILs are also a powerful fine mapping population in their own right. We show that 286 
several QTGs we identified are corroborated by extant human and mouse genetic data. We also replicated a number 287 
of our earlier findings. 288 
 289 
Classical crosses like F2 and recombinant inbred strains provide poor mapping resolution because the ancestral 290 
chromosomes persist as extremely long haplotypes2. To address this limitation, we and others have used AILs14. 291 
Because both inbred strains contribute equally to an AIL, there are numerous common variants (Fig. 1a,b), and each 292 
successive generation further degrades LD between adjacent SNPs (Fig. 1c). In addition to AILs, a number of other 293 
outbred populations have been used in rodent GWAS, including CFW mice17,18, Diversity Outbred (DO) mice36,37, and 294 
N/NIH heterogeneous stock rats (HS)19,38. CFW mice are obtained from a commercial vendor, which avoids the 295 
expenses of maintaining a colony. In addition, non-siblings can be obtained, which reduces the complicating effects 296 
that can occur when close relatives are used in GWAS. However, the CFW founder strains are unavailable, and many 297 
alleles exist at low frequencies among CFWs, limiting power and introducing genetic noise17,18. Commercially available 298 
DO mice are more expensive than CFWs, but like AILs, the founder strains have been fully sequenced, which allows 299 
imputation of SNPs and founder haplotypes. However, three of the eight inbred strains used to produce the DO are so-300 
called wild-derived strains; making DO mice very difficult to handle, which complicates many behavioral procedures37. 301 
Furthermore, the causal alleles in the DO are often from one of the wild derived strains, because 8 strains contributed 302 
equally to the DO, this means that the causal allele frequencies are often in the range of 0.125. Finally, N/NIH HS rats, 303 
which are conceptually very similar to DO mice, have also been used as a fine mapping population19,38. Among these 304 
options, AILs stand out for their simplicity, balanced allele frequency and ease of handling.  305 
 306 
A major goal of this study was to identify the genes that are responsible for the loci implicated in behavioral and 307 
physiological traits. The mapping resolution of the LG x SM AIL was critically important for this goal. However, no 308 
matter how precise the resolution, proximity of a gene to the associated SNP is never sufficient to establish causality4. 309 
Therefore, we used RNA-seq to quantify mRNA abundance in three brain regions that are strongly implicated in the 310 
behavioral traits: HIP, PFC and STR. We used these data to identify 7,081 cis-eQTLs and 1,372 trans-eQTLs (Fig. 4, 311 
Supplementary Fig. 4-5; Supplementary Tables 3-4). In a few cases, loci contained only a single eQTL; however, in 312 
most cases multiple cis-eQTLs and trans-eQTLs mapped to the implicated loci. Thus, we frequently incorporated 313 
functional information, including data about tissue specific expression, coding SNP, mutant mice, and human genetic 314 
studies to parse among the implicated genes. 315 
 316 
We have previously shown that GBS is a cost-effective strategy for genotyping CFW mice39. The advantages of GBS 317 
were even greater for this AIL because imputation allowed us to easily obtain 4.3M SNPs while using only half the 318 
sequencing depth (Fig. 1a). Even before imputation, GBS yielded nearly 50% more informative SNPs compared to the 319 
best available SNP genotyping chip12 at about half the cost (Supplementary Fig. 1). 320 
  321 
