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Abstract 1 

Genome wide association analyses (GWAS) in model organisms have numerous advantages compared 2 

to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to 3 

collect tissue for gene expression analysis and the ability to perform experimental manipulations. We 4 

examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 5 

50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by 6 

sequencing in conjunction with whole genome sequence data from the two founder strains to obtain 7 

genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage 8 

disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We 9 

identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-10 

eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated 11 

several loci that were identified using an earlier generation of this intercross, including an association 12 

between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 13 

mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, 14 

identify numerous novel associations, and provide examples of replication in an independent cohort, 15 

which is customary in human genetics, and replication by experimental manipulation, which is a unique 16 

advantage of model organisms. 17 

  18 
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Introduction 19 

Genome-wide association studies (GWAS) have revolutionized psychiatric genetics; however, they have 20 

also presented numerous challenges. Some of these challenges can be addressed by using model 21 

organisms. For example, human GWAS are confounded by environmental variables, such as childhood 22 

trauma, which can reduce power to detect genetic associations. In model organisms, environmental 23 

variables can be carefully controlled. Furthermore, it has become clear that phenotypic variation in 24 

humans is due to numerous common and rare variants of small effect. In model organisms, genetic 25 

diversity can be controlled such that all variants are common. In addition, allelic effect sizes in model 26 

organisms are dramatically larger than in humans (Flint and Mackay 2009; Parker and Palmer 2011). 27 

Furthermore, because the majority of associated loci are in noncoding regions, expression quantitative 28 

trait loci (eQTLs) are useful for elucidating underlying molecular mechanisms (GTEx Consortium et al. 29 

2017; Albert and Kruglyak 2015). However, it remains challenging to obtain large, high quality samples of 30 

human tissue, particularly from the brain. In contrast, tissue for gene expression studies can be collected 31 

from model organisms under optimal conditions. Finally, the genomes of model organisms can be edited 32 

to assess the functional consequences of specific mutations.  33 

Model organism GWAS often employ multigenerational intercrosses because they promote 34 

recombination of ancestral haplotypes. We used an advanced intercross line (AIL) of mice, which is the 35 

simplest possible multigenerational intercross. AILs, originally proposed by Darvasi and Soller (Darvasi 36 

and Soller 1995), are produced by intercrossing two inbred strains beyond the F2 generation. Because 37 

the two inbred strains contribute equally to an AIL, all variants are common, and alleles that are identical 38 

by state are necessarily identical by descent (IBD), which greatly simplifies phasing and imputation. We 39 

performed a GWAS using the world’s most advanced mouse AIL, which was created over 50 generations 40 

ago by crossing the LG/J (LG) and SM/J (SM) inbred strains (Ehrich et al. 2005a). We investigated over 41 

100 traits using mice from generations 50-56 (G50-56), including locomotor activity, response to 42 

methamphetamine, prepulse inhibition (PPI), body weight, and various muscle and bone phenotypes. We 43 

also sequenced mRNA from three brain regions and used those data to map eQTLs and identify 44 

quantitative trait genes (QTGs) at each locus. Finally, we explored replication of previous associations 45 
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identified in LG x SM G34 (Cheng et al. 2010; Samocha et al. 2010; Parker et al. 2014; Lionikas et al. 46 

2010; Parker et al. 2011) and used mutant mice to test one of our strongest candidate QTGs.  47 

Results 48 

We used genotyping by 49 

sequencing (GBS) to 50 

genotype 1,063 of the 1,123 51 

mice that were phenotyped 52 

(60 were not successfully 53 

genotyped for technical 54 

reasons described in the 55 

Supplemental Methods). 56 

After quality control, GBS 57 

yielded 38,238 autosomal 58 

SNPs. In the 24 AIL mice 59 

that were also genotyped on 60 

the Giga Mouse Universal 61 

Genotyping Array 62 

(GigaMUGA; Morgan et al. 63 

2015), only 24,934 markers 64 

were polymorphic in LG and 65 

SM (Supplemental Fig.S1). 66 

LG and SM have been re-67 

sequenced (Nikolskiy et al. 68 

2015), which allowed us to 69 

impute AIL genotypes at ~4.3 million single nucleotide polymorphisms (SNPs; Fig.1A). Consistent with 70 

the expectation for an AIL, the average minor allele frequency (MAF) was high (Fig.1B). Linkage 71 

Figure 1. SNPs, minor allele frequencies (MAFs) and linkage 
disequilibrium (LD) decay in the LG x SM AIL. Imputation provided ~4.3 
million SNPs. Filtering for LD (r2 ≥ 0.95), MAF < 0.1, and HWE (p ≤ 7.62x10-6) 
resulted in 523,028 SNPs for GWAS. (A) SNP distribution and density of 
GWAS SNPs are plotted in 500 kb windows for each chromosome. As shown 
in Supplemental Fig.1, regions with low SNP density correspond to regions 
predicted to be nearly IBD in LG and SM (Nikolskiy et al. 2015). (B) MAF 
distributions are shown for ~4.3 million imputed SNPs (gold; unfiltered) and for 
the 523,028 SNPs used for GWAS (orange; filtered). Mean MAF is the same in 
both SNP sets. (C) Comparison of LD decay in G50-56 (dark purple) and G34 
(light purple) of the LG x SM AIL. Each curve was plotted using the 95th 
percentile of r2 values for SNPs spaced up to 5 Mb apart. 
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disequilibrium (LD) decay, which is critical to mapping resolution, has improved since LG x SM G34 72 