One of the goals of this study was to perform GWAS for conditioned place preference (CPP), which is a well-validated 322 
measure of the reinforcing effects of drugs40. Unfortunately, the heritability of CPP in this study was not significantly 323 
different from zero (Fig. 3b). This result was partially consistent with our prior study in which we used a higher dose of 324 
methamphetamine (2 vs. the 1 mg/kg used in the present study)41. The low heritability of CPP in this AIL likely reflects 325 
a lack of relevant genetic variation in this specific population since both panels of inbred strains and genetically 326 
engineered mutant alleles show differences in CPP40,42,43, demonstrating the existence of heritable variance in other 327 
populations. It is possible that even lower doses of methamphetamine, which might fall on the ascending portion of the 328 
dose-response function, would have resulted in higher heritability. Similarly, responses to other drugs or different CPP 329 
methodology may have exhibited greater heritability.   330 
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  331 
We used PheWAS to identify pleiotropic effects of several loci identified in this study. In many cases, pleiotropy 332 
involved highly correlated traits such as body weight on different days or behavior at different time points within a 333 
single day (Supplementary Fig. 9-13; Supplementary Table 1). We also observed more surprising examples of 334 
pleiotropy, including pleiotropy between locomotor activity and gastrocnemius mass on chromosome 4 335 
(Supplementary Fig. 14), and pleiotropy between locomotor activity and the startle response on chromosome 12 336 
(Supplementary Fig. 15). We also observed extensive pleiotropy on chromosome 17; this locus influenced saline- 337 
and methamphetamine-induced locomotor activity and startle response (Supplementary Fig. 6). Moreover, this same 338 
region had been previously implicated in anxiety-like behavior9, contextual and conditioned fear9, and startle response8 339 
in prior studies of LG x SM G34, suggesting that the locus has a broad impact on many behavioral traits. These results 340 
support the idea that pleiotropy is a pervasive feature in this AIL and provide further evidence of the replicability of the 341 
loci identified by this and prior GWAS. 342 
  343 
Discoveries from human GWAS are often considered preliminary until they are replicated in an independent cohort. In 344 
model organisms, replication using an independent cohort is rarely employed because it is possible to directly 345 
manipulate the implicated gene. We replicated one behavioral locus identified in this study using the criteria of both 346 
human and model organism genetics. We had previously identified an association with locomotor activity on 347 
chromosome 8 using G34 of this AIL7, which was replicated in the present study (Fig. 5). In both cases, the SM allele 348 
was associated with lower activity (Fig. 5c-d). We also identified a locus for PPI (76 dB) in this region (Fig. 5a; 349 
Supplementary Table 1, Supplementary Fig. 2). The loci identified in both G34 and in G50-56 were small and 350 
contained just one gene: Csmd1 (Fig. 5b). In the present study we also identified a cis-eQTL for Csmd1 in HIP 351 
(Supplementary Figure 7). Finally, we obtained Csmd1 mutant mice44 and found that they also showed altered 352 
locomotor activity (Fig. 5e). Thus, we have demonstrated replication both by performing an independent GWAS and by 353 
performing an experimental manipulation that recapitulates the phenotype.  354 

  355 
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Online Methods  356 

Genetic background  357 

  358 
The LG and SM inbred strains were independently selected for high and low body weight at 60 days45. The LG x SM 359 
AIL was derived from an F1 intercross of SM females and LG males initiated by Dr. James Cheverud at Washington 360 
University in St. Louis6. Subsequent AIL generations were maintained using at least 65 breeder pairs selected by 361 
pseudo-random mating46. In 2006, we established an independent AIL colony using 140 G33 mice obtained from Dr. 362 
Cheverud (Jmc: LG,SM-G33). Since 2009, we have selected breeders using an R script (Supplementary Note) that 363 
leverages pairwise kinship coefficients estimated from the AIL pedigree to select the most unrelated pairs while also 364 
attempting to minimize mean kinship among individuals in the incipient generation (the full pedigree is included in 365 
Supplementary File 1). We maintained ~100 breeder pairs in G49-55 to produce the mice for this study. In each 366 
generation, we used one male and one female from each nuclear family for phenotyping, and reserved up to three of 367 
their siblings for breeding the next generation. 368 

Phenotypes 369 

  370 
We subjected 1,123 AIL mice (562 female, 561 male; Aap: LG,SM-G50-56) to a four-week battery of tests over the 371 
course of two years. This sample size was based on an analysis suggesting that 1,000 mice would provide 80% power 372 
to detect associations explaining 3% of the phenotypic variance (Supplementary Fig. 16). We measured CPP for 1 373 
mg/kg methamphetamine, locomotor behavior, PPI, startle, body weight, muscle mass, bone length and other related 374 
traits (Supplementary Table 2). We tested mice during the light phase of a 12:12h light-dark cycle in 22 batches 375 
comprised of 24-71 individuals (median=53.5). Median age was 54 days (mean=55.09, range=35-101) at the start of 376 
testing and 83 days (mean=84.4, range=64-129) at death. Standard lab chow and water were available ad libitum, 377 
except during testing. Testing was performed during the light phase, starting one hour after lights on and ending one 378 
hour before lights off. No environmental enrichment was provided. All procedures were approved by the Institutional 379 
Animal Care and Use Committee at the University of Chicago (Supplementary File 2). Traits are summarized briefly 380 
below; detailed descriptions are provided in the Supplementary Note. 381 
  382 
CPP and locomotor behavior: CPP is an associative learning paradigm that has been used to measure the 383 
motivational properties of drugs in humans47 and rodents40. We defined CPP as the number of seconds spent in a 384 
drug-associated environment relative to a neutral environment over the course of 30 minutes. The full procedure takes 385 
eight days, which we refer to as D1-D8. We measured baseline preference after administration of vehicle (0.9% saline, 386 
i.p.) on D1. On D2 and D4, mice were administered methamphetamine (1 mg/kg, i.p.) and restricted to one visually and 387 
tactically distinct environment; on D3 and D5 mice were administered vehicle and restricted to the other, contrasting 388 
environment. On D8, mice were allowed to choose between the two environments after administration of vehicle; we 389 
measured CPP at this time. Other variables measured during the CPP test include the distance traveled (cm) on all 390 
testing days, the number of side changes on D1 and D8, and locomotor sensitization to methamphetamine (the 391 
increase in activity on D4 relative to D2). We measured CPP and locomotor traits across six 5-minute intervals and 392 
summed them to generate a total phenotype for each day. 393 
  394 
PPI and startle: PPI is the reduction of the acoustic startle response when a loud noise is immediately preceded by a 395 
low decibel (dB) prepulse48. PPI and startle are measured across multiple trials that occur over four consecutive blocks 396 
of time8. The primary startle trait is the mean startle amplitude across all pulse-alone trials in blocks 1-4. Habituation to 397 
startle is the difference between the mean startle response at the start of the test (block 1) and the end of the test 398 
(block 4). PPI, which we measured at three prepulse intensities (3, 6, and 12 dB above 70 dB background noise), is 399 
the mean startle response during pulse-alone trials in blocks 2-3 normalized by the mean startle response during 400 
prepulse trials in blocks 2-3. 401 
  402 
Physiological traits: We measured body weight (g) on each testing day and at the time of death. One week after PPI, 403 
we measured blood glucose levels (mg/dL) after a four-hour fast. One week after glucose testing, we killed the mice, 404 
and measured tail length (cm from base to tip of the tail). We stored spleens in a 1.5 mL solution of 0.9% saline at -405 
80C until DNA extraction. We removed the left hind limb of each mouse just below the pelvis; hind limbs were stored 406 
at -80C. Frozen hind limbs were phenotyped by Dr. Arimantas Lionikas at the University of Aberdeen. Phenotyped 407 
muscles include two dorsiflexors, TA and EDL, and three plantar flexors: gastrocnemius, plantaris and soleus. We 408 
isolated individual muscles under a dissection microscope and weighed them to 0.1 mg precision on a Pioneer balance 409 
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(Ohaus, Parsippany, NJ, USA). After removing soft tissue from the length of tibia, we measured its length to 0.01 mm 410 
precision with a Z22855 digital caliper (OWIM GmbH & Co., Neckarsulm, GER). 411 
 412 
Brain tissue: We collected HIP, PFC and STR for RNA-seq from the brain of one mouse per cage. This allowed us to 413 
dissect each brain within five minutes of removing a cage from the colony room (rapid tissue collection was intended to 414 
limit stress-induced changes in gene expression). We preselected brain donors to prevent biased sampling of docile 415 
(easily caught) mice and to avoid sampling full siblings, which would reduce our power to detect eQTLs. Intact brains 416 
were extracted and submerged in chilled RNALater (Ambion, Carlsbad, CA, USA) for one minute before dissection. 417 
Individual tissues were stored separately in chilled 0.5-mL tubes of RNALater. All brain tissue was dissected by the 418 
same experimenter and subsequently stored at -80°C until extraction.  419 