(Fig.1C; Cheng et al. 2010).   73 

LOCO-LMM effectively reduces the type II error rate 74 

Linear mixed models (LMMs) are commonly used to perform GWAS in AILs and other populations that 75 

include close relatives (Gonzales and Palmer 2014). SNP data are used to obtain a genetic relationship 76 

matrix (GRM); however, 77 

this can lead to an 78 

inflation of the type II error 79 

rate due to proximal 80 

contamination (Cheng et 81 

al. 2013; Listgarten et al. 82 

2012). We previously 83 

proposed using a leave-84 

one-chromosome-out 85 

LMM (LOCO-LMM) to 86 

address this issue (Cheng 87 

et al. 2013). To 88 

demonstrate the 89 

appropriateness of a 90 

LOCO-LMM, we 91 

performed a GWAS for 92 

albinism, which is a 93 

recessive Mendelian trait, 94 

using three approaches: a 95 

simple linear model, an 96 

LMM and a LOCO-LMM 97 

(Fig.2). GWAS using a 98 

Figure 2. GWAS for albinism verifies that the LOCO-LMM effectively controls 
type I and type II error. We conducted a GWAS for albinism, a Mendelian trait caused 
by the Tyr locus on mouse chromosome 7, using three models: a linear model, an 
LMM, and a LOCO-LMM. We also repeated each scan after excluding SNPs on 
chromosome 7. A Manhattan plot of results from the LOCO-LMM is shown in (A). 
Quantile-quantile plots of expected vs. observed p-values are shown for (B) a simple 
linear model that does not account for relatedness; (C) a standard LMM that includes 
all GWAS SNPs in the genetic relatedness matrix (GRM; i.e. the random effect); and 
(D) a LOCO-LMM whose GRM excludes SNPs located on the chromosome being 
tested. Plots (E-G) show results after excluding chromosome 7 from the GWAS.   
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LOCO-LMM for albinism yielded an association on chromosome 7 (Fig.2A); accurately identifying the 99 

albino locus (Tyr). As expected, p-values from a genome-wide scan using a linear model, which does not 100 

account for relatedness, appeared highly inflated (Fig.2B). This inflation was greatly reduced by fitting a 101 

standard LMM, which included SNPs from chromosome 7 in both the fixed and random effects (Fig.2C). 102 

The LOCO-LMM, which does not include SNPs from the chromosome being tested in the GRM, showed 103 

an intermediate level of inflation (Fig.2D). Was the inflation observed in Fig.2B-D due to true signal, or 104 

uncontrolled population structure? To address this question, we repeated these analyses after excluding 105 

SNPs on chromosome 7 from the fixed effect (Fig.2E-G). Even in the absence of the causal locus, the 106 

simple linear model showed substantial inflation, which can only be explained by population structure 107 

(Fig.2E). The standard LMM appeared overly conservative, which we attributed to proximal 108 

contamination (Fig.2F). The LOCO-LMM showed no inflation, consistent with the absence of Tyr and 109 

linked SNPs in the fixed effect (Fig.2G). These results demonstrate the appropriateness of a LOCO-110 

LMM. 111 

Genetic architecture of complex traits in the LG x SM AIL 112 

We used an LD-pruned set of 523,028 autosomal SNPs genotyped in 1,063 mice from LG x SM G50-56 113 

to perform GWAS for 120 behavioral and physiological traits using a LOCO-LMM (Fig.3A). We used 114 

permutation to define a significance threshold of p=8.06x10-6 (α=0.05). There were 52 loci associated 115 

with 33 behavioral traits and 74 loci associated with 17 physiological traits (Fig.3A, Supplemental Table 116 

S1; Supplemental Fig.S2).  117 

To estimate the heritability attributable to SNPs (‘SNP heritability’), we calculated the proportion 118 

of trait variance explained by the additive effects of 523,028 SNPs. In general, heritability estimates were 119 

larger for physiological traits than for behavioral traits (Fig.3B, Supplemental Table S2), which is 120 

consistent with findings in other rodent GWAS (Parker et al. 2016; Nicod et al. 2016; Rat Genome 121 

Sequencing and Mapping Consortium et al. 2013). Mean heritability was 0.355 (se=0.045) for 122 

physiological traits and 0.168 (se=0.038) for behavioral traits (conditioned place preference, locomotor 123 

sensitization, and habituation to startle were not found to have a genetic component and were excluded 124 

from the mean). In general, traits with higher heritabilities yielded more associations (Supplemental 125 
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Fig.S2). However, there was no significant relationship between heritability and effect size at individual 126 

loci (Supplemental Fig.S3), suggesting that high heritability does not reliably predict the presence of 127 

large-effect alleles. 128 

eQTLs 129 

For a subset of phenotyped and genotyped mice, we used RNA-sequencing (RNA-seq) to measure 130 

gene expression in the hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR) (α=0.05; Fig.4, 131 

Supplemental Fig.S4). We identified 2,902 cis-eQTLs in HIP, 2,125 cis-eQTLs in PFC and 2,054 cis-132 

eQTLs in STR; 1,087 cis-eQTLs were significant in all three tissues (FDR<0.05; Supplemental Table 133 

Figure 3. Manhattan plot and heritability for 120 traits measured in the LG x SM AIL. We identified 126 loci for 
behavioral and physiological traits using 1,063 mice from G50-56 of the LG x SM AIL. A Manhattan plot of GWAS 
results is shown in (A). Associations for related traits are grouped by color. For clarity, related traits that mapped to 
the same locus (Supplemental Table S1) are highlighted only once. The dashed line indicates a permutation-
derived significance threshold of -log10(p)=5.09 (p=8.06x10-6; α=0.05). (B) For a representative subset of traits, 
SNP heritability estimates (percent trait variance explained by 523,028 GWAS SNPs) for a subset of traits are 
shown. Precise estimates of heritability with standard error are provided for all traits in Supplemental Table S2.     
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S3). We also identified 562 HIP trans-eQTLs, 408 PFC trans-eQTLs and 506 STR trans-eQTLs (p<0.05; 134 

Supplemental Fig.S5; Supplemental Table S4). 135 

Previous studies in model organisms have identified trans-eQTLs that regulate the expression of 136 

many genes (Chesler et al. 2005; Hasin-Brumshtein et al. 2016; Albert and Kruglyak 2015); we refer to 137 

these as ‘master eQTLs’. We identified several master eQTLs, including one on chromosome 12 (70.19-138 

Figure 4. eQTLs in hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR). We identified over 
7,000 cis-eQTLs (FDR < 0.05) and over 1,400 trans-eQTLs (α=0.05) in HIP (n=208; outer red for cis-eQTLs, 
inner red for trans-eQTLs), PFC (n=185; outer black for cis-eQTLs, inner black for trans-eQTL) and STR 
(n=169; outer brown for cis-eQTLs, inner brown for trans-eQTLs). We also identified master eQTLs, which we 
defined as loci that regulate the expression of ten or more target eGenes in a given tissue (central lines link 
master eQTLs to eGenes).  
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73.72 Mb) that was associated with the expression of 85 genes distributed throughout the genome 139 