GBS variant calling and imputation 420 

  421 
GBS is a reduced-representation genotyping method49,50 that we have adapted for use in mice and rats17,39. We 422 
extracted DNA from spleen using a standard salting-out protocol and prepared GBS libraries by digesting DNA with the 423 
restriction enzyme PstI, as described previously17. We sequenced 24 uniquely barcoded samples per lane of an 424 
Illumina HiSeq 2500 using single-end, 100 bp reads. We aligned 1,110 GBS libraries to the mm10 reference genome 425 
before using GATK51 to realign reads around known indels in LG and SM13 (see Supplementary Note and 426 
Supplementary File 3 for details and example commands). We obtained an average of 3.2M reads per sample. We 427 
discarded 32 samples with <1M reads aligned to the main chromosome contigs (1-19, X, Y) or with a primary 428 
alignment rate <77% (i.e. three s.d. below the mean of 97.4%; Supplementary Fig. 17).  429 
 430 
We used ANGSD52 to obtain genotype likelihoods for the remaining 1,078 mice and used Beagle53 for variant calling, 431 
which we performed in two stages. We used first-pass variant calls as input for IBDLD54,55, which we used to estimate 432 
kinship coefficients for the mice in our sample. Because our sample contained opposite-sex siblings, we were able to 433 
identify and resolve sample mix-ups by comparing genetic kinship estimates to kinship estimated from the LG x SM 434 
pedigree (described in the Supplementary Note). In addition, we re-genotyped 24 mice on the GigaMUGA12 to 435 
evaluate GBS variant calls (Supplementary Table 5 lists concordance rates at various stages of our pipeline; see 436 
Supplementary Note for details). 437 
 438 
After identifying and correcting sample mix-ups, we discarded 15 samples whose identities could not be resolved 439 
(Supplementary Note). Next, we used Beagle53,56, in conjunction with LG and SM haplotypes obtained from whole-440 
genome sequencing data13 to impute 4.3M additional SNPs into the final sample of 1,063 mice. We removed SNPs 441 
with low MAFs (<0.1), SNPs with Hardy-Weinberg Equilibrium (HWE) violations (p ≤ 7.62x10-6, determined from gene 442 
dropping simulations as described in the Supplementary Note), and SNPs with low imputation quality (dosage r2, 443 
DR2<0.9). We then pruned variants in high LD (r2>0.95) to obtain the 523,028 SNPs that we used for GWAS.   444 
 445 

LD decay 446 
 447 
We used PLINK57 to calculate r2 for all pairs of autosomal GWAS SNPs typed in G50-56 (parameters are listed in 448 
Supplementary File 3). We repeated the procedure for 3,054 SNPs that were genotyped in G34 mice7. Next, we 449 
randomly sampled r2 values calculated for ~40,000 SNP pairs from each population and used the data to visualize the 450 
rate of LD decay (Fig. 1c). 451 

LOCO-LMM 452 

  453 
We used a modified LMM implemented in GEMMA58 to perform GWAS. An LMM accounts for relatedness by modeling 454 
the covariance between phenotypes and genotypes as a random, polygenic effect14, which we also refer to as a 455 
genetic relationship matrix (GRM). Power to detect associations is reduced when the locus being tested is also 456 
included in the GRM because the effect of the locus is represented in both the fixed and random terms15. To address 457 
this issue, we calculated 19 separate GRMs, each one excluding a different chromosome. When testing SNPs on a 458 
given chromosome, we used the GRM that did not include markers from that chromosome as the polygenic effect in 459 
the model. Fixed covariates for each trait are listed in Supplementary Table 2.  460 
  461 
We used a permutation-based approach implemented in MultiTrans59 and SLIDE60 to obtain a genome-wide 462 
significance threshold that accounts for LD between nearby markers (see Supplementary Note for details). We 463 
obtained a significance threshold of p=8.06 x 10-6 (α=0.05) from 2.5M samplings. Because the phenotypic data were 464 
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quantile-normalized, we applied the same threshold to all traits. We converted p-values to LOD scores and used a 1.5-465 
LOD support interval to approximate a critical region around each associated region, which enabled us to 466 
systematically identify overlap with eQTLs. 467 
 468 
We estimated the proportion of phenotypic variance explained by the set of 523,028 LD-pruned SNPs using the 469 
restricted maximum likelihood algorithm in GEMMA58. We ran a second genome-wide scan for each trait, this time 470 
dropping the fixed effect of dosage and including the complete GRM estimated from SNPs on all 19 autosomes. We 471 
repeated the procedure using dosage at the most significant SNP as a covariate for each trait and interpreted the 472 
difference between the two estimates as the effect size of that locus. 473 

RNA-sequencing and quality control  474 

We extracted mRNA from HIP, PFC and STR as described in Parker et al. (ref. 17) and prepared cDNA libraries from 475 
741 samples with RNA integrity scores ≥ 8.0 (265 HIP; 240 PFC; 236 STR)61 as measured on a Bioanalyzer (Agilent, 476 
Wilmington, DE, USA). We used Quant-iT kits to quantify RNA (Ribogreen) and cDNA (Picogreen; Fisher Scientific, 477 
Pittsburgh, PA, USA). Barcoded sequencing libraries were prepared with the TruSeq RNA Kit (Illumina, San Diego, 478 
USA), pooled in sets of 24, and sequenced on two lanes of an Illumina HiSeq 2500 using 100 bp, single-end reads. 479 
 480 
Because mapping quality tends to be higher for reads that closely match the reference genome62, read mapping in an 481 
AIL may be biased toward the reference strain (C57BL/6J)63. We addressed this concern by aligning RNA-seq reads to 482 
custom genomes created from LG and SM using whole-genome sequence data13. We used default parameters in 483 
HISAT64 for alignment and GenomicAlignments65 for assembly, assigning each read to a gene as defined by Ensembl 484 
(Mus_musculus.GRCm38.85)66. We required that each read overlap one unique disjoint region of the gene. If a read 485 
contained a region overlapping multiple genes, genes were split into disjoint intervals, and any shared regions between 486 
them were hidden. If the read overlapped one of the remaining intervals, it was assigned to the gene that the interval 487 
originated from; otherwise, it was discarded. Next, we reassigned the mapping position and CIGAR strings for each 488 
read to match mm10 genome coordinates and combined the LG and SM alignment files for each sample by choosing 489 
the best mapping. Only uniquely mapped reads were included in the final alignment files. We then used DESeq67 to 490 
obtain normalized read counts for each gene in HIP, PFC and STR. We excluded genes detected in <95% of samples 491 
within each tissue.  492 
 493 
We also excluded 30 samples with <5M mapped reads or with an alignment rate <91.48% (i.e. less than 1 s.d. below 494 
the mean number of reads or the mean alignment rate across all samples and tissues; Supplementary Fig. 18). We 495 
merged expression data from HIP, PFC and STR and plotted the first two principal components (PCs) of the data to 496 
identify potential tissue swaps. Most samples clustered into distinct groups based on tissue. We reassigned 12 497 
mismatched samples to new tissues and removed 35 apparently contaminated samples that did not cluster with the 498 
rest of the data (Supplementary Fig. 19). We also used agreement among GBS genotypes and genotypes called 499 
from RNA-seq data in the same individuals to identify and resolve mixed-up samples, as detailed in the 500 
Supplementary Note. We discarded 108 sample mix-ups that we were not able to resolve, 29 samples with low-501 
quality GBS data, and 12 outliers (details are provided in the Supplementary Note). A total of 208 HIP, 185 PFC, and 502 
169 STR samples were retained for further analyses. 503 
 504 
Prior to eQTL mapping, we quantile-normalized gene expression data and used principal components analysis to 505 
remove the effects of unknown confounding variables68. For each tissue, we calculated the first 100 PCs of the gene x 506 
sample gene expression matrix. We quantile-normalized PCs and used GEMMA58 to test for association with SNPs 507 
using sex and batch as covariates. We evaluated significance with the same permutation-based threshold used for 508 
GWAS. We retained PCs that showed evidence of association with a SNP in order to avoid removing trans-eQTL 509 
effects. We then used linear regression to remove the effects of the remaining PCs (71 in HIP, 81 in STR and 93 in 510 
PFC) and quantile-normalized the residuals.  511 