(Fig.4; Supplemental Table S4). This locus was present in HIP, but not in PFC or STR. 140 

Integration of eQTLs and behavioral GWAS results  141 

Based on results from human GWAS (Albert and Kruglyak 2015; GTEx Consortium et al. 2017), we 142 

hypothesized that most loci associated with behavior were due to gene expression differences. For 143 

example, four loci associated with locomotor behavior mapped to the same region on chromosome 17 144 

(Supplemental Table S1; Supplemental Fig.S2). The narrowest of these (D1 side changes, 15-20 min; 145 

p=3.60x10-6) identified a locus that contains a single gene, Crim1 (cysteine rich transmembrane BMP 146 

regulator 1), which had a significant cis-eQTL in HIP. It would be tempting to conclude that Crim1 is the 147 

best candidate to explain the associations with locomotor behavior; however, two nearby genes, Qpct 148 

(glutaminyl-peptide cyclotransferase) and Vit (vitrin), though physically located outside of the locus, also 149 

had cis-eQTLs within the locomotor-associated region (Supplemental Table S3). We therefore consider 150 

all three genes valid candidates to explain the association with locomotor behavior. 151 

One of the most significant loci we identified was an association with the startle response, also on 152 

chromosome 17 (p=5.28x10-10; Fig.3; Supplemental Fig.S2). This result replicated a previous 153 

association with startle from a prior study using G34 mice (Samocha et al. 2010). We performed a 154 

phenome-wide association analysis (PheWAS) which showed that this region pleiotropically affected 155 

multiple other traits, including locomotor activity following saline and methamphetamine administration 156 

(Supplemental Fig.S6). This region was also implicated in conditioned fear and anxiety in our prior 157 

studies of G34 mice (Parker et al. 2014), demonstrating that it has extensive pleiotropic effects on 158 

behavior. Because the association with startle identifies a relatively large haplotype that includes over 25 159 

eGenes, our data cannot clarify whether the pleiotropic effects are due to one or several genes in this 160 

interval.                                                                      161 

  We also identified a 0.49-Mb locus on chromosome 8 that was associated with locomotor activity 162 

(Fig.5A; Supplemental Table S1); this region was nominally associated with PPI and multiple other 163 

activity traits (Fig.5B). The region identified in the present study (Fig.5A-C) replicates a finding from our 164 

previous study using G34 mice (Cheng et al. 2010; Fig.5D). In both cases, the SM allele conferred 165 
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increased activity (Fig.5C,D) and the implicated locus contained only one gene: Csmd1 (CUB and sushi 166 

multiple domains 1; Fig.5B; Supplemental Table S2); furthermore, the only cis-eQTL that mapped to 167 

this region was for Csmd1 (Supplemental Fig.S7). We obtained mice in which the first exon of Csmd1 168 

was deleted to test the hypothesis that Csmd1 is the QTG for this locus. Csmd1 mutant mice exhibited 169 

increased activity compared to heterozygous and wild-type mice (Fig.5E), similar to the SM allele. This 170 

result is consistent with the hypothesis that Csmd1 is the causal gene. 171 

We identified seven overlapping loci for locomotor activity on chromosome 4 (Supplemental 172 

Table S1; Supplemental Fig.S2). The strongest locus (D5 activity, 0-30 min; p=6.75x10-9) spanned 2.31 173 

Mb and completely encompassed the narrowest locus, which spanned 0.74 Mb (D5 activity, 25-30 min; 174 

p=4.66x10-8); therefore, we focused on the smaller region. Oprd1 (opioid receptor delta-1) was a cis-175 

eGene in all three brain regions; the SM allele conferred an increase in locomotor activity and was 176 

associated with decreased expression of Oprd1. Oprd1 knockout mice have been reported to display 177 

increased activity relative to wild-type mice (Filliol et al. 2000), suggesting that differential expression of 178 

Figure 5. Replication of an association between Csmd1 and locomotor activity. (A) Regional plot drawn 
from all 4.3M SNPs showing the association between rs33436747 and D5 activity levels. The location of 
Csmd1, 1.5-LOD interval (gold bar), areas of elevated recombination from Brunschwig et al. (green plus 
symbols), regions predicted to be nearly IBD between LG and SM by Nikolskiy et al. (grey bars), and SNP 
MAFs (grey heatmap) are indicated. Points are colored by LD (r2) with rs33436747. The dashed line indicates a 
significance threshold of -log10(p)=5.09 (α=0.05). (B) PheWAS plot of associations between rs33436747 and 
other behavioral traits measured in G50-56 mice. (C) Bar plot of quantile-normalized residuals of locomotor 
activity at the Csmd1 locus are plotted for G50-56 mice. (D) Bar plot of quantile-normalized residuals of 
locomotor activity at the Csmd1 locus for G34 mice from Cheng et al. rs33436747 was not genotyped in G34; 
therefore, we plotted activity by genotype at the nearest SNP (rs33014260; 6,764 bp upstream of rs33436747). 
(E) Bar plot of locomotor activity data (distance traveled in 0-30 min) for Csmd1 mutant mice. In panels c-e the 
number of mice in each genotype class is shown below the corresponding bar. ANOVA and two-sided t-test 
(95% confidence level) p-values are shown for each comparison. 
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Oprd1 could explain the locomotor effect at this locus. However, the presence of other genes and 179 

eGenes within the region make it difficult to determine whether Oprd1 is the only QTG. 180 

We identified an association with D1 locomotor behavior on chromosome 6 at rs108610974, 181 

which is located in an intron of Itpr1 (inositol 1,4,5-trisphosphate receptor type 1; Supplemental Fig.S8). 182 

This locus contained three cis-eGenes and seven trans-eQTLs (Supplemental Fig.S8). One of the 183 

trans-eGenes targeted by the locus (Capn5; calpain 5) was most strongly associated with rs108610974 184 

and may be the QTG (Supplemental Table S4). These results illustrate how the knowledge of both cis- 185 

and trans-eQTLs informed our search for QTGs. 186 

Pleiotropic effects on physiological traits 187 

Because LG and SM were created by selective breeding for large (LG) and small (SM) body size, this 188 

AIL is expected to segregate numerous body size alleles (Lawson and Cheverud 2010; Parker et al. 189 

2011). We measured body weight at ten timepoints throughout development and identified 46 190 

associations. There was extensive pleiotropy among body weight, muscle mass, and bone length 191 

(Supplemental Table S1; Supplemental Fig.S9-S12). Accounting for pleiotropic genetic architecture, 192 

eight major loci arose that influenced body weight at multiple timepoints (Fig. 3A; Supplemental Table 193 

S1). 194 

  For example, eight body weight timepoints mapped to a region on chromosome 2, where the LG 195 

allele was associated with smaller body mass (Supplemental Table S1; Supplemental Fig.S2,S9). The 196 

narrowest region spanned 0.08 Mb and did not contain any genes. However, the 0.08-Mb interval 197 

contained a cis-eQTL SNP for Nr4a2 (nuclear receptor subfamily 4, group A, member 2) in PFC. Mice 198 

lacking Nr4a2 in midbrain dopamine neurons exhibit a 40% reduction in body weight (Kadkhodaei et al. 199 

2009). Consistent with this, the LG allele was associated with decreased expression of Nr4a2. 200 

All body weight timepoints were associated with a locus on chromosome 7 (Supplemental Table 201 

S1; Supplemental Fig.S2). We also identified associations for tibialis anterior (TA), gastrocnemius, 202 

plantaris weight that partially overlapped this region (Supplemental Fig.S10). Although the most 203 

significant SNP associated with muscle weight was ~5 Mb downstream of the top body weight SNP, the 204 

LG allele was associated with greater weight at both loci (Supplemental Table S1). For eight out of ten 205 
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body weight timepoints, the most significant association fell within Tpp1 (tripeptidyl peptidase 1), which 206 

was a cis-eGene in all tissues and a trans-eGene targeted by the master HIP eQTL on chromosome 12 207 

(Fig.4). To our knowledge, Tpp1 has not been shown to affect body size in mice or humans; however, 208 

four other cis-eGenes in the region have been associated with human body mass index (Rpl27a, Stk33, 209 

Trim66, and Tub) (Berndt et al. 2013; Locke et al. 2015). Dysfunction of Tub (tubby bipartite transcription 210 

factor) causes late-onset obesity in mice, perhaps due to Tub’s role in insulin signaling (Stretton et al. 211 

2009). In addition, several trans-eGenes map to this interval, including Gnb1 (G protein subunit beta 1), 212 

which forms a complex with Tub (Baehr and Frederick 2009). Another trans-eGene associated with this 213 

interval, Crebbp (CREB binding protein), has been associated with juvenile obesity in human GWAS 214 

(Comuzzie et al. 2012). 215 

Multiple strong associations identified for muscle mass 216 

We examined five hind limb muscle traits, identifying 22 loci (Supplemental Table S1; Supplemental 217 

Fig.S2). No loci were identified for soleus weight. The strongest association we identified in this study 218 

was for extensor digitorum longus (EDL) weight (p=2.03x10-13; Supplemental Table S1; Supplemental 219 

Fig.S11). An association with gastrocnemius weight provided additional support for the region 220 

(p=2.56x10-7; Supplemental Fig.S11); in both cases, the SM allele was associated with increased 221 

muscle mass. Each locus spans less than 0.5 Mb and is flanked by regions of low polymorphism 222 

between LG and SM (Supplemental Fig.S11, Supplemental Table S1). Two cis-eGenes within the 223 

region, Trappc13 (trafficking protein particle complex 13) and Nln (neurolysin), are differentially 224 

expressed in LG and SM soleus (Carroll et al. 2017) and TA (Lionikas et al. 2012), with LG exhibiting 225 

increased expression of both genes. While there is no known relationship between Trappc13 and 226 

muscle, Nln has been shown to play a role in mouse skeletal muscle (Cavalcanti et al. 2014). 227 

The LG allele was associated with greater EDL, plantaris, and TA weight at another locus on 228 

chromosome 4 (Supplemental Table S1; Supplemental Fig.S12). The loci for EDL and plantaris 229 

spanned ~0.5 Mb, defining a region that contained six genes (Supplemental Table S1). The top SNPs 230 

for EDL (rs239008301; p=7.88x10-13) and plantaris (rs246489756; p=2.25x10-6) were located in an intron 231 

of Astn2 (astrotactin 2), which is differentially expressed in LG and SM soleus (Carroll et al. 2017). SM, 232 
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which exhibits lower expression of Astn2 in soleus relative to LG (Carroll et al. 2017), has a 16 bp 233 

insertion in an enhancer region 6.6 kb upstream of Astn2 (ENSMUSR00000192783; Nikolskiy et al. 234 

2015). Two other genes in this region have been associated with muscle or bone phenotypes traits in the 235 

mouse: Tlr4 (toll-like receptor 4), which harbors one synonymous coding mutation on the SM background 236 

(rs13489095) and Trim32 (tripartite motif-containing 32), which contains no coding polymorphisms 237 

between the LG and SM strains.  238 

Discussion   239 

Crosses among well-characterized inbred strains are a mainstay of model organism genetics. In the 240 

present study, we used 1,063 male and female mice from LG x SM G50-56 to identify 126 loci for a 241 

variety of traits selected for their relevance to human psychiatric and metabolic diseases (Lawson and 242 

Cheverud 2010; Swerdlow et al. 2016; de Wit and Phillips 2012) (Fig.3; Supplemental Table S1; 243 

Supplemental Fig.S2). Whereas our previous work established AILs as an effective tool for fine-244 

mapping loci identified in F2 crosses (Gonzales and Palmer 2014; Carroll et al. 2017; Parker et al. 2014; 245 

Cheng et al. 2010; Samocha et al. 2010; Parker et al. 2011; Lionikas et al. 2010), this study 246 

demonstrates that AILs are also a powerful fine mapping population in their own right. We show that 247 

several QTGs we identified are corroborated by extant human and mouse genetic data. We also 248 

replicated a number of our earlier findings. 249 

Classical crosses like F2 and recombinant inbred strains provide poor mapping resolution 250 

because the ancestral chromosomes persist as extremely long haplotypes (Parker and Palmer 2011). To 251 

address this limitation, we and others have used AILs (Gonzales and Palmer 2014). Because both inbred 252 

strains contribute equally to an AIL, there are numerous common variants (Fig. 1A,B), and each 253 

successive generation further degrades LD between adjacent SNPs (Fig. 1C). In addition to AILs, a 254 

number of other outbred populations have been used in rodent GWAS, including CFW mice (Nicod et al. 255 