eQTL mapping 512 

We mapped cis- and trans-eQTLs using a LOCO-LMM15 implemented in GEMMA58, conservatively including sex and 513 
batch as covariates even though PC regression might have accounted for them (see Supplementary Note for details).  514 
 515 
We considered intergenic SNPs and SNPs 1 Mb upstream or downstream of the gene as potential cis-eQTLs and 516 
excluded 2,143 genes that had no SNPs within their cis-regions. We used eigenMT69 to obtain a gene-based p-value 517 
adjusted for the number of independent SNPs in each cis region. We declared cis-eQTLs significant at an FDR<0.05. 518 
We refer to genes with significant cis-eQTLs as cis-eGenes. 519 
 520 
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SNPs on chromosomes that did not contain the gene being tested were considered potential trans-eQTLs. We 521 
determined significance thresholds for trans-eQTLs by permuting data 1,000 times. Since expression data were 522 
quantile-normalized, we permuted one randomly chosen gene per tissue. The significance threshold for trans-eQTLs 523 
was 8.68x10-6 in STR, 9.01x10-6 in in PFC (α=0.05). We used all SNPs for permutation; therefore, we expect these 524 
thresholds to be conservative. We refer to genes with trans-eQTLs as trans-eGenes. Finally, we defined trans-eQTL 525 
hotspots or ‘master eQTLs’ as 5 Mb regions that contain ten or more trans-eQTLs. To identify master eQTLs, we 526 
divided chromosomes into 5 Mb bins and assigned each trans-eGene to the bin containing its most significant eQTL 527 
SNP.  528 

Csmd1 mutant mice  529 

Csmd1 mutants were created by Lexicon Genetics by inserting a Neomycin cassette into the first exon of Csmd1 using 530 
embryonic stem cells derived from 129S5 mice70 as described by Distler et al. (ref. 44). The mice we used were the 531 
result of a C57BL/6 x 129S5 intercross designated B6;129S5-Csmd1tm1Lex/Mmucd (the exact C57BL/6 substrain is 532 
unknown). We bred heterozygous males and females and tested littermate offspring to account for their mixed genetic 533 
background. Csmd1 spans 1.6 Mb and has 70 exons. Its four major transcripts, termed Csmd1-1 to Csmd1-4, are 534 
expressed in the central nervous system44. Distler et al. (ref. 44) demonstrated that Csmd1 homozygous mutant mice 535 
express <30% of wild-type Csmd1 levels in the brain, and heterozygous mice show a 54% reduction in Csmd1 536 
expression. Residual expression of Csmd1 in homozygous mutant mice is derived from Csmd1-4, the only transcript 537 
that does not include the first exon. We analyzed locomotor behavior on two days following a saline injection in 31 538 
wild-type, 59 heterozygous, and 48 mutant mice.  539 
  540 
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