2016; Parker et al. 2016), Diversity Outbred (DO) mice (Gatti et al. 2014; Logan et al. 2013), and N/NIH 256 

heterogeneous stock rats (HS) (Rat Genome Sequencing and Mapping Consortium et al. 2013; Tsaih et 257 

al. 2014). CFW mice are obtained from a commercial vendor, which avoids the expenses of maintaining 258 
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a colony. In addition, non-siblings can be obtained, which reduces the complicating effects that can occur 259 

when close relatives are used in GWAS. However, the CFW founder strains are unavailable, and many 260 

alleles exist at low frequencies among CFWs, limiting power and introducing genetic noise (Nicod et al. 261 

2016; Parker et al. 2016). Commercially available DO mice are more expensive than CFWs, but like 262 

AILs, the founder strains have been fully sequenced, which allows imputation of SNPs and founder 263 

haplotypes. However, three of the eight inbred strains used to produce the DO are so-called wild-derived 264 

strains; making DO mice very difficult to handle, which complicates many behavioral procedures (Logan 265 

et al. 2013). Furthermore, the causal alleles in the DO are often from one of the wild derived strains, 266 

because 8 strains contributed equally to the DO, this means that the causal allele frequencies are often 267 

in the range of 0.125. Finally, N/NIH HS rats, which are conceptually very similar to DO mice, have also 268 

been used as a fine mapping population (Rat Genome Sequencing and Mapping Consortium et al. 2013; 269 

Tsaih et al. 2014). Among these options, AILs stand out for their simplicity, balanced allele frequency and 270 

ease of handling.  271 

A major goal of this study was to identify the genes that are responsible for the loci implicated in 272 

behavioral and physiological traits. The mapping resolution of the LG x SM AIL was critically important 273 

for this goal. However, no matter how precise the resolution, proximity of a gene to the associated SNP 274 

is never sufficient to establish causality (Albert and Kruglyak 2015). Therefore, we used RNA-seq to 275 

quantify mRNA abundance in three brain regions that are strongly implicated in the behavioral traits: HIP, 276 

PFC and STR. We used these data to identify 7,081 cis-eQTLs and 1,372 trans-eQTLs (Fig.4, 277 

Supplemental Fig.S4,S5; Supplemental Tables S3,S4). In a few cases, loci contained only a single 278 

eQTL; however, in most cases multiple cis-eQTLs and trans-eQTLs mapped to the implicated loci. Thus, 279 

we frequently incorporated functional information, including data about tissue specific expression, coding 280 

SNP, mutant mice, and human genetic studies to parse among the implicated genes. 281 

We have previously shown that GBS is a cost-effective strategy for genotyping CFW mice 282 

(Fitzpatrick et al. 2013). The advantages of GBS were even greater for this AIL because imputation 283 

allowed us to easily obtain 4.3M SNPs while using only half the sequencing depth (Fig. 1A). Even before 284 

imputation, GBS yielded nearly 50% more informative SNPs compared to the best available SNP 285 

genotyping chip (Morgan et al. 2015) at about half the cost (Supplemental Fig.S1). 286 
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One of the goals of this study was to perform GWAS for conditioned place preference (CPP), 287 

which is a well-validated measure of the reinforcing effects of drugs (Tzschentke 2007). Unfortunately, 288 

the heritability of CPP in this study was not significantly different from zero (Fig. 3B). This result was 289 

partially consistent with our prior study in which we used a higher dose of methamphetamine (2 vs. the 1 290 

mg/kg used in the present study) (Bryant et al. 2012). The low heritability of CPP in this AIL likely reflects 291 

a lack of relevant genetic variation in this specific population since both panels of inbred strains and 292 

genetically engineered mutant alleles show differences in CPP (Tzschentke 2007; Philip et al. 2010; 293 

Martinelli et al. 2016), demonstrating the existence of heritable variance in other populations. It is 294 

possible that even lower doses of methamphetamine, which might fall on the ascending portion of the 295 

dose-response function, would have resulted in higher heritability. Similarly, responses to other drugs or 296 

different CPP methodology may have exhibited greater heritability.    297 

We used PheWAS to identify pleiotropic effects of several loci identified in this study. In many 298 

cases, pleiotropy involved highly correlated traits such as body weight on different days or behavior at 299 

different time points within a single day (Supplemental Fig.S9-S13; Supplemental Table S1). We also 300 

observed more surprising examples of pleiotropy, including pleiotropy between locomotor activity and 301 

gastrocnemius mass on chromosome 4 (Supplemental Fig.S14), and pleiotropy between locomotor 302 

activity and the startle response on chromosome 12 (Supplemental Fig.S15). We also observed 303 

extensive pleiotropy on chromosome 17; this locus influenced saline- and methamphetamine-induced 304 

locomotor activity and startle response (Supplemental Fig.S6). Moreover, this same region had been 305 

previously implicated in anxiety-like behavior (Parker et al. 2014), contextual and conditioned fear 306 

(Parker et al. 2014), and startle response (Samocha et al. 2010) in prior studies of LG x SM G34, 307 

suggesting that the locus has a broad impact on many behavioral traits. These results support the idea 308 

that pleiotropy is a pervasive feature in this AIL and provide further evidence of the replicability of the loci 309 

identified by this and prior GWAS. 310 

Discoveries from human GWAS are often considered preliminary until they are replicated in an 311 

independent cohort. In model organisms, replication using an independent cohort is rarely employed 312 

because it is possible to directly manipulate the implicated gene. We replicated one behavioral locus 313 

identified in this study using the criteria of both human and model organism genetics. We had previously 314 
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identified an association with locomotor activity on chromosome 8 using G34 of this AIL (Cheng et al. 315 

2010), which was replicated in the present study (Fig.5). In both cases, the SM allele was associated 316 

with lower activity (Fig. 5C-D). We also identified a locus for PPI (76 dB) in this region (Fig. 5A; 317 

Supplemental Table S1, Supplemental Fig.S2). The loci identified in both G34 and in G50-56 were 318 

small and contained just one gene: Csmd1 (Fig.5B). In the present study we also identified a cis-eQTL 319 

for Csmd1 in HIP (Supplemental Fig.S7). Finally, we obtained Csmd1 mutant mice (Distler et al. 2012) 320 

and found that they also showed altered locomotor activity (Fig.5E). Thus, we have demonstrated 321 

replication both by performing an independent GWAS and by performing an experimental manipulation 322 

that recapitulates the phenotype.  323 

Methods 324 

Genetic background  325 

The LG and SM inbred strains were independently selected for high and low body weight at 60 days 326 

(Beck et al. 2000). The LG x SM AIL was derived from an F1 intercross of SM females and LG males 327 

initiated by Dr. James Cheverud at Washington University in St. Louis (Ehrich et al. 2005a). Subsequent 328 

AIL generations were maintained using at least 65 breeder pairs selected by pseudo-random mating 329 

(Ehrich et al. 2005b). In 2006, we established an independent AIL colony using 140 G33 mice obtained 330 

from Dr. Cheverud (Jmc: LG,SM-G33). Since 2009, we have selected breeders using an R script 331 

(Supplemental Methods) that leverages pairwise kinship coefficients estimated from the AIL pedigree to 332 

select the most unrelated pairs while also attempting to minimize mean kinship among individuals in the 333 

incipient generation (the full pedigree is included in Supplemental File S1). We maintained ~100 334 

breeder pairs in G49-55 to produce the mice for this study. In each generation, we used one male and 335 

one female from each nuclear family for phenotyping, and reserved up to three of their siblings for 336 

breeding the next generation. 337 
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Phenotypes 338 

We subjected 1,123 AIL mice (562 female, 561 male; Aap: LG,SM-G50-56) to a four-week battery of 339 

tests over the course of two years. This sample size was based on an analysis suggesting that 1,000 340 

mice would provide 80% power to detect associations explaining 3% of the phenotypic variance 341 

(Supplemental Fig.S16). We measured CPP for 1 mg/kg methamphetamine, locomotor behavior, PPI, 342 

startle, body weight, muscle mass, bone length and other related traits (Supplemental Table S2). We 343 

tested mice during the light phase of a 12:12h light-dark cycle in 22 batches comprised of 24-71 344 

individuals (median=53.5). Median age was 54 days (mean=55.09, range=35-101) at the start of testing 345 

and 83 days (mean=84.4, range=64-129) at death. Standard lab chow and water were available ad 346 

libitum, except during testing. Testing was performed during the light phase, starting one hour after lights 347 

on and ending one hour before lights off. No environmental enrichment was provided. All procedures 348 

were approved by the Institutional Animal Care and Use Committee at the University of Chicago 349 

(Supplemental File S2). Traits are summarized briefly below; detailed descriptions are provided in the 350 

Supplemental Methods. 351 

  CPP and locomotor behavior: CPP is an associative learning paradigm that has been used to 352 

measure the motivational properties of drugs in humans (Mayo et al. 2013) and rodents (Tzschentke 353 

2007). We defined CPP as the number of s spent in a drug-associated environment relative to a neutral 354 

environment over the course of 30 min. The full procedure takes eight days, which we refer to as D1-D8. 355 

We measured baseline preference after administration of vehicle (0.9% saline, i.p.) on D1. On D2 and 356 

D4, mice were administered methamphetamine (1 mg/kg, i.p.) and restricted to one visually and tactically 357 

distinct environment; on D3 and D5 mice were administered vehicle and restricted to the other, 358 

contrasting environment. On D8, mice were allowed to choose between the two environments after 359 

administration of vehicle; we measured CPP at this time. Other variables measured during the CPP test 360 

include the distance traveled (cm) on all testing days, the number of side changes on D1 and D8, and 361 

locomotor sensitization to methamphetamine (the increase in activity on D4 relative to D2). We 362 

measured CPP and locomotor traits across six 5-min intervals and summed them to generate a total 363 

phenotype for each day. 364 
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PPI and startle: PPI is the reduction of the acoustic startle response when a loud noise is 365 

immediately preceded by a low decibel (dB) prepulse (Graham 1975). PPI and startle are measured 366 

across multiple trials that occur over four consecutive blocks of time (Samocha et al. 2010). The primary 367 

startle trait is the mean startle amplitude across all pulse-alone trials in blocks 1-4. Habituation to startle 368 

is the difference between the mean startle response at the start of the test (block 1) and the end of the 369 

test (block 4). PPI, which we measured at three prepulse intensities (3, 6, and 12 dB above 70 dB 370 

background noise), is the mean startle response during pulse-alone trials in blocks 2-3 normalized by the 371 

mean startle response during prepulse trials in blocks 2-3. 372 

Physiological traits: We measured body weight (g) on each testing day and at the time of death. 373 

One week after PPI, we measured blood glucose levels (mg/dL) after a four-hour fast. One week after 374 

glucose testing, we killed the mice, and measured tail length (cm from base to tip of the tail). We stored 375 

spleens in a 1.5 mL solution of 0.9% saline at -80C until DNA extraction. We removed the left hind limb 376 

of each mouse just below the pelvis; hind limbs were stored at -80C. Frozen hind limbs were 377 

phenotyped by Dr. Arimantas Lionikas at the University of Aberdeen. Phenotyped muscles include two 378 

dorsiflexors, TA and EDL, and three plantar flexors: gastrocnemius, plantaris and soleus. We isolated 379 

individual muscles under a dissection microscope and weighed them to 0.1 mg precision on a Pioneer 380 

balance (Ohaus, Parsippany, NJ, USA). After removing soft tissue from the length of tibia, we measured 381 

its length to 0.01 mm precision with a Z22855 digital caliper (OWIM GmbH & Co., Neckarsulm, GER). 382 

Brain tissue: We collected HIP, PFC and STR for RNA-seq from the brain of one mouse per 383 

cage. This allowed us to dissect each brain within five min of removing a cage from the colony room 384 

(rapid tissue collection was intended to limit stress-induced changes in gene expression). We 385 

preselected brain donors to prevent biased sampling of docile (easily caught) mice and to avoid sampling 386 

full siblings, which would reduce our power to detect eQTLs. Intact brains were extracted and submerged 387 

in chilled RNALater (Ambion, Carlsbad, CA, USA) for one min before dissection. Individual tissues were 388 

stored separately in chilled 0.5-mL tubes of RNALater. All brain tissue was dissected by the same 389 

experimenter and subsequently stored at -80°C until extraction.  390 
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GBS variant calling and imputation 391 

GBS is a reduced-representation genotyping method (Elshire et al. 2011; Grabowski et al. 2014) that we 392 

have adapted for use in mice and rats (Parker et al. 2016; Fitzpatrick et al. 2013). We extracted DNA 393 

from spleen using a standard salting-out protocol and prepared GBS libraries by digesting DNA with the 394 

restriction enzyme PstI, as described previously (Parker et al. 2016). We sequenced 24 uniquely 395 

barcoded samples per lane of an Illumina HiSeq 2500 using single-end, 100 bp reads. We aligned 1,110 396 

GBS libraries to the mm10 reference genome before using GATK (DePristo et al. 2011) to realign reads 397 

around known indels in LG and SM (Nikolskiy et al. 2015) (see Supplemental Methods and 398 

Supplemental File S3 for details and example commands). We obtained an average of 3.2M reads per 399 

sample. We discarded 32 samples with <1M reads aligned to the main chromosome contigs (1-19, X, Y) 400 

or with a primary alignment rate <77% (i.e. three s.d. below the mean of 97.4%; Supplemental Fig.S17).  401 

We used ANGSD (Korneliussen et al. 2014) to obtain genotype likelihoods for the remaining 402 

1,078 mice and used Beagle (Browning and Browning 2007) for variant calling, which we performed in 403 

two stages. We used first-pass variant calls as input for IBDLD (Han and Abney 2011; Abney 2008), 404 

which we used to estimate kinship coefficients for the mice in our sample. Because our sample contained 405 

opposite-sex siblings, we were able to identify and resolve sample mix-ups by comparing genetic kinship 406 

estimates to kinship estimated from the LG x SM pedigree (described in the Supplemental Methods). In 407 

addition, we re-genotyped 24 mice on the GigaMUGA (Morgan et al. 2015) to evaluate GBS variant calls 408 

(Supplemental Table S5 lists concordance rates at various stages of our pipeline; see Supplemental 409 

Methods for details). 410 

After identifying and correcting sample mix-ups, we discarded 15 samples whose identities could 411 

not be resolved (Supplemental Methods). Next, we used Beagle (Browning and Browning 2016, 2007), 412 

in conjunction with LG and SM haplotypes obtained from whole-genome sequencing data (Nikolskiy et al. 413 

2015) to impute 4.3M additional SNPs into the final sample of 1,063 mice. We removed SNPs with low 414 

MAFs (<0.1), SNPs with Hardy-Weinberg Equilibrium (HWE) violations (p ≤ 7.62x10-6, determined from 415 

gene dropping simulations as described in the Supplemental Methods), and SNPs with low imputation 416 
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quality (dosage r2, DR2<0.9). We then pruned variants in high LD (r2>0.95) to obtain the 523,028 SNPs 417 

that we used for GWAS.   418 

LD Decay 419 

We used PLINK (Chang et al. 2015) to calculate r2 for all pairs of autosomal GWAS SNPs typed in G50-420 

56 (parameters are listed in Supplemental File 3). We repeated the procedure for 3,054 SNPs that were 421 

genotyped in G34 mice (Cheng et al. 2010). Next, we randomly sampled r2 values calculated for ~40,000 422 

SNP pairs from each population and used the data to visualize the rate of LD decay (Fig. 1c). 423 

LOCO-LMM 424 

We used a modified LMM implemented in GEMMA (Zhou and Stephens 2012) to perform GWAS. An 425 

LMM accounts for relatedness by modeling the covariance between phenotypes and genotypes as a 426 

random, polygenic effect (Gonzales and Palmer 2014), which we also refer to as a genetic relationship 427 

matrix (GRM). Power to detect associations is reduced when the locus being tested is also included in 428 

the GRM because the effect of the locus is represented in both the fixed and random terms (Cheng et al. 429 

2013). To address this issue, we calculated 19 separate GRMs, each one excluding a different 430 

chromosome. When testing SNPs on a given chromosome, we used the GRM that did not include 431 

markers from that chromosome as the polygenic effect in the model. Fixed covariates for each trait are 432 

listed in Supplemental Table S2.  433 

We used a permutation-based approach implemented in MultiTrans (Joo et al. 2016) and SLIDE 434 

(Han et al. 2009) to obtain a genome-wide significance threshold that accounts for LD between nearby 435 

markers (see Supplemental Methods for details). We obtained a significance threshold of p=8.06 x 10-6 436 

(α=0.05) from 2.5M samplings. Because the phenotypic data were quantile-normalized, we applied the 437 

same threshold to all traits. We converted p-values to LOD scores and used a 1.5-LOD support interval 438 

to approximate a critical region around each associated region, which enabled us to systematically 439 

identify overlap with eQTLs. 440 

We estimated the proportion of phenotypic variance explained by the set of 523,028 LD-pruned 441 

SNPs using the restricted maximum likelihood algorithm in GEMMA (Zhou and Stephens 2012). We ran 442 
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a second genome-wide scan for each trait, this time dropping the fixed effect of dosage and including the 443 

complete GRM estimated from SNPs on all 19 autosomes. We repeated the procedure using dosage at 444 

the most significant SNP as a covariate for each trait and interpreted the difference between the two 445 

estimates as the effect size of that locus. 446 

RNA-sequencing and quality control  447 

We extracted mRNA from HIP, PFC and STR as described in Parker et al. (2016) and prepared 448 

cDNA libraries from 741 samples with RNA integrity scores ≥ 8.0 (265 HIP; 240 PFC; 236 STR) 449 

(Schroeder et al. 2006) as measured on a Bioanalyzer (Agilent, Wilmington, DE, USA). We used Quant-450 

iT kits to quantify RNA (Ribogreen) and cDNA (Picogreen; Fisher Scientific, Pittsburgh, PA, USA). 451 

Barcoded sequencing libraries were prepared with the TruSeq RNA Kit (Illumina, San Diego, USA), 452 

pooled in sets of 24, and sequenced on two lanes of an Illumina HiSeq 2500 using 100 bp, single-end 453 

reads. 454 

Because mapping quality tends to be higher for reads that closely match the reference genome 455 

(Degner et al. 2009), read mapping in an AIL may be biased toward the reference strain (C57BL/6J) 456 

(Wang and Clark 2014). We addressed this concern by aligning RNA-seq reads to custom genomes 457 

created from LG and SM using whole-genome sequence data (Nikolskiy et al. 2015). We used default 458 

parameters in HISAT (Kim et al. 2015) for alignment and GenomicAlignments (Lawrence et al. 2013) for 459 

assembly, assigning each read to a gene as defined by Ensembl (Mus_musculus.GRCm38.85) (Aken et 460 

al. 2016). We required that each read overlap one unique disjoint region of the gene. If a read contained 461 

a region overlapping multiple genes, genes were split into disjoint intervals, and any shared regions 462 

between them were hidden. If the read overlapped one of the remaining intervals, it was assigned to the 463 

gene that the interval originated from; otherwise, it was discarded. Next, we reassigned the mapping 464 

position and CIGAR strings for each read to match mm10 genome coordinates and combined the LG 465 

and SM alignment files for each sample by choosing the best mapping. Only uniquely mapped reads 466 

were included in the final alignment files. We then used DESeq (Anders and Huber 2010) to obtain 467 

normalized read counts for each gene in HIP, PFC and STR. We excluded genes detected in <95% of 468 

samples within each tissue.  469 
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We also excluded 30 samples with <5M mapped reads or with an alignment rate <91.48% (i.e. 470 

less than 1 s.d. below the mean number of reads or the mean alignment rate across all samples and 471 

tissues; Supplemental Fig.S18). We merged expression data from HIP, PFC and STR and plotted the 472 

first two principal components (PCs) of the data to identify potential tissue swaps. Most samples 473 

clustered into distinct groups based on tissue. We reassigned 12 mismatched samples to new tissues 474 

and removed 35 apparently contaminated samples that did not cluster with the rest of the data 475 

(Supplemental Fig.S19). We also used agreement among GBS genotypes and genotypes called from 476 

RNA-seq data in the same individuals to identify and resolve mixed-up samples, as detailed in the 477 

Supplemental Methods. We discarded 108 sample mix-ups that we were not able to resolve, 29 478 

samples with low-quality GBS data, and 12 outliers (details are provided in the Supplemental Methods). 479 

A total of 208 HIP, 185 PFC, and 169 STR samples were retained for further analyses. 480 

Prior to eQTL mapping, we quantile-normalized gene expression data and used principal 481 

components analysis to remove the effects of unknown confounding variables (Pickrell et al. 2010). For 482 

each tissue, we calculated the first 100 PCs of the gene x sample gene expression matrix. We quantile-483 

normalized PCs and used GEMMA (Zhou and Stephens 2012) to test for association with SNPs using 484 

sex and batch as covariates. We evaluated significance with the same permutation-based threshold used 485 

for GWAS. We retained PCs that showed evidence of association with a SNP in order to avoid removing 486 

trans-eQTL effects. We then used linear regression to remove the effects of the remaining PCs (71 in 487 

HIP, 81 in STR and 93 in PFC) and quantile-normalized the residuals.  488 

eQTL mapping 489 

We mapped cis- and trans-eQTLs using a LOCO-LMM (Cheng et al. 2013) implemented in GEMMA 490 

(Zhou and Stephens 2012), conservatively including sex and batch as covariates even though PC 491 

regression might have accounted for them (see Supplemental Methods for details).  492 

We considered intergenic SNPs and SNPs 1 Mb upstream or downstream of the gene as 493 

potential cis-eQTLs and excluded 2,143 genes that had no SNPs within their cis-regions. We used 494 

eigenMT (Davis et al. 2016) to obtain a gene-based p-value adjusted for the number of independent 495 
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SNPs in each cis region. We declared cis-eQTLs significant at an FDR<0.05. We refer to genes with 496 

significant cis-eQTLs as cis-eGenes. 497 

SNPs on chromosomes that did not contain the gene being tested were considered potential 498 

trans-eQTLs. We determined significance thresholds for trans-eQTLs by permuting data 1,000 times. 499 

Since expression data were quantile-normalized, we permuted one randomly chosen gene per tissue. 500 

The significance threshold for trans-eQTLs was 8.68x10-6 in STR, 9.01x10-6 in in PFC (α=0.05). We used 501 

all SNPs for permutation; therefore, we expect these thresholds to be conservative. We refer to genes 502 

with trans-eQTLs as trans-eGenes. Finally, we defined trans-eQTL hotspots or ‘master eQTLs’ as 5 Mb 503 

regions that contain ten or more trans-eQTLs. To identify master eQTLs, we divided chromosomes into 5 504 

Mb bins and assigned each trans-eGene to the bin containing its most significant eQTL SNP.  505 

Csmd1 mutant mice  506 

Csmd1 mutants were created by Lexicon Genetics by inserting a Neomycin cassette into the first exon of 507 

Csmd1 using embryonic stem cells derived from 129S5 mice (Friddle et al. 2003) as described by Distler 508 

et al. (2012). The mice we used were the result of a C57BL/6 x 129S5 intercross designated B6;129S5-509 

Csmd1tm1Lex/Mmucd (the exact C57BL/6 substrain is unknown). We bred heterozygous males and 510 

females and tested littermate offspring to account for their mixed genetic background. Csmd1 spans 1.6 511 

Mb and has 70 exons. Its four major transcripts, termed Csmd1-1 to Csmd1-4, are expressed in the 512 

central nervous system (Distler et al. 2012). Distler et al. (2012) demonstrated that Csmd1 homozygous 513 

mutant mice express <30% of wild-type Csmd1 levels in the brain, and heterozygous mice show a 54% 514 

reduction in Csmd1 expression. Residual expression of Csmd1 in homozygous mutant mice is derived 515 

from Csmd1-4, the only transcript that does not include the first exon. We analyzed locomotor behavior 516 

on two days following a saline injection in 31 wild-type, 59 heterozygous, and 48 mutant mice.  517 

Data access 518 

Genotypes, phenotypes and gene expression data from LG x SM G50-56 mice have been submitted to 519 

GeneNetwork (http://www.genenetwork.org; accession number is in process). The AIL pedigree is 520 
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provided in Supplemental File S1 and code to run the analyses in this study are provided in 521 

Supplemental File S3.  522 
